
 

1 

 

The Impact of the Variation of CT Scanner on the Prediction of 

human papillomavirus (HPV) Association of Oropharyngeal 

Cancer (OPC) using Radiomic models 

 

Reza Reiazi1,2,3, Colin Arrowsmith1 , Mattea Welch 1,2,3 , Farnoosh Abbas-Aghababazadeh1, Christopher 

Eeles1,Tony Tadic1,2,3, Andrew J. Hope1,3, Scott V. Bratman1,2,3,  Benjamin Haibe-Kains1,2,4,5,6 

 
1Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada. 
2Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada. 
3Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada 

4Ontario Institute for Cancer Research, Toronto, Ontario, Canada. 

5Department of Computer Science, University of Toronto, Toronto, Ontario, Canada. 
6Vector Institute, Toronto, Ontario, Canada. 

 

ABSTRACT 

Studies have shown that radiomic features are sensitive to the variability of imaging 

parameters (e.g., scanner model) and one of the major challenges in these studies lies in 

improving the robustness of quantitative features against the variations in imaging datasets 

from multi-center studies. Here, we assess the impact of scanner choice on the computed 

tomography (CT)-derived radiomic features to predict association of oropharyngeal 

squamous cell carcinoma with human papillomavirus (HPV). This experiment was 

performed on CT image datasets acquired with two different scanner manufacturers. We 

demonstrate strong scanner dependency by developing a machine learning model to 

classify HPV status from radiological images. These experiments revealed the effect of 

scanner manufacturers on the robustness of the radiomic features, and the extent of this 

dependency is reflected on the performance of HPV prediction models. The results of this 

study highlight the importance of implementing an appropriate approach to reduce the 

impact of imaging parameters on radiomic features and consequently on the machine 

learning models. 
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INTRODUCTION 

 

Recent advances in radiomics, the process of extracting descriptors from the radiological 

images by mathematical algorithms, have led to a large set of quantitative imaging features 

available to both research and clinical communities. A number of radiomics-driven computer 

models have shown promising results for personalized medicine, especially in oncological 

applications [1–4]. Radiomic features exhibit different levels of complexity and express properties 

of the lesion shape and the voxel intensity histogram, as well as the spatial arrangement of the 

intensity values at the voxel level (texture). They can be extracted either directly from the images 

or after applying different filters or transformations [5–7]. Quantitative features are usually 

categorized into discrete subgroups: Shape, Gray level Difference Method (GLDM), First Order 

Statistics (FO), Gray Level Co-occurrence Matrix (GLCM), Gray Level Size Zone Matrix (GLSZM), 

Gray Level Run Length Matrix (GLRLM) and Neighborhood Gray-Tone Difference Matrix 

(NGTDM). One of the main drawbacks of radiomic features is their potential lack of reproducibility 

due to variation in imaging parameters, which is assumed to be greater than the variation caused 

by either manual segmentation [8] or inter-observer variability [9]. This variation affects the 

information being extracted by radiomic features, which in turn affects classifier performance 

[10,11]. Consequently, conclusions regarding the performance of radiomic models must be 

treated with caution [12] since the results are vulnerable to image acquisition variability [13,14].  

 As radiomics is used to develop predictive models in biomedicine, it is important to assess 

the impact of domain dependency on the development of radiomic models using machine 

learning. A prediction task that has received broad attention in the literature is the prediction of 

human papillomavirus (HPV) association of oropharyngeal cancer (OPC) from radiological 

images[15–19]. HPV-positive OPC is now recognized as a distinct disease entity with implications 

for treatment and prognosis [20,21]. HPV status is currently ascertained from tumor tissue using 

immunohistochemistry to visualize expression of the p16 protein, or by using in situ hybridization 

for viral DNA. As such, standard HPV testing is invasive as it requires tissue sampling. Therefore, 

seeking a non-invasive yet accurate way to assess HPV status is an important research goal. 

