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Abstract

Magnetic resonance imaging using hyperpolarized gases has made possible the novel vi-

sualization of airspaces, such as the human lung, which has advanced research into the

growth, development, and pathologies of the pulmonary system. In conjunction with the

innovations associated with image acquisition, multiple image analysis strategies have been

proposed and refined for the quantification of such lung imaging with much research effort

devoted to semantic segmentation, or voxelwise classification, into clinically oriented cat-

egories based on ventilation levels. Given the functional nature of these images and the

consequent sophistication of the segmentation task, many of these algorithmic approaches

reduce the complex spatial image information to intensity-only considerations, which can

be contextualized in terms of the intensity histogram. Although facilitating computational

processing, this simplifying transformation results in the loss of important spatial cues for

identifying salient image features, such as ventilation defects (a well-studied correlate of lung

pathophysiology), as spatial objects. In this work, we discuss the interrelatedness of the most

common approaches for histogram-based optimization of hyperpolarized gas lung imaging

segmentation and demonstrate how certain assumptions lead to suboptimal performance,

particularly in terms of measurement precision. In contrast, we illustrate how a convolutional

neural network is optimized (i.e., trained) directly within the image domain to leverage spatial

information. This image-based optimization mitigates the problematic issues associated with

histogram-based approaches and suggests a preferred future research direction. Importantly,

we provide the entire processing and evaluation framework, including the newly reported

deep learning functionality, as open-source through the well-known Advanced Normalization

Tools ecosystem (ANTsX).
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1 Introduction

1.1 Historical overview of quantification

Early attempts at quantification of ventilation images were limited to enumerating the number

of ventilation defects or estimating the proportion of ventilated lung (35, 61, 62) which has

evolved to more sophisticated techniques used currently. A brief outline of major contributions

can be roughly sketched to include:

• binary thresholding based on relative intensities (42, 55),

• linear intensity standardization based on a global rescaling of the intensity histogram

to a reference distribution based on healthy controls, i.e., “linear binning” (53, 54),

• nonlinear intensity standardization based on piecewise affine transformation of the

intensity histogram using a customized hierarchical (34, 52) or adaptive (8) k-means

algorithm,

• nonlinear intensity standardization using fuzzy c-means (4) with spatial considerations

based on local voxel neighborhoods (7), and

• Gaussian mixture modeling (GMM) of the intensity histogram with Markov random

field (MRF) spatial prior modeling (64).

An early semi-automated technique used to compare smokers and never-smokers relied

on manually drawn regions to determine a threshold based on the mean signal and noise

values (55). Related approaches, which use a simple rescaled threshold value to binarize the

ventilation image into ventilated and non-ventilated regions (33), continue to find modern

application (42). Similar to the histogram-only algorithms (i.e., linear binning and hierarchical

k-means, discussed below), these approaches do not take into account the various MRI artefacts

such as noise (43, 44) and the intensity inhomogeneity field (60) which prevent hard threshold

values from distinguishing tissue types precisely consistent with that of human experts. In

addition, to provide a more granular categorization of ventilation for greater compatibility

with clinical qualitative assessment, many current techniques have increased the number of

voxel classes (i.e., clusters) beyond the binary categories of “ventilated” and “non-ventilated.”

Linear binning is a simplified type of MR intensity standardization (51) in which images
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from healthy controls are normalized to the range [0, 1] and then used to calculate the

cluster intensity boundary values, based on an aggregated estimate of the parameters of

a single Gaussian fit. Subject images to be segmented are then rescaled to this reference

histogram (i.e., a global affine 1-D transform). This mapping results in alignment of the cluster

boundaries such that corresponding labels are assumed to have similar clinical interpretation.

In addition to the previously mentioned limitations associated with hard threshold values,

such a global transform does not account for MR intensity nonlinearities that have been

well-studied (47–51) and are known to cause significant intensity variation even in the same

region of the same subject. As stated in (47):

Intensities of MR images can vary, even in the same protocol and the same

sample and using the same scanner. Indeed, they may depend on the acquisition

conditions such as room temperature and hygrometry, calibration adjustment,

slice location, B0 intensity, and the receiver gain value. The consequences of

intensity variation are greater when different scanners are used.

As we illustrate in subsequent sections, ignoring these nonlinearities is known to have

significant consequences in the well-studied (and somewhat analogous) area of brain tissue

segmentation in T1-weighted MRI (e.g., (45, 46, 59)). Here we demonstrate its effects in

hyperpolarized gas imaging quantification robustness in conjunction with noise considerations.

