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Abstract: Population-based seroprevalence surveys can provide useful estimates of the number of 
individuals previously infected with SARS-CoV-2 and still susceptible as well as contribute to better 
estimates of the case fatality rate and other measures of COVID-19 severity.  No serological test is 100% 
accurate, however, and the standard correction that epidemiologists use to adjust estimates relies on 
estimates of the test sensitivity and specificity often based on small validation studies.  This paper 
develops a fully Bayesian approach to adjust observed prevalence estimates for sensitivity and 
specificity.  Application to a seroprevalence survey conducted in New York State in 2020 demonstrates 
that this approach results in more realistic – and narrower – credible interval than the standard 
sensitivity analysis using confidence interval endpoints.  In addition, the model permits incorporating 
data on the geographical distribution of reported case counts to create informative priors on the 
cumulative incidence to produce estimates and credible intervals for smaller geographic areas than 
often can be precisely estimated with seroprevalence surveys.   
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Introduction 

 Tracking the spread of COVID-19 through communities and identifying the virus’ epidemiological 

characteristics requires a variety of surveillance systems.  Most prominent among these are the daily 

counts of cases and deaths that are reported in the media and used as metrics to guide decisions such as 

re-opening schools.  However, because these counts depend on the demand for and availability of 

testing as well as other variable factors, they are misleading representations of trends in the incidence 

of cases and deaths (1–3).  

 To complement these data, some communities undertake seroprevalence surveys, in which a 

representative sample of individuals from a defined population are tested to identify the presence of 

antibodies indicating a previous infection with SARS-CoV2, the virus that causes COVID-19 (4–6). 

Seroprevalence surveys can be conducted in geographically-defined populations (e.g. New York State 

(7), New York City (8), England (9), or Spain (10), people receiving medical care at a particular site (e.g. 

women delivering babies at specific clinics in New York City (11) or undergoing dialysis nationally (12)), 

blood samples collected for routine screening (13,14), or as part of ongoing surveillance at nursing 

homes and other high likelihood of exposure sites.   

When infection reliably produces an antibody response and case-fatality rates are relatively 

small, seroprevalence approximates cumulative incidence over the average period of detectable 

antibody. Because SARS-CoV-2 infection likely produces detectable antibodies for months after the 

infection has cleared, seroprevalence enables a reasonable estimate of recent cumulative infections. 

Further, seroprevalence surveys are used to estimate the number of persons still susceptible and 

progress towards herd immunity, a use for which mortality can be neglected.  Finally, if reasonable 

estimates of mortality are available—and mortality is often easier to measure through routine 

surveillance than incidence—seroprevalence surveys can also contribute to better estimates of the case 

fatality rate and other measures of disease severity, to get a sense of how close a population is to 

achieving herd immunity, which are critical for parameterizing simulation models and informing policies 

(15–18).  

 Conducting and analyzing a seroprevalence study, however, can be challenging.  The most 

prominent problem, of course, is identifying a representative sample, either by random sampling or 

other means, and ensuring that individuals who have been infected are neither more or less likely to be 

included.  Second, when prevalence is low, which to date is typically the case with COVID-19, the 

number of positive tests in a sample is small.  This is exacerbated, when the sample is broken down by 
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subgroups that correspond to, for example, geographic areas within a state—leading to substantial 

uncertainty about estimates. 

Beyond that, even the best tests are not 100% accurate; false negatives and false positives are 

to be expected (19).  Epidemiologists address this with a standard correction formula based on Bayes’ 

Rule and estimates of the test sensitivity and specificity: 

 

cumulative incidence = (proportion reactive + specificity – 1) / (sensitivity + specificity – 1) (20). 

 

The estimates of sensitivity and specificity, however, are often based on small validation studies.  