Recently, a statistical radiomics approach analyzing Computerized Tomography (CT) 

images has emerged as a potential non-invasive approach to predict HPV status in OPC patients 

[15,16,18]. In this study, we evaluated the impact of domain dependency made by the type of 

scanner manufacturer on this prediction. We leveraged a large image database compiled from 

consecutively treated OPC patients at the Princess Margaret Cancer Centre with the aim to 

assess the influence of scanner manufacturer on feature reproducibility and prediction of HPV 
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status. We found that the scanner manufacturer affects the prediction of HPV status by a ML 

model built upon CT-derived radiomic features. Our results also indicate that robust features might 

reduce the overfitting in radiomic models and subsequently affect the accuracy of the prediction. 

 

 

Figure 1: This schematic overview of this study  

 

METHODS 

 

The schematic overview of this study is shown in Figure 1. 

 

Dataset 

Patient data were retrospectively collected from the Princess Margaret Cancer Centre, University 

Health Network and was approved by the institutional review board (REB 17-5871). All 

experiments were performed in accordance with the relevant guidelines and regulations of the 

institution. The primary patient cohort in this paper was collected by searching the institutional 

database for consecutive in-patients who met the following criteria: (1) had Oropharynx cancer 

(OPC); and (2) had completed p16 immunohistochemistry. In total, we analyzed CT images from 

1,294 OPC patients with known HPV status determined by p16 immunohistochemistry 
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(Supplementary Figure 2). Mean patient age was 61.5 years ± 10.5 (standard deviation). HPV 

status was positive in 824 patients (641 Toshiba and 183 GE) and negative in 470 patients (385 

Toshiba and 85 GE).  Distribution of HPV status was almost the same in two groups 

(+HPV:0.78[Toshiba]/0.22[GE]; -HPV:0.81[Toshiba]/0.19[GE]). Intravenous contrast was used in 

371 patients (all from Toshiba scanner). The dataset was subsequently stratified by CT scanner 

manufacturer (Toshiba scanner, GE scanner and both scanners (Mix)). Next, nine configurations 

of train-test sets were made: (1) Toshiba-Toshiba, (2) GE-GE, (3) Toshiba-GE, (4) GE-Toshiba, 

(5) Mix-Mix, (6) Toshiba-Mix, (7) GE-Mix, (8) Mix-Toshiba and (9) Mix-GE. Mix group contains the 

same number of samples from two scanner manufacturers (i.e Toshiba and GE). 

 

Feature extraction 

For each patient, the primary gross tumor volume (GTV) was contoured by the treating 

oncologist. Prior to extraction, images were resampled to 1x1x1 mm voxels and the intensities 

were normalized with a bin width of 25. We extracted a total of 1,874 radiomic features from  each 

patient’s manually-segmented GTV using PyRadiomics (version 3) [22]. The extracted features 

belong to six feature classes including: Shape features describing the shape and geometric 

properties of the region of interest (ROI) such as volume, maximum diameter along different 

orthogonal directions, maximum surface, tumor compactness, and sphericity. First-order statistics 

features describing the distribution of individual voxel values without concern for spatial 

relationships. These are histogram-based properties reporting the mean, median, maximum, 

minimum values of the voxel intensities on the image, as well as their skewness (asymmetry), 

kurtosis (flatness), uniformity, and randomness (entropy). Second-order statistics features 

including the so-called textural features [23], which are obtained by calculating the statistical inter-

relationships between neighboring voxels. They provide a measure of the spatial arrangement of 

the voxel intensities, and hence of intra-lesion heterogeneity. Such features can be derived from 

the grey-level co-occurrence matrix (GLCM), quantifying the incidence of voxels with same 

intensities at a predetermined distance along a fixed direction, or from the Grey-level run-length 

matrix (GLRLM), quantifying consecutive voxels with the same intensity along fixed directions 

[24]. Feature breakdown according to the group they belong to is as follows: 14 Shape, 320 

GLRLM and GLSZM, 360 First order, 480 GLCM, 280 GLDM and 100 NGTDM.  