In addition, the reference distribution required by linear binning assumes sufficient agreement

as to what constitutes a “healthy control,” whether a Gaussian fit is appropriate, and,

even assuming the latter, whether or not the parameter values can be combined in a linear

fashion to constitute a single reference standard. Of additional concern, though, is that the

requirement for a healthy cohort for determination of algorithmic parameters introduces a

non-negligible source of measurement variance, as we will also demonstrate.

Previous attempts at histogram standardization (50, 51) in light of MR intensity nonlinearities

have relied on 1-D piecewise affine mappings between corresponding structural features found

within the histograms themselves (e.g., peaks and valleys). For example, structural MRI,

such as T1-weighted neuroimaging, utilizes the well-known relative intensities of major tissue

types (i.e., cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM)), which
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characteristically correspond to visible histogram peaks, as landmarks to determine the

nonlinear intensity mapping between histograms. However, in hyperpolarized gas imaging

of the lung, no such characteristic structural features exist, generally speaking, between

histograms. This is most likely due to the primarily functional utility (vs. anatomical) nature

of these images. The approach used by some groups (26, 52) of employing some variant of

the well-known k-means algorithm as a clustering strategy (41) to minimize the within-class

variance of its intensities can be viewed as an alternative optimization strategy for determining

a nonlinear mapping between histograms for a type of MR intensity standardization. K-means

constitutes an algorithmic approach with additional flexibility and sophistication over linear

binning as it employs prior knowledge in the form of a generic clustering desideratum for

optimizing a type of MR intensity standardization.1

Similar to k-means, fuzzy c-means seeks to minimize the within-class sample variance but

includes a per-sample membership weighting (6). Later innovations included the incorporation

of spatial considerations using class membership values of the local voxel neighborhood (5).

Both k-means and fuzzy spatial c-means were compared for segmentation of hyperpolarized

3He and 129Xe images in (7) with the latter evidencing improved performance over the former

which is due, at least in part, to the additional spatial considerations. Despite relatively good

performance, however, fuzzy c-means also seeks cluster membership in the histogram (i.e.,

intensity-only) domain with only simplistic neighborhood modeling during optimization.

Histogram-based optimization is used in conjunction with spatial considerations in the

segmentation algorithm detailed in (64). This algorithm is based on a well-established

iterative approach originally used for NASA satellite image processing and subsequently

appropriated for brain tissue segmentation in (40). A Gaussian mixture model (GMM) is

used to model the intensity clusters of the histogram with class modulation in the form of

probabilistic voxelwise label considerations, i.e., Markov random field (MRF) modeling, within

image neighborhoods (32) optimized with the expectation-maximization (EM) algorithm (31).

This has the advantage, in contrast to histogram-only algorithms, that it softens the intensity
1The prior knowledge for histogram mapping is the general machine learning heuristic of clustering samples

based on the minimizing within-class distance while simultaneously maximizing the between-class distance.
In the case of k-means, this “distance” is the intensity variance.
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thresholds between class labels which demonstrates robustness to certain imaging distortions,

such as noise. However, as we will demonstrate, this algorithm is also flawed in the inherent

assumption that meaningful structure is found, and can be adequately characterized, within

the associated image histogram in order to optimize a multi-class labeling. In particular, this

algorithm is susceptible to MR nonlinear intensity artefacts.

Additionally, many of these segmentation algorithms use N4 bias correction (63), an extension

of the nonuniform intensity normalization (N3) algorithm (60), to mitigate MR intensity

inhomogeneity artefacts. Interestingly, N3/N4 also iteratively optimizes towards a final

solution using information from both the histogram and image domains. Based on the

intuition that the bias field acts as a smoothing convolution operation on the original image

intensity histogram, N3/N4 optimizes a nonlinear (i.e., deformable) intensity mapping, based

on histogram deconvolution. This nonlinear mapping is constrained such that its effects

smoothly vary across the image. Additionally, due to the deconvolution operation, this

nonlinear mapping sharpens the histogram peaks which presumably correspond to tissue

types. While such assumptions are appropriate for the domain in which N3/N4 was developed

(i.e., T1-weighted brain tissue segmentation) and while it is assumed that the enforcement of

low-frequency modulation of the intensity mapping prevents new image features from being

generated, it is not clear what effects N4 parameter choices have on the final segmentation

solution, particularly for those algorithms that are limited to intensity-only considerations

and not robust to the aforementioned MR intensity nonlinearities.