Rosenberg and colleagues, for instance, estimated the specificity of their assay (the proportion of non-

cases that test negative) as 99.75% with a 95% confidence interval of 96.1% to 100%.  The uncertainty 

about the sensitivity of their assay (the proportion of actual cases that test positive) was much larger, 

with a base estimate of 87.9% and a 95% confidence interval of 83.7% to 92.1%.  State-wide (and 

adjusting for sampling and demographic factors), Rosenberg and colleagues estimated a cumulative 

incidence of 14.0% (95% CI: 13.3-14.7%) using the mean sensitivity and specificity.  In sensitivity analyses 

at the extremes of test characteristics, however, cumulative incidence ranged broadly from 9.8% to 

15.0% (7). There is an additional problem with the standard correction formula: when the actual 

prevalence is low compared to 1-specificity, a negative number can result.  For example, if the 

proportion reactive was 2%, the extreme values of the Rosenberg and colleagues test characteristics 

would yield a cumulative incidence range from -0.0215 to 0.0239.  Since cumulative incidence cannot be 

negative, and because using the extreme values of the 95% confidence intervals for both sensitivity and 

specificity results does not yield a 95% confidence interval for the adjustment, the resulting intervals 

cannot be described in probabilistic terms.   

The primary objective of this paper is to develop a fully Bayesian approach to adjust observed 

prevalence estimates for sensitivity and specificity with a more realistic – and narrower – credible 

interval than the standard sensitivity analysis using confidence interval endpoints.  In addition, the 

model we have developed permits incorporating data on the geographical distribution of reported case 

counts to create informative priors on the cumulative incidence to produce estimates and credible 

intervals for smaller geographic areas than often can be precisely estimated with seroprevalence 

surveys.  

 

Methods 
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Data 

 This study re-analyzes seroprevalence data produced by Rosenberg and colleagues (7). The 

seroprevalence data were collected between April 19 and 28, 2020, and have been fully described 

previously (7). Consistent with this analysis, data for New York State are categorized by county, region, 

and super-region. In Figure 1, the 62 counties are outlined in white, the 10 regions are outlined in grey, 

and the 4 super-regions are outlined in black. The regions include the Capital Region, Central New York, 

Finger Lakes, Hudson Valley, Long Island, Mohawk Valley, New York City, North Country, Southern Tier, 

and Western New York (21). For the purpose of this study, Westchester and Rockland Counties were 

separated from the Hudson Valley Region and were treated as their own region. The super-regions, 

which were defined to reflect differences in COVID-19 epidemiology, include New York City, 

Westchester and Rockland Counties plus Long Island, and the remainder of the state (“Rest of State”).   

As a basis for the prior distributions, we calculated the cumulative reported cases for the region 

by grouping the cumulative reported cases for each county in New York State on April 11, 2020. The 

literature estimates a mean of 4 days for symptom onset after infection (22), and a mean of 9 days for 

diagnosis after symptom onset (or 13 days for diagnosis after infection) during the early stages of the 

epidemic in New York (23). Given that Rosenburg and colleagues estimated seroprevalence results that 

equate to cumulative incidence through approximately March 29, 2020, we analyzed cumulative 

reported cases for New York State on April 11, 2020 which is 13 days after estimated infection and 9 

days after estimated diagnosis.   

 To calculate the cumulative reported cases per 10,000 for each region, the cumulative reported 

cases on April 11, 2020 for the counties were grouped by region. The 2019 annual population estimates 

for the counties were also grouped by distinct region (24). The cumulative reported cases for each 

county were summed by region and divided by the region’s estimated population, creating a cumulative 

case rate for each region as represented in Table 1 (25). The county cumulative reported cases on April 

11, 2020 were also grouped by super-region using the same approach. These estimates were then 

multiplied by 10 to account for estimated under-ascertainment of reported cases based on previous 

estimates of the spring epidemic (12,13,26).  These estimates then formed the basis of the prior 

estimate for true seroprevalence in each jurisdiction as described below. 