Features are also obtained after mathematically transforming the images through 

application of imaging filters with the aim of identifying repetitive or non-repetitive patterns, 

suppressing noise, or highlighting details. These include wavelet transform, square, square root, 

gradient, exponential, Laplacian transforms of Gaussian-filtered images [25]. Further 
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explanations about the detail of the aforementioned filters can be found in PyRadiomics 

documentation. Distribution of features based on the imaging filter is as follows: Original 

(unfiltered images) 88, Exponential, Gradient, Square and Square-root each 88; Local Binary 

Pattern (lbp) and logarithm of Gaussian (LoG) each 264; 704 Wavelet. Finally, all the radiomic 

features were scaled by subtracting the median and dividing by the interquartile (the range 

between the 1st quartile and the 3rd quartile).  

 

Data sampling and splitting 

Figure 1 shows the overall workflow of this study. Initially, 80% of the data was resampled 

without replacement and then was split into train and test sets with the proportion of 75/25. The 

remaining 20% was held out for final validation.  Subsequently the training set has been used for 

feature selection (discussed later) and model training, and the resultant model has been tested 

on the test set. The above process has been repeated 1000 times to evaluate the statistical 

significance of the obtained result and the median value of the obtained performance metric has 

been reported (Figure 1). 

Reproducibility Analysis and feature selection 

T-Distributed Stochastic Neighbor Embedding (t-SNE) clustering was applied to visualize 

potential scanner dependency in the radiomic features. t-SNE is a non-linear technique for 

dimensionality reduction that is particularly well suited for the visualization of high-dimensional 

datasets. The algorithm starts by calculating the probability of similarity of points in high-

dimensional space and then tries to minimize the difference between these similarities for a 

meaningful representation of data points in lower-dimensional space. We test whether 

distributions of observations obtained between the two different groups on the selected variable 

are systematically different using the Wilcoxon rank-sum test. Our assumption was that features 

with the same distributions across two scanner manufacturers will have the least scanner 

dependency (we define these features as “robust” if they are not statistically significantly 

associated with scanner manufacturer). We corrected the p-values for multiple testing and 

computed the false discovery rate (FDR) using Bonferroni correction [26] with a threshold set at 

5% for significant dependency.  

 

 

Feature selection 

In order to select relevant features for HPV prediction, we used the Minimum Redundancy, 

Maximum Relevance (mRMR) Ensemble Feature Selection (mRMRe) implemented in the 
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PymRMRe package (version 1.0.4) [27]. This technique is a feature selection approach that 

selects the features with a high correlation with the class (maximum relevance) and a low 

correlation between themselves (minimum redundancy). We used the F-statistic to calculate the 

correlation with the class (relevance) and the Pearson correlation coefficient to calculate the 

correlation between features (redundancy).  

 

Tuning and training 

Imbalance adjustment was done by under-sampling the majority class (HPV positive) and 

Random forest classifier was trained to predict the HPV status (Figure 1). We used the 

GridSearchCV function in Scikit-learn (0.23.2) for exhaustive search over the specified values of 

the model’s hyper-parameter such as the number of trees, maximum depth of the tree, minimum 

number of samples required to be at a leaf node. Each model was trained on the 1000 features 

selected by mRMRe. Finally, RF models were trained with and without robust features. The 

predictive performance of the HPV status classifiers were assessed by calculating the area under 

the curve (AUC) (i.e., the area under the curve of receiver operating characteristics). For training, 

five-fold cross-validation was applied in which training sets were randomly partitioned into five 

groups. When one group was used for testing, then the other groups were retained for training. 

For each combination, the training-testing procedures were repeated 100 times until each sample 

in the data set was assigned a prediction score. The final AUC was estimated based on the 

average prediction score (1000 times). In parallel all the above processes were repeated by 

replacing actual target label with random binary label to compare the result with random models. 
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Figure 2: t-SNE clusters labeled by samples HPV status (A, orange: HPV negative, green: HPV 

positive) and scanner manufacturer (B, red: GE, blue: Toshiba). Also, the corresponding silhouette 

analysis and average silhouette score is shown on the right. The impact of scanner manufacturer is 

clearly seen when samples labeled by manufacturer type. On the hand, radiomic features do not show 

intrinsic dependency to the sample's HPV status. 