1.2 Motivation for current study

Investigating the assumptions outlined above, particularly those associated with the nonlinear

intensity mappings due to both the MR acquisition and inhomogeneity mitigation preprocess-

ing, we became concerned by the susceptibility of the histogram structure to such variations

and the potential effects on current clinical measures of interest derived from these algorithms

(e.g., ventilation defect percentage). Figure 1 provides a sample visualization representing

some of the structural changes that we observed when simulating these nonlinear mappings.

It is important to notice that even relatively small alterations in the image intensities can
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Figure 1: Illustration of the effect of MR nonlinear intensity warping on the histogram
structure. We simulate these mappings by perturbing specified points along the bins of the
histograms by a Gaussian random variable of 0 mean and specified max standard deviation
(“Max SD”). By simulating these types of intensity changes, we can visualize the effects on
the underlying intensity histograms and investigate the effects on salient outcome measures.
Here we simulate intensity mappings which, although relatively small, can have a significant
effect on the histogram structure.

have significant effects on the histogram even though a visual assessment of the image can

remain largely unchanged.

To briefly explore these effects further for the purposes of motivating additional experimenta-

tion, we provide a summary illustration from a set of image simulations in Figure 2 which
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Figure 2: Multi-site: (left) University of Virginia (UVa) and (right) Harvard Dataverse
129Xe data. Image-based SSIM vs. histogram-based Pearson’s correlation differences under
distortions induced by the common MR artefacts of noise and intensity nonlinearities. For
the nonlinearity-only simulations, the images maintain their structural integrity as the SSIM
values remain close to 1. This is in contrast to the corresponding range in histogram similarity
which is much larger. Although not as great, the range in histogram differences with simulated
noise is much greater than the range in SSIM. Both sets of observations are evidence of the
lack of robustness to distortions in the histogram domain in comparison with the original
image domain.

are detailed later in this work and used for algorithmic comparison. Simulated MR artefacts

were applied to each image which included both noise and nonlinear intensity mappings

(and their combination) using two separate data sets: one in-house data set consisting of 51

129Xe gas lung images and the publicly available data described in (3) and made available at

Harvard’s Dataverse online repository (2) consisting of 29 hyperpolarized gas lung images.

These two data sets resulted in a total simulated cohort of 51 + 29 = 80 images (×10

simulations per image ×3 types of artefact simulations). Prior to any algorithmic comparative

analysis, we quantified the difference of each simulated image with the corresponding original

image using the structural similarity index measurement (SSIM) (25). SSIM is a highly

cited measure which quantifies structural differences between a reference and distorted (i.e.,

transformed) image based on known properties of the human visual system. SSIM has a

range [−1, 1] where 0 indicates no structural similarity and 1 indicates perfect structural
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similarity. We also generated the histograms corresponding to these images. Although several

histogram similarity measures exist, we chose Pearson’s correlation primarily as it resides in

the same min/max range as SSIM with analogous significance. In addition to the fact that

the image-to-histogram transformation discards important spatial information, from Figure 2

it should be apparent that this transformation also results in greater variance in the resulting

information under common MR imaging artefacts, according to these measures. Thus, prior

to any algorithmic considerations, these observations point to the fact that optimizing in the

domain of the histogram will be generally less informative and less robust than optimizing

directly in the image domain.

Ultimately, we are not claiming that these algorithms are erroneous, per se. Much of the

relevant research has been limited to quantifying differences with respect to ventilation versus

non-ventilation in various clinical categories and these algorithms have certainly demonstrated

the capacity for advancing such research. Furthermore, as the sample segmentations in Figure

3 illustrate, when considered qualitatively, each segmentation algorithm appears to produce

a reasonable segmentation even though the voxelwise differences are significant (as are the

corresponding histograms). However, the aforementioned artefact issues influence quantitation

in terms of core scientific measurement principles such as precision (e.g., reproducibility and

repeatability (8, 30)) and bias which are obscured in isolated considerations but become

increasingly significant with multi-site (24) and large-scale studies. In addition, generally

speaking, refinements in measuring capabilities correlate with scientific advancement so as

acquisition and analysis methodologies improve, so should the level of sophistication and

performance of the underlying measurement tools.