 

 

Statistical Analysis 
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 Our primary inferential goal is the true seroprevalence, that is the proportion of individuals who 

have detectable antibodies in each region and super region. To obtain this, we let !"!"  denote the true 

seroprevalence in the #th sub-region of the $th super-region, # = 1,… ,)"  and $ = 1, 2, 3. Super-regions 

are as defined in Figure 1. Also define the observed seroprevalence in the #$th region to be ,"!" =

!"!" × ./ + 11 − !"!"3 × (1 − .5) for the test sensitivity, ./, and specificity, .5. The likelihood, across 

all regions, is 

7(!", ./, .5|9, :) ∝ 	==,"!"
#!"11 − ,"!"3

$!"%#!"
&"

!'(

)

"'(
		

for > positive seroprevalence tests out of ? total tests performed in each #$ region. We place the 

following priors on the sensitivity and specificity: 

./	~	A/BC(205, 29){+.-,+./0} and .5	~	A/BC(288, 2){+./,(}, 

where {} denotes truncation to the specified regions. We chose the parameters of these Beta 

distributions so that the means of these distributions are the same as the sensitivity and specificity 

values used by Rosenberg and colleagues and the variances represented a reasonable range of values 

for these test characteristics (7).  Truncated distributions are re-weighted to integrate to 1, thus these 

priors are proper. 

Geographic regions may have similar seroprevalence rates to their neighbors due to similar 

socio-demographic and geographic factors. Hierarchical priors across the super-regions accommodate 

this structure. Weakly informative and informative priors incorporate information from regional-specific 

cumulative case counts found in Table 1. Thus, for each region within a super-region, the true 

seroprevalences are assumed to be independent and identically distributed samples from the super-

region specific prior. We use a weakly informative prior for our primary analysis but also employ both a 

non-informative and more informative prior in sensitivity analyses.  

For hierarchical priors based on the geographical clusters defined by the super-regions, $ = 1 

denotes New York City, $ = 2 denotes Rockland and Westchester counties along with Long Island, and 

$ = 3 denotes the rest of the state. The hierarchical priors are then 

 !"!(	~	A/BC(2.1792, 9.8208) for all # in super-region 1, 

!"!2	~	A/BC(2.6641, 9.3359) for all # in super-region 2, and  

!"!)	~	A/BC(1.1930, 10.8070) for all # in super-region 3.   

We chose the parameters of these Beta distributions so that the mean was the estimated prevalence 

based on reported cases in each super-region. These priors are considered weakly informative because 

despite incorporating information on the location of the parameter, the variance of each prior is 
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relatively large. For the uniform prior seroprevalence and informative prior seroprevalence models, 

please see the Methods Appendix. Graphical depictions of all priors are in the Supplementary Material. 

Using this model, we first calculate seroprevalence estimates for each region. We then construct 

super-region and statewide estimates as averages of the region-specific posterior seroprevalence 

estimates weighted by the proportion of the super-region or state’s population that lives in each region. 

Data for the population-based weights comes from the U.S. Census Bureau 2019 Population Estimates, 

provided by the New York State Department of Labor (25). 

Model estimates are sampled using the NIMBLE package in R (27,28), which performs Markov 

Chain Monte Carlo (MCMC) simulation. Sample code to implement the model is available in the 

appendix while we make our full code freely available online at https://github.com/markjmeyer/BPA. 

For all models under consideration, we sample four separate chains each of length 200,000, retaining 

100,000 samples for conducting inference. We monitor convergence using the Gelman-Rubin diagnostic 

(29) and traceplots. All parameters were judged to have properly converged. Traceplots and tables of 

convergence diagnostics are in the Supplementary Material. 