 

 

 

RESULTS  

In order to visualize the distribution of scanner manufacturers in high-dimensional feature 

space, we performed t-SNE dimensionality reduction directly on the scaled features, plus 

silhouette analysis for all samples. Cases have been labelled with the type of scanner 

manufacturer (Figure 2A) . Clustering showed a dependency to the scanner manufacturer when 
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all radiomics features were used (average Silhouette score ~ 0.4). We also labelled the clustered 

data with the HPV status and found that the observed clusters were not related to the patient HPV 

status (Figure 2B) (average Silhouette score ~ 0.03).  We performed a Wilcoxon rank-sum test to 

identify features that are robust between Toshiba and GE scanners (FDR≥5%). We found that 

53% (989 of 1874) of the radiomic features were significantly associated with the scanner 

classification (FDR<5%). We then computed the t-SNE clusters again using only the robust 

(FDR≥5%) features and confirmed that the data did not cluster by scanner group (Supplementary 

Figure 3). To illustrate the distribution of robust features, the average (over 100 separate runs) 

proportion of robust features according to the total number of features in each class and a total 

number of robust features were also estimated. Approximately, on average 740(±90) features (out 

of 1847) were significantly associated with the scanner manufacturer (FDR<5%). The most 

average number of robust features belong to the GLCM group (24±1.1%) when numbers were 

normalised to the total number of robust features (Figure 3A). However, when the number of 

robust features was normalized to the number of features in that class most of the GLDM and 

NGTDM (55%) features were robust against the scanner manufacturer (Figure 3C). Also for each 

group, the distribution of robust features after applying different image filters was compared to the 

original images (Supplementary Figure 4). All feature groups developed improvement in the 

number of robust features after applying LoG, LBP and Wavelet features implying that these filters 

could be of great importance in increasing features robustness. The filter groups with the largest 

proportion of robust features (number of robust features normalized by the total number of 

features in that group) were the Exponential (86%), LBP (73%) and LoG (76%) compared to 

original non-filter features (78%) (Figure 3B, D). 

The distribution of the selected robust features deemed HPV- relevant (after mRMRE 

feature selection) is presented based on different scanner models (GE, Toshiba and mix). The 

result showed in terms of feature type, first order statistics (Figure 4A) and in terms of imaging 

filter, Wavelet filters (Figure 4B) give rise to the largest number of robust features. The wavelet 

transformation is responsible for the largest number of robust features (28% of total HPV-relevant 

robust features). However, and after applying feature selection over the robust features, GLDM 

and NGTDM features comprise the largest group of HPV-relevant features (Figure 4C) 

emphasizing the fact that robustness study considerably changed the distribution of the selected 

feature selection which can subsequently be reflected on the performance of the final classifier to 

predict HPV status. Regarding imaging filters, selecting robust features did not influence the 

distribution of HPV-relevant features (Figure 4D). 
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We also evaluated the number of common features selected from different groups (i.e 

Toshiba, GE and Mix) out of all the available features (Figure 5A) and robust features (Figure 5B). 

As it was shown in the venn diagram (Figure 5), 7 (p-value <1E-3) features were found to be 

common across different scanners when all features were used for modelling. This number 

increased to 14 (p-value <1E-3) when only robust features were used. The number of common 

features between Toshiba-GE, Toshiba-Mix and GE-Mix are 1,16,0 when all features used for 

feature selection and 0,14, 2 when only robust features have been applied. As it was obvious 

robustness increased the number of common features among all groups. 

 

 

Figure 3: distribution of robust features according to the type of feature group (A, C) and 

imaging filters (D,B) normalized to the total number of robust features (A, B) and the number of 

features in each feature group (C,D).  
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Scanner Grouping and Prediction of HPV status  

The highest and lowest mean AUC values were 0.79 (p-value < 1E-4) and 0.70 (p-value: 

5.4E-3) and obtained with Toshiba-Mix and Toshiba-GE respectively (Figure 6).  

For models trained on one scanner manufacturer, the highest and lowest result in terms 

of median AUC obtained when they were tested on Mix sample (i.e GE-Mix [0.75, p-value:4E-4], 

Toshiba-Mix [0.79,p-value <1E-4]) and other scanner manufacturers (i.e GE-Toshiba [0.73, p-

value: 7E-4], Toshiba-GE [0.70,p-value: 5.4E-3]) respectively.  