In assessing these segmentation algorithms for hyperpolarized gas imaging, it is important

to note that human expertise leverages more than relative intensity values to identify

salient, clinically relevant features in images—something more akin to the complex structure

of deep-layered neural networks (29), particularly convolutional neural networks (CNN).

Such models have demonstrated outstanding performance in certain computational tasks,

including classification and semantic segmentation in medical imaging (28). Their potential for

leveraging spatial information from images surpasses the perceptual capabilities of previous
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Figure 3: Illustration of sample segmentations produced by the four algorithms described
above (i.e., linear binning, hierarchical k-means, spatial fuzzy c-means, and GMM-MRF) and
the deep learning algorithm (“El Bicho”) described below on a single cystic fibrosis subject.
Also included are the corresponding segmentation histograms. Although quite disparate in
the actual labeling of the lung and resulting histogram, each algorithm produces a reasonable
parcellation.

approaches and even rivals that of human raters (58). Importantly, CNN optimization

occurs directly in the image space to learn complex spatial features, in contrast to the

previously discussed methods where optimization (primarily) concerns image intensity only

information. We introduced a deep learning approach in (56) and further expand on that

work for comparison with existing approaches below. Although we find its performance to be

quite promising, more fundamental to this work than the network itself is simply pointing to

the general potential associated with deep learning for analyzing hyperpolarized gas images

as spatial samplings of real-world objects, as opposed to lossy representations of such objects.

In the spirit of open science, we have made the entire evaluation framework, including our

novel contributions, available within the Advanced Normalization Tools software ecosystem

(ANTsX) (39).
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2 Materials and methods

2.1 Hyperpolarized gas imaging acquisition

2.1.1 University of Virginia cohort

A retrospective dataset was collected consisting of young healthy (n=10), older healthy (n = 7),

cystic fibrosis (CF) (n=14), interstitial lung disease (ILD) (n = 10), and chronic obstructive

pulmonary disease (n = 10). MR imaging with hyperpolarized 129Xe gas was performed

under an Institutional Review Board (IRB) approved protocol with written informed consent

obtained from each subject. In addition, all imaging was performed under a Food and Drug

Administration (FDA) approved physician’s Investigational New Drug application. MRI

data were acquired on a 1.5 T whole-body MRI scanner (Siemens Avanto, Siemens Medical

Solutions, Malvern, PA) with broadband capabilities and a flexible 129Xe chest radiofrequency

coil (RF; IGC Medical Advances, Milwaukee, WI; or Clinical MR Solutions, Brookfield, WI).

During a ≤ 10 breath-hold following the inhalation of ≈ 1000 mL of hyperpolarized 129Xe

mixed with nitrogen up to a volume equal to 1/3 forced vital capacity (FVC) of the respective

subject, a set of 15-17 contiguous coronal lung slices were collected in order to cover the

entire lungs. Parameters of the gradient echo (GRE) sequence with a spiral k-space sampling

with 12 interleaves for 129Xe MRI were as follows: repetition time msec / echo time msec,

7/1; flip angle, 20◦; matrix, 128 × 128: in-plane voxel size, 4 × 4 mm; section slice thickness,

15 mm; and intersection gap, none. The data were deidentified prior to analysis.

2.1.2 Harvard Dataverse cohort

In addition to these data acquired at the University of Virginia, we also processed a publicly

available lung dataset (2) available at the Harvard Dataverse and detailed in (3). These

data comprised the original 129Xe acquisitions from 29 subjects (10 healthy controls and 19

mild intermittent asthmatic individuals) with corresponding lung masks. In addition, seven

artificially SNR-degraded images per acquisition were also included but not used for the

analyses reported below. The image headers were corrected for proper canonical anatomical

orientation according to Nifti standards and uploaded to the GitHub repository associated
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with this work.