 

Results 

 Prior estimates for true seroprevalence in each super-region, sensitivity, and specificity are 

shown Figure 1 and supplemental table 1. Region-specific posterior estimates of seroprevalence, 

adjusted for sensitivity and specificity, are shown Table 2. True seroprevalence estimates range from 

1.0% (95% credible interval [CrI] 0.1-2.9%) to 25.0% (95% CrI 23.3-26.9%). True seroprevalence was 

estimated at 15.3% (95% CrI 12.7-18.1%) in Westchester and Rockland Counties, 12.9% (95% CrI 11.1-

14.7%) in Long Island, and 7.9% (95% CrI 6.2-9.9%) in Western New York. True seroprevalence is 

estimated below 5% as of the date of data collection in all other regions. The weighted estimate of the 

true seroprevalence in New York state is 14.8% (95% CrI 13.7-16.0%). The weighted estimate of the true 

seroprevalence in the Westchester County, Rockland County, and Long Island super-region was 13.6% 

(95% CrI 12.1-15.3%); in the super-region consisting of the remainder of the state (not including New 

York City), estimated true seroprevalence is 3.4% (95% CrI 2.5-4.2%). 

Credible intervals are consistently narrower when estimated using a fully Bayesian approach 

than when employing the customary correction for estimated sensitivity and specificity to confidence 

interval endpoints around seroprevalence estimates (Table 3). For example, when the unadjusted 

seroprevalence is 20%, as in New York City, the interval width is 3.6 percentage points using the fully 

Bayesian approach compared to 5.6 percentage points with the customary approach.  When the 
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unadjusted seroprevalence is 12%, as in the Rockland, Westchester and Long Island super-region, the 

results are similar.  When the unadjusted seroprevalence is low, for example 2%, a typical value in most 

regions of the state, the results are different.  There is a similar relative reduction in the width of the 

interval, from 4.5 to 2.3 percentage points.   More importantly, the sensitivity and specificity-corrected 

lower bound estimate is 1.0% using the fully Bayesian approach, as opposed to a negative number, -

2.1%, using the customary approach.  

Estimates of true seroprevalence are robust to the choice of prior distributions (Table 2). The 

maximum deviation in true seroprevalence estimates between the primary model with a weakly 

informative prior and the sensitivity analysis using uniform priors is 0.06 percentage points in Western 

New York. Deviation was slightly greater when the primary model was compared to the sensitivity 

analysis using informative priors, with Western New York again having the largest deviation (0.6 

percentage points). Credible interval widths are slightly wider with estimates using uniform priors and 

slightly narrower with estimates using informative priors but differences are not meaningful. 

Figure 2 illustrates the effect using hierarchical weakly informative and non-informative priors 

for the entire “Rest of State” super-region.  The customary correction has the effect of adjusting the 

proportion reactive up if it is greater than 2.0% and down otherwise.  In general, the Bayesian model 

moves the estimates back towards the mode of the super-region’s hierarchical prior. The non-

informative prior for our model forms the basis of comparison as its mode is undefined. For the weakly 

informative prior, the “Rest of State” prior mode is 1.9% and model estimates shift toward this value 

when compared to those under the non-informative prior. This is the case for all super-regions, but 

because this region has lower seroprevalence, the influence of the prior is more noticeable. It is most 

apparent for Western New York, which has a higher seroprevalence than the rest of the super-region, 

and for North Country, which has the smallest sample (299 test) and number reactive (3). The “Rest of 

State” super-region may be too large resulting in a hierarchical prior that smooths over sub-regional 

differences. However, based on the available information, the weakly informative prior represents our 

“best guess” for this region. Ultimately, the data from regions like Western New York overwhelm the 

information imparted by prior providing a better basis for future Bayesian analyses of seroprevalence 

data in New York. 

 

Discussion 

 These results demonstrate that the fully Bayesian model achieves the two goals we set out to 

meet.  First, as shown in Table 3, the credible intervals for seroprevalence that result are substantially 
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narrower than the intervals one would calculate using the customary correction for estimated sensitivity 

and specificity, and do not yield negative numbers for proportions that must be greater than zero.  The 

customary approach, which used the extreme ends of the confidence intervals for estimated sensitivity 

and specificity instead of the variance for an adjusted estimator, is not a 95% confidence interval and 

should not be interpreted as such.  The 95% credible intervals our method calculates, on the other hand, 

have a proper probabilistic interpretation: 95% of the posterior distribution is between the lower and 

upper bounds.  Confidence intervals are often misinterpreted in this fashion, giving credible intervals the 

advantage of having a more natural and less misleading interpretation. 