The Random Forest model was trained and tested on both samples(Mix) and reached a 

mean training and validation AUC of 0.79(p-value <1E-4), 0.74 (p-value:4E-4) respectively. Also, 

this model was trained on robust features (FDR≥0.05) and reached a mean AUC of 0.77(p-value 

< 1E-4), 0.73(p-value: 4E-4) in training and validation respectively.  This result reveals that robust 

features tend to reduce the difference between training and validation AUC which can be best 

described as reduction in models overfitting. Also models trained on one scanner manufacturer 

but tested on Mix samples resulted in AUC values of 0.78 (p-value <1E-4) and 0.76 (p-value: 6E-

4) for Toshiba-Mix and GE-Mix models respectively. The training AUC in all models reduced after 

removing non-robust features (GE: 0.80→0.77, Toshiba:0.81→0.79, Mix: 0.79→0.77).  

  The models with single scanner manufacturers resulted in not significantly different AUC 

value (GE-GE:0.74 [p-value < 1E-4], Toshiba-Toshiba:0.75 [p-value:6E-4]) than both scanners 

(Mix-Mix: 074.). Also, after removing non-robust features, the Mix-Mix model reached a train and 

validation AUC of 0.77(p-value < 1E-4), 0.73 (p-value: 4E-4) (Figure 6). 
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Figure 4: distribution (%) of HPV relevant features for different samples (GE, Toshiba and mix) 

according to the type of feature group and imaging filters prior to robustness evaluation (A,B) 

and after that (C,D).  

 

 

Figure 5: Venn diagram of the common radiomic features selected out of samples from different 

CT scanner type from all radiomic features (A) and only robust features (B) 
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Figure 6: the prediction accuracy (AUC-ROC) of HPV status obtained by the Random Forest 

Classifiers for 9 configurations of scanner manufacturers, used for training and tests after 100 

runs. The Wilcoxon rank-sum test applied to select robust features against the scanner models 

(adjusted p-value > 1E-2, Bonferroni correction). The mRMRe was used to select HPV relevant 

features. The model was trained and tested on different sets based on their scanner 

manufacturer (T: Toshiba, G: GE, mix) with a different number of features (mRMRe and mRMR 

+ Robust). The corresponding scatter plots are from the same model but random dependent 

variable. 

 

DISCUSSION 

Our goal was not to find a model that led to a good classification of HPV status but to find 

the impact of different CT scanners on the prediction performance of the radiomic model. To do 

this, we assessed the effect of different scanner manufacturers on the robustness of radiomic 

features and their use for the prediction of HPV status in OPC, an increasingly common type of 

head and neck cancer. Although there are many studies investigating the robustness of radiomic 

features, a few reported the impact of feature robustness on the predictive performance of 

radiomic models. In this study, the scanner manufacturer affects the prediction accuracy of the 

HPV status using hand-engineered radiomics features.  

Scanner dependency is an important aspect of radiomics research that has previously 

been evaluated in phantom studies [12,28]. In these studies, the researchers using CCR phantom 

images from different scanners by different manufacturers concluded that most features have 

significant scanner dependency and pointed out the importance of minimizing this effect in future 
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radiomics studies. Other studies highlighted that different CT scanners have been proven to have 

variation in their Hounsfield units even with the same acquisition parameters [29,30]. Perrin et al. 

showed that when they included all the patients from all scanners, the number of liver tumor-

derived robust features (concordance correlation coefficient > 0.9) from the same scanner model 

decreased from 75 to 35 (out of 254) [31]. This retrospective study evaluated the impact of 

scanner manufacturers on the prediction of HPV status using CT-derived radiomic features. To 

the best of our knowledge this is the first study evaluating scanner dependency using patient data. 

To evaluate the effect of domain dependency in the prediction of HPV status, Random 

forest classifiers trained and tested on samples from different scanners (GE vs Toshiba vs. Mix). 