2.2 Algorithmic implementations

In support of the discussion in the Introduction, we performed various experiments to compare

the algorithms described previously, viz. linear binning (54), hierarchical k-means (52), fuzzy

spatial c-means (7), GMM-MRF (specifically, ANTs-based Atropos tailored for functional

lung imaging) (64), and a trained CNN with roots in our earlier work (56), which we have

dubbed “El Bicho.”2 A fair and accurate comparison between algorithms necessitates several

considerations which have been outlined previously (65). In designing the evaluation study:

• All algorithms and evaluation scripts have been implemented using open-source

tools by the first author. The linear binning and hierarchical k-means algorithms

were recreated using existing R functionality. These have been made available as

part of the GitHub repository corresponding to this work.3 Similarly, N4, fuzzy

spatial c-means, Atropos-based lung segmentation, and the trained CNN approach

are all available through ANTsR/ANTsRNet: ANTsR::n4BiasFieldCorrection,

ANTsR::fuzzySpatialCMeansSegmentation, ANTsR::functionalLungSegmentation,

and ANTsRNet::elBicho, respectively. Python versions are also available through

ANTsPy/ANTsPyNet. The trained weights for the CNN are publicly available and are

automatically downloaded when running the program.

• The University of Virginia imaging data used for the evaluation is available upon request

and through a data sharing agreement. In addition to the citation providing the online

location of the original Harvard Dataverse data, a header-modified version of these

data is available in the GitHub repository associated with this manuscript. Additional

evaluation plots have also been made available.

• An extremely important algorithmic hyperparameter is the number of ventilation

clusters. In order to minimize differences in our set of evaluations, we merged the
2A software codename designating a work-in-progress simply based on a shared admiration between the

first and last authors of Portuguese futebol.
3https://github.com/ntustison/Histograms
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number of resulting clusters, post-optimization, to only three clusters: “ventilation

defect,” “hypo-ventilation,” and “other ventilation” where the first two clusters for each

output are the same as the original implementations and the remaining clusters are

merged into a third category. It is important to note that none of the evaluations use

these categorical definitions in a cross-algorithmic fashion. They are only used to assess

within-algorithm consistency.

• A significant issue was whether or not to use the N4 bias correction algorithm as a

preprocessing step. We ultimately decided to include it for two reasons.4 First, it is

explicitly used in multiple algorithms (e.g., (8, 18, 42, 54, 64)) despite the issues raised

previously due to the fact that it qualitatively improves image appearance.5 Another

practical consideration for N4 preprocessing was due to the parameters of the reference

distribution required by the linear binning algorithm. Additional details are provided

in the Results section.

2.3 Introduction of the image-based “El Bicho” network

We extended the deep learning functionality first described in (56) to improve performance

and provide a more clinically granular labeling (i.e., four clusters instead of two). In addition,

further modifications incorporated additional data during training, added attention gating

(36) to the U-net network (57) along with recommended hyperparameters (38), and a novel

data augmentation strategy.

2.3.1 Network training

“El Bicho” is a 2-D U-net network which was trained with several parameters recommended

by recent exploratory work (38). The images are sufficiently small such that 3-D training

is possible. However, given the large voxel anisotropy for much of our data (both coronal

and axial), we found a 2-D approach to be sufficient. Nevertheless, a 2.5-D approach is an
4For completeness, we did run the same experiments detailed below using the uncorrected UVa images

(and the previously reported parameters for linear binning) and the results were similar. These results can be
found in the GitHub repository associated with this work.

5This assessment is based on multiple conversations between the first author (as the co-developer of N4
and Atropos) and co-author . . . .
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optional way to run the code for isotropic data where network prediction can occur in more

than one slice direction and the results subsequently averaged. Four total network layers

were employed with 32 filters at the base layer which was doubled at each subsequent layer.

Multiple training runs were performed where initial runs employed categorical cross entropy

as the loss function. Upon convergence, training continued with the multi-label Dice function

(37)

Dice = 2
∑

r |Sr ∩ Tr|∑
r |Sr|+ |Tr|

(1)

where Sr and Tr refer to the source and target regions, respectively.

(a) Original. (b) Nonlinear intensity warping. (c) Noise.

Figure 4: Custom data augmentation strategies for training to force a solution which focuses
on the underlying ventilation-based lung structure. (b) Nonlinear intensity warping based on
smoothly varying perturbations of the image histogram. (c) Additive Gaussian noise included
for increasing the robustness of the segmentation network.

Training data (using an 80/20—training/testing split) was composed of the ventilation image,

lung mask, and corresponding ventilation-based parcellation. The lung parcellation comprised

four labels based on the Atropos ventilation-based segmentation (64). Six clusters were used

to create the training data and combined to four for training the CNN. In using this GMM-

MRF algorithm (which is the only one to use spatial information in the form of the MRF

prior), we attempt to bootstrap a superior network-based segmentation approach by using the

encoder-decoder structure of the U-net architecture as a dimensionality reduction technique.