 When it comes to accounting for sensitivity and specificity of tests used in seroprevalence 

surveys, actual practice varies substantially.  Some studies (30) report point estimates of sensitivity and 

specificity, but do not say how (or whether) these estimates were used to adjust the results.  Stadlbauer 

and colleagues report point estimates and confidence intervals based on small samples, but do not 

indicate how (or whether) this uncertainty in the seroprevalence estimates (8). Angulo and colleagues 

found that the ratio of survey-based estimates of the cumulative incidence of COVID-19 to reported 

cases in five states varied from 2.1 to 10.5 (31).  Perhaps some of this variability is due to differences in 

how the authors accounted for test performance. 

 Havers (13) and Bajema (14) use bootstrap approaches to obtain confidence intervals. Each uses 

a different version of a two-stage approach where each bootstrap replicate incorporates an adjustment 

for sensitivity and specificity at the first stage. Havers and colleagues (13) estimate variability in 

sensitivity and specificity by resampling from test validation data and at the second step seroprevalence 

sampling variability is estimated by resampling observations from the seroprevalence survey. Their first 

stage substitutes the empirical, discrete distribution from their observations for the continuous 

distribution a Bayesian approach can employ. Bajema and colleagues (14) specify a binomial distribution 

based on laboratory-provided sensitivity and specificity values, sample from it, calculate false positive 

and negative rates, and then randomly flip positive and negative observations in each bootstrap 

replicate. These frameworks are partially Bayesian in nature as they seek to account for the variability in 

the sensitivity and specificity but do not directly model it as a fully Bayesian approach does. Fully 

Bayesian models can incorporate prior information about prevalence in ways that frequentist 

approaches cannot, and Bayesian approaches often allow complex estimates to be calculated more 

tractably at lower computational time. 

Second, the incorporation of informative priors based on reported COVID-19 cases seems to 

have reasonably stabilized the estimates, especially for the low-prevalence areas of the state.  The 
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Bayesian estimates for New York City, with the highest seroprevalence rates, are barely different than 

the customary correction; the proportion seropositive, adjusted for sensitivity and specificity, and the 

Bayesian estimate are both 25.0%.  For the low prevalence regions in “Rest of State,” however, adjusted 

seropositive proportions and the Bayesian estimates differ.  In Central New York, the lowest prevalence 

region, they are 1.5% and 1.2% respectively; in Western New York, the corresponding estimates are 

7.4% and 7.9%.  

 Analysts have often used simple approaches such as that described by Rothman and colleagues 

(20) because the formal Bayesian approach we describe have been challenging to compute.  Recent 

advances in Bayesian software packages have now made this type of modeling more accessible to the 

non-technical user. To contribute to this accessibility, we made sample code available in the 

Supplementary Material and our full code available online. 

 When seroprevalence is used as a proxy for cumulative incidence, researchers need to be 

cognizant of the duration over which antibodies are detectible (32). Because this analysis uses data from 

the opening months of the COVID-19 epidemic, this is not an issue for our paper.  It could be an issue for 

other studies done later in the epidemic. One might combine other sources of information about the 

trajectory of an epidemic—for example, data about hospitalizations or deaths—with evidence about the 

temporal dynamics of seroreversion to determine what proportion of total cases are likely to still have 

detectible antibody at the point seroprevalence sampling was conducted. The seroprevalence estimate 

would then be upweighted inverse to the estimated proportion of total cases that continue to have 

detectible antibody. More sophisticated approaches could incorporate separate evidence about 

epidemic trajectories stratified by demographic characteristics or geography. An alternative approach 

would be to conduct serial seroprevalence surveys. Based on the time between samples, one could 

estimate and account for the proportion of those previously positive who would no longer be expected 

to be positive in the subsequent sample. Accounting for seroreversion is a topic that would benefit from 

additional research.  