A total of 1,874 radiomic features extracted from the GTV of 1,294 OPC patients. The t-SNE 

clustering and the Wilcoxon rank-sum tests were then utilized to visualize the dependence of 

radiomic features on scanner manufacturers. This allowed for quantitatively measuring the 

statistical variation between features from each scanner manufacturer. The t-SNE clustering 

showed that radiomic features are dependent on the scanner manufacturer. 

We found that most of the robust features belong to the GLCM group, which was in 

accordance with previous studies [32,33]. In a study to evaluate the variations of radiomic features 

extracted from 20 NSCLC patients from different scanners, Busyness and texture strength of the 

NGTDM class were the most and least robust features, respectively [12]. Based on the definition 

in [34], NGTDM textural features reflected the intensity differences between a voxel and its 

neighboring voxels. With the exception of Wavelet imaging, filters do not significantly change the 

distribution of robust features from the non-filtered images (Original). One main reason behind 

the superiority of Wavelet filters could be the superiority in the number of features (744 vs 93) 

which may overestimate this filter. However, Wavelet features have shown interesting 

applications in radiomics studies mostly because of their potential to highlight hidden texture 

information [35].  

Finally, different combinations of samples from different scanner manufacturers (GE, 

Toshiba, and Mix) have been resampled to evaluate the effect of scanner manufacturer on the 

prediction of HPV status. We identified the best prediction model that yielded the best AUC equals 

to 0.79 was the Toshiba-Mix configuration along with the use of all the radiomic features for 

training. One interesting result of this study is that the robust features did not improve the accuracy 

of the models trained on one scanner manufacturer (GE or Toshiba) nor the accuracy of the 

models that used both scanners (Mix).  A hypothesis behind this finding might be that over-fitting 

dominates radiomics models and incorporating only robust features removes any significance. 

Although this finding is highly dependent on the outcome of interest and subject to change with 
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other endpoints, it highlights the applicability of feature harmonization techniques [36], providing 

they can be applied to new samples.  

We also found that the bias in the results in favour of one scanner manufacturer (Toshiba).  

The optimal prediction accuracy was achieved when the training set included only one specific 

type of scanner compared to other scanners in all the same configurations. However, removing 

non-robust features reduced the accuracy of the prediction.  

The current study has multiple limitations. First, we did not have the same patient imaged 

on the two groups of scanners, which is the standard approach in this type of study; as a result 

we were not able to use the common reproducibility metric used in other similar studies for 

variables such as Intraclass correlation (ICC) [8], Concordance Correlation coefficient (CCC) [9] 

or Coefficient of Variation (COV) [37]. However, this is acceptable since we were dealing with real 

patient data, and it is not currently feasible to collect this number of samples (1294 patients) with 

HPV status and two sets of images from different scanner manufacturers.  Another limitation was 

the samples from this scanner (Toshiba) have undergone contrast agent administration while the 

other group being non-contrast examinations. Although the GTV area is a very small region, we 

believe that the contrast media administration is a major contributor to the clustering since it 

significantly affects the CT Hounsfield values and can variably change internal CT numbers within 

tumors by highlighting regions with more/less contrast uptake and/or vasculature. The effect of 

contrast enhancement has been studied in the delayed phase of CT images for NSCLC patients 

and it showed that radiomic features are substantially affected. Furthermore, the variability of 

radiomic features due to contrast uptake was found to be dependent largely on the patient 

characteristics [38]. However, in this study, we focused on the effect of domain dependency on 

the prediction performance disregarding the exact difference between the domains.  

 

 

CONCLUSION 

In this study, the scanner manufacturer grouping affects the prediction accuracy of the 

HPV status using hand-engineered radiomics features. The optimal prediction accuracy was 

achieved when the training set included only one specific type of scanner (i.e. Toshiba) which 

reflects a bias in radiomic features towards the scanner type and/or scanning methods used on 

that device. This result demonstrated the importance of imaging parameters, such as hardware 

parameters and protocols, for training radiomic-based classifiers. Future directions of this study 

are to evaluate how this finding will translate into clinical applications of radiomic models and 

potential solutions such as feature harmonization to remove this scanner dependency. 
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