None of the evaluation data used in this work were used as training data. Responses from
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two subjects at the last layer of the network (with n = 32 filters) are illustrated in Figure 5.

A total of five random slices per image were selected in the acquisition direction (both axial and

coronal) for inclusion within a given batch (batch size = 128 slices). Prior to slice extraction,

both random noise and randomly-generated, nonlinear intensity warping was added to the

3-D image (see Figure 4) using ANTsR/ANTsRNet functions (ANTsR::addNoiseToImage,

and ANTsRNet::histogramWarpImageIntensities) with analogs in ANTsPy/ANTsPyNet .

3-D images were intensity normalized to have 0 mean and unit standard deviation. The noise

model was additive Gaussian with 0 mean and a randomly chosen standard deviation value

between [0, 0.3]. Histogram-based intensity warping used the default parameters. These data

augmentation parameters were chosen to provide realistic but potentially difficult cases for

training. In terms of hardware, all training was done on a DGX (GPUs: 4X Tesla V100,

system memory: 256 GB LRDIMM DDR4).

Sample filter responses

Y
ou

ng
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ea
lt

hy
C

F

Input

Figure 5: Optimized feature responses from both the encoding and decoding branches of the
U-net network generated from a (top) young healthy subject and (bottom) CF patient. Note
that these are optimized responses which take advantage of both the intensities and their
spatial relationships.
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2.3.2 Pipeline processing

An example R-based code snippet is provided in Listing 1 demonstrating how to process a

single ventilation image using ANTsRNet::elBicho. If a simultaneous proton image has been

acquired, ANTsRNet::lungExtraction can be used to generate the requisite lung mask input.

As mentioned previously, by default the prediction occurs slice-by-slice along the direction of

anisotropy. Alternatively, prediction can be performed in all three canonical directions and

averaged to produce the final solution.

library ( ANTsR )
library ( ANTsRNet )

# Read in proton and ventilation images .
protonImage <- antsImageRead ( " proton .nii.gz" )
ventilationImage <- antsImageRead ( " ventilation .nii.gz" )

# Use deep learning lung extraction to get lung mask from proton image.
lungMask <- lungExtraction ( protonImage , modality = " proton ", verbose = TRUE )

# Run deep learning ventilation -based segmentation .
seg <- elBicho ( ventilationImage , lungMask , verbose = TRUE )

# Write segmentation and probability images to disk.
antsImageWrite ( seg$segmentationImage , " segmentation .nii.gz" )
antsImageWrite ( seg$probabilityImages [[1]] , " probability1 .nii.gz" )
antsImageWrite ( seg$probabilityImages [[2]] , " probability2 .nii.gz" )
antsImageWrite ( seg$probabilityImages [[3]] , " probability3 .nii.gz" )
antsImageWrite ( seg$probabilityImages [[4]] , " probability4 .nii.gz" )

Listing 1: ANTsR/ANTsRNet command calls for processing a single ventilation image using El
Bicho.

3 Results

We performed several comparative evaluations to probe the previously mentioned algorithmic

issues which are broadly categorized in terms of measurement bias and precision, with most

of the focus being on the latter. Given the lack of ground-truth in the form of segmentation

images, addressing issues of measurement bias is difficult. In addition to the fact that

the number of ventilation clusters is not consistent across algorithms, it is not clear that

the ventilation categories across algorithms have identical clinical definition. This prevents

application of various frameworks accommodating the lack of ground-truth for segmentation

performance analysis (e.g., (27)) to these data.
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As we mentioned in the Introduction, all the algorithms have demonstrated research utility

and potential clinical utility based on findings using derived measures. This is supported

by our first evaluation which is based on diagnostic prediction of given clinical categories

assigned to the imaging cohort using derived random forest models (21). This approach also

provides an additional check on the validity of the algorithmic implementations. However, it

is important to recognize that this evaluation is extremely limited as the underlying data

are gross measures which do not provide accuracy estimates on the level of the algorithmic

output (i.e., voxelwise segmentation).

Having established the general validity of the gross algorithmic output, we then switch to

our primary focus which is the comparison of measurement precision between algorithms.