Our approach is not limited to seroprevalence studies. Rather, it could be used equally well with 

prevalence surveys that seek to identify current prevalence via PCR or antigen testing. In fact, because 

current prevalence of SARS-CoV-2 infection is expected to be low in most populations, our approach 

may perform better than the standard adjustment for sensitivity and specificity because our approach 

produces intervals that do not extend below zero. Further, the approach could be extended to serial 

surveys for either active infection or seroprevalence. In this instance, estimates from earlier surveys—
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potentially combined with routine surveillance case counts, hospitalizations, or mortality estimates—

would form the basis of informative priors for subsequent surveys.  

 This analysis ignored the poststratification weighting used by Rosenberg and colleagues (7) to 

make the non-probability sampling approach that was available during the early COVID-19 epidemic 

more representative of the New York population. However, the method we use could be applied to data 

from complex sampling designs or from non-probability sampling with weight adjustments to mitigate 

sampling bias. Our code requires raw seroprevalence data to be input as n/N, where n represents the 

number testing positive and N is the total sample size in a location. The easiest adjustment for weighted 

and/or clustered data would be to adjust N by dividing it by the design effect readily output by most 

statistical software. Then n could be adjusted so that the adjusted n/N equals the weighted 

seroprevalence estimate.  

 

3443 words 
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Figure 1. Estimated Seroprevalence by Region 

 
Figure 2.  Seroprevalence estimated by the proportion reactive, the customary correction, and the fully 
Bayesian approach with both weakly informative and non-informative priors for the regions in the “Rest 
of State” super-region. 
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Table 1. Cumulative reported cases per 10,000 by region and super region as of April 11, 2020. 

Panel a. By region Cases per 10,000 
Capital Region 9.23 
Central New York 7.26 
Finger Lakes 8.62 
Westchester & Rockland Counties 202.63 
Hudson Valley (excluding Westchester & Rockland Counties) 77.7 
Long Island 149.87 
Mohawk Valley 10.45 
New York City 117.92 
North Country 4.79 
Southern Tier 8.51 
Western New York 12.38 

 

Panel b. By super-region Cases per 10,000 
New York City 117.92 
Westchester & Rockland Counties 202.63 
Long Island 149.87 
Rest of State 19.3 

 

Table 3.  Comparison of 95% credible intervals based on the fully Bayesian approach (primary model) and 
a sensitivity analysis based on the customary correction for sensitivity and specificity 
 

 Mean & 95% C.I. 
Observed antibody + = 2%    
Sensitivity 92.10% 87.90% 83.70% 
Specificity  96.10% 99.75% 100% 
Sensitivity analysis -0.0215 0.0200 0.0239 
95% credible interval 0.0096 0.0209 0.0324 
    
Observed antibody + = 12%    

Sensitivity analysis 0.0918 0.1341 0.1434 
95% credible interval 0.1110 0.1287 0.1473 
    
Observed antibody + = 20%    

Sensitivity analysis 0.1825 0.2253 0.2389 
95% credible interval 0.2326 0.2498 0.2690 
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Table 2: Posterior Estimates of the true prevalence on March 29, 2020 for each region, sensitivity,  
and specificity under all models. 
  Posterior Estimation: Median (95% credible interval) 

 Region &  
Super-region 

Primary Model  
(Weakly Informative) 

 
Uniform Prior  

 
Informative Prior  

True 
Seroprevalence 

New York City 0.2499 (0.2327, 0.2691) 0.2503 (0.2330, 0.2698) 0.2450 (0.2291, 0.2626) 

Westchester/Rocklan
d Counties & Long 

Island 

0.1363 (0.1206, 0.1529) 0.1362 (0.1202, 0.1530) 0.1367 (0.1224, 0.1519) 

Westchester & 
Rockland County 

0.1526 (0.1272, 0.1805) 0.1526 (0.1271, 0.1805) 0.1527 (0.1294, 0.1780) 

Long Island 0.1287 (0.1111, 0.1474) 0.1286 (0.1107, 0.1475) 0.1294 (0.1129, 0.1469) 

Rest of State 0.0337 (0.0245, 0.0418) 0.0338 (0.0241, 0.0421) 0.0319 (0.0248, 0.0388) 

Capital Region 0.0209 (0.0095, 0.0325) 0.0208 (0.0091, 0.0325) 0.0205 (0.0109, 0.0313) 

Central New York 0.0120 (0.0025, 0.0222) 0.0118 (0.0020, 0.0222) 0.0126 (0.0049, 0.0219) 

Finger Lakes 0.0254 (0.0096, 0.0459) 0.0254 (0.0091, 0.0464) 0.0240 (0.0110, 0.0416) 

Remainder of Hudson 
Valley 

0.0257 (0.0094, 0.0474) 0.0259 (0.0090, 0.0482) 0.0242 (0.0108, 0.0423) 

Mohawk Valley 0.0302 (0.0132, 0.0520) 0.0305 (0.0131, 0.0528) 0.0278 (0.0137, 0.0461) 

North Country 0.0098 (0.001, 0.0291) 0.0092 (0.0006, 0.0287) 0.0127 (0.0036, 0.0291) 

Southern Tier 0.0228 (0.0086, 0.0403) 0.0228 (0.0081, 0.0407) 0.0221 (0.0102, 0.0375) 

Western New York 0.0794 (0.0616, 0.0988) 0.0800 (0.0619, 0.0995) 0.0736 (0.0576, 0.0913) 

New York State 0.1481 (0.1372, 0.1596) 0.1483 (0.1371, 0.1601) 0.1455 (0.1360, 0.1556) 

Sensitivity  0.8721 (0.8258, 0.9114) 0.8711 (0.8238, 0.9108) 0.8811 (0.8374, 0.9175) 

Specificity  0.9952 (0.9879, 0.9992) 0.9952 (0.9874, 0.9992) 0.9951 (0.9889, 0.9991) 
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Adjusting COVID-19 seroprevalence survey results to account for test sensitivity and specificity  

Supplementary material 
Table 1: Summary statistics of prior distributions on true prevalence, sensitivity, and specificity. 

 Primary Model Priors Uniform Prior Prevalence Model Informative Prior Prevalence Model 

 Super-Region Mean Variance Standard 
Deviation Mean Variance Standard 

Deviation Mean Variance Standard 
Deviation 

True 
Prevalence 

 Westchester & Rockland 
Counties, Long Island 0.2220 0.0133 0.1153 0.5000 0.0833 0.2887 0.1730 0.0014 0.0373 

New York City 0.1816 0.0114 0.1069 0.5000 0.0833 0.2887 0.1254 0.0011 0.0326 

Rest of State 0.0994 0.0069 0.0830 0.5000 0.0833 0.2887 0.0287 0.0003 0.0165 

Sensitivity  0.8761 0.0004 0.0199 0.8761 0.0004 0.0199 0.8761 0.0004 0.0199 

Specificity  0.9931 0.0000 0.0049 0.9931 0.0000 0.0049 0.9931 0.0000 0.0049 

 
 
Table 2: Convergence diagnostics for the primary model (weakly informative prior). The table contains point estimates and upper bound of 
the 95% credible interval for the Gelman-Rubin Diagnostic or potential scale reduction factor. Values of 1 suggest convergence. 