We first analyzed the unique requirement of a reference distribution for the linear binning

algorithm. The latter is motivated qualitatively through the analogous application of T1-

weighted brain MR segmentation. This component is strictly qualitative as the visual evidence

and previous developmental history within that field should be sufficiently compelling in

motivating subsequent quantitative exploration with hyperpolarized gas lung imaging. These

qualitative results segue to quantification of the effects of the choice of reference cohort on

the clustering parameters for the linear binning algorithm. We then incorporated the trained

El Bicho model in exploring additional aspects of measurement variance based on simulating

both MR noise and intensity nonlinearities.

So, in summary, we performed the following evaluations/experiments:6

• Global algorithmic bias (in the absence of ground truth)

– Diagnostic prediction

• Voxelwise algorithmic precision

– Three-tissue T1-weighted brain MRI segmentation (qualitative analog)

– Input/output variance based on reference distribution (linear binning only)

– Effects of simulated MR artefacts on multi-site data
6It is important to note that, although these experiments provide supporting evidence, our principal

contentions stand prior to these results and are based on the self-evidentiary observations mentioned in the
Introduction.
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3.1 Diagnostic prediction
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Figure 6: ROC curves resulting from the diagnostic prediction evaluation strategy involving
randomly permuted training/testing data sets and predictive random forest models. Summary
values are provided in Table 1.

Due to the absence of ground-truth, we adopted the strategy from previous work (20, 39)

where we used cross-validation to build and compare prediction models from data derived

from the set of segmentation algorithms. Specifically, we use pathology diagnosis (i.e.,

“CF,” “COPD,” and “ILD”) as an established research-based correlate of ventilation levels

from hyperpolarized gas imaging (e.g., (17–19)) and quantified the predictive capabilities of

corresponding binary random forest classifiers (21) of the form:

Pathology vs. Healthy ∼
3∑

i=1

V olumei

Total volume
(2)

where V olumei is the volume of the ith cluster and Total volume is total lung volume. We

used a training/testing split of 80/20. Due to the small number of subjects, we combined

the young and old healthy data into a single category. 100 permutations were used where

training/testing data were randomly assigned and the corresponding random forest model

was constructed at each permutation.

The resulting receiver operating characteristic (ROC) curves for each algorithm and each

diagnostic scenario are provided in Figure 6. In addition, we provide the summary area

under the ROC curve (AUC) values in Table 1. In the absence of ground truth, this type
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CF/Healthy COPD/Healthy ILD/Healthy
Linear binning 0.92 0.89 0.83
Hier. k-means 0.95 0.87 0.73

Spatial fuzzy c-means 0.73 0.72 0.62
GMM-MRF 0.84 0.82 0.64
El Bicho 0.90 0.94 0.74

Table 1: AUC values describing the algorithmic performance for each set of binary classification
simulations: CF vs. Healthy, COPD vs. Healthy, and ILD vs. Healthy. All four algorithms
perform significantly better than a random classifier.

of evaluation does provide evidence that all these algorithms produce measurements which

are clinically relevant although, it should be noted, that this is a very coarse assessment

strategy given the global measures used (i.e., cluster volume percentage) and the general

clinical categories employed. In fact, even spirometry measures can be used to achieve highly

accurate diagnostic predictions with machine learning techniques (22).

3.2 T1-weighted brain segmentation analogy

Much of the quantitative image analysis strategies that have been used for hyperpolarized

gas imaging draw on inspiration from fields with a much greater historical background of

development, including T1-weighted brain MRI tissue segmentation. The depth of this

development can be gauged simply by the number of technical reviews (e.g., (14–16)) and

evaluation studies (e.g., (12, 13)) that date back decades. In addition to technical insight, this

particular application provides a useful analogy for some of the algorithmic issues discussed

and provides context for subsequent evaluations specific to hyperpolarized gas imaging.

In the style of linear binning, we randomly selected ten structurally healthy controls from the

publicly available SRPB data set (11) comprising over 1600 participants from 12 sites. After

intensity truncation at the 0.99 quantile, we normalize the intensity histogram to [0,1]. Eight

of these histograms are provided in the upper left of Figure 7. As we mentioned previously,

the histograms for these structural MRI are typically characterized by three peaks which

correspond to the CSF, GM, and WM. However, even when normalized to [0, 1] (i.e., global

affine mapping), it is obvious that these histogram features do not line up and this is due
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Figure 7: T1-weighted three-tissue brain segmentation analogy. Placing three of the five
segmentation algorithms (i.e., linear binning, k-means, and GMM-MRF) in the context of
brain tissue segmentation provides an alternative perspective for comparison. In the style of
linear binning, we randomly select an image reference set using structurally normal individuals
which is then used to create a reference histogram. (Bottom) For a subject to be processed,
the resulting hard threshold values yield the linear binning segmentation solution as well as
the initialization cluster values for both the k-means and GMM-MRF segmentations which
are qualitatively different.

to the intensity distortion caused by various MR acquisition artefacts mentioned previously.