Region True Prevalence Observed Prevalence 

 Point 
Estimate 

Upper 
Bound 

Point 
Estimate 

Upper 
Bound 

Capital Region 1 1 1 1 

Central New York 1 1 1 1 

Finger Lakes 1 1 1 1 
Hudson Valley (only 

Westchester/Rockland County) 1 1 1 1 

Hudson Valley (without 
Westchester/Rockland County) 1 1 1 1 

Long Island 1 1 1 1 

Mohawk Valley 1 1 1 1 

New York City 1 1 1 1 

North Country 1 1 1 1 

Southern Tier 1 1 1 1 

Western New York 1 1 1 1 

 Point 
Estimate 

Upper 
Bound   

Sensitivity 1 1   

Specificity 1 1   

 
Table 3: Convergence diagnostics for the uniform prior prevalence model. The table contains point estimates and upper bound of the 95% 
credible interval for the Gelman-Rubin Diagnostic or potential scale reduction factor. Values of 1 suggest convergence. 

Region True Prevalence Observed Prevalence 

 Point 
Estimate 

Upper 
Bound 

Point 
Estimate 

Upper 
Bound 

Capital Region 1 1 1 1 

Central New York 1 1 1 1 

Finger Lakes 1 1 1 1 
Hudson Valley (only 

Westchester/Rockland County) 1 1 1 1 
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Hudson Valley (without 
Westchester/Rockland County) 1 1 1 1 

Long Island 1 1 1 1 

Mohawk Valley 1 1 1 1 

New York City 1 1 1 1 

North Country 1 1 1 1 

Southern Tier 1 1 1 1 

Western New York 1 1 1 1 

 Point 
Estimate 

Upper 
Bound   

Sensitivity 1 1   

Specificity 1 1   

 
 
Table 4: Convergence diagnostics for the informative prior prevalence model. The table contains point estimates and upper bound of the 
95% credible interval for the Gelman-Rubin Diagnostic or potential scale reduction factor. Values of 1 suggest convergence. 

Region True Prevalence Observed Prevalence 

 Point 
Estimate 

Upper 
Bound 

Point 
Estimate 

Upper 
Bound 

Capital Region 1 1 1 1 

Central New York 1 1 1 1 

Finger Lakes 1 1 1 1 
Hudson Valley (only 

Westchester/Rockland County) 1 1 1 1 

Hudson Valley (without 
Westchester/Rockland County) 1 1 1 1 

Long Island 1 1 1 1 

Mohawk Valley 1 1 1 1 

New York City 1 1 1 1 

North Country 1 1 1 1 

Southern Tier 1 1 1 1 

Western New York 1 1 1 1 

 Point 
Estimate 

Upper 
Bound   

Sensitivity 1 1   

Specificity 1 1   
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Fig 1. Plots of the prior distributions on true prevalence, !"!", by super-region. Uniform priors are in 
solid black, primary model (weakly informative) priors in dashed blue, and informative priors in dotted 
red. Specific prior details on provided in each plot’s legend.  
 

 
 
 

 
 
 
 
 
 
 

 
 
 
Fig 2. Plots of the prior distributions on specificity, #$ (left panel), and sensitivity #% (right panel). 
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Fig 3. Traceplots of the posterior true prevalence, by region, for the primary model. 

 
Fig 4. Traceplots of the posterior observed prevalence, by region, for the primary model. 
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Fig 5. Traceplots of the posterior sensitivity and specificity for the primary model. 

 
Uniform Prior Prevalence Model 

 
Fig 6. Traceplots of the posterior true prevalence, by region, for the uniform prior prevalence model. 
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Fig 7. Traceplots of the posterior observed prevalence, by region, for the uniform prior prevalence 

model. 

 
Fig 8. Traceplots of the posterior sensitivity and specificity for the uniform prior prevalence model. 

 
 
 
 
 
 
 
Informative Prior Prevalence Model 
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Fig 9. Traceplots of the posterior true prevalence, by region, for the informative prior prevalence model. 

 
Fig 10. Traceplots of the posterior observed prevalence, by region, for the informative prior prevalence 

model. 
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Fig 11. Traceplots of the posterior sensitivity and specificity for the informative prior prevalence model. 
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