This is an argument from analogy against one of the principal assumptions of linear binning

where it is assumed that tissue types (“structural” in the case of T1-weighted brain MRI
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or “ventilated” in the case of hyperpolarized gas imaging) can be sufficiently aligned with a

global rescaling of intensity values. If we pursue this analogy further and use the aggregated

reference distribution to segment a different subject, we can see that, in this particular case,

whereas the optimization criterion leveraged by k-means and GMM-MRF provide an adequate

segmentation, the misalignment in cluster boundaries yield a significant overestimation of

the gray matter volume.

3.3 Effect of reference image set selection
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(a) Reference distribution (original images).
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(b) Reference distribution (N4 images).

Figure 8: Ten young healthy subjects were combined to create two reference distributions,
one based on the (a) original images and the other using (b) N4 preprocessing. Based on the
generated mean and standard deviation of the aggregated samples, we label the resulting
clusters in the respective histograms. Due to the lower mean and higher standard deviation
of the original image set, Cluster 1 is not within the range of [0, 1] for the resulting reference
distribution which motivated the use of the N4 preprocessed image set.

One of the additional input requirements for linear binning over the other algorithms is

the generation of a reference distribution. In addition to the output measurement variation

caused by choice of the reference image cohort, this played a role in determining whether or

not to use N4 preprocessing. As mentioned, a significant portion of N4 processing involves

the deconvolution of the image histogram to sharpen the histogram peaks which decreases

the standard deviation of the intensity distribution and can also result in a histogram shift.

Using the original set of 10 young healthy data with no N4 preprocessing, we created a

reference distribution according to (54), which resulted in an approximate distribution of

N (0.45, 0.24). This produced 0 voxels being classified as belonging to Cluster 1 (Figure
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9) because two standard deviations from the mean is less than 0 and Cluster 1 resides in

the region below -2 standard deviations. However, using N4-preprocessed images produced

something closer, N (0.56, 0.22), to the published values, N (0.52, 0.18), reported in (54),

resulting in a non-empty set for that cluster. This is consistent, though, with linear binning

which does use N4 bias correction for preprocessing. We also mention that the Harvard

Dataverse images used were preprocessed using N4 (3) which provides a third reason for its

use on the University of Virginia image dataset (to maximize cross cohort consistency). In

the case of the former image set, we did use the previously reported linear binning mean

and standard deviation algorithm parameter values (i.e., N (0.52, 0.18)). This was the only

parameter difference between analyzing the two image sets.

The previous implications of the chosen image reference set also caused us to look at this

choice as a potential source of both input and output variance in the measurements utilized

and produced by linear binning. Regarding the former, we took all possible combinations of

our young healthy control subject images and looked at the resulting mean and standard

deviation values. As expected, there is significant variation for both mean and standard

deviation values (see top portion of Figure 9) which are used to derive the cluster threshold

values. This directly impacts output measurements such as ventilation defect percentage.

For the reference sets comprising eight or nine images, we compute the corresponding linear

binning segmentation and estimate the volumetric percentage for each cluster. Then, for

each subject, we computed the min/max range for these values and plotted those results

cluster-wise on the bottom of Figure 9. This demonstrates that the additional requirement of

a reference distribution is a source of potentially significant measurement variation for the

linear binning algorithm.

3.4 Effects of MR-based simulated image distortions

As we mentioned in the Introduction, noise and nonlinear intensity artefacts common to

MRI can have a significant distortion effect on the image with even greater effects seen with

respect to change in the structure of the corresponding histogram. This final evaluation

explores the effects of these artefacts on the algorithmic output on a voxelwise scale using
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Figure 9: (Top) Variation of the mean (left) and standard deviation (right) over choice of
reference set based on all different combinations of young healthy subjects per specified
number of subjects. Although these parameters demonstrate convergence, there is still
non-zero variation for any given set. (Bottom) This input variance is a source of output
variance in the cluster volume plotted as the maximum range per subject as a percentage of
total lung volume. We limit this exploration to reference sets with eight or nine images.

the Dice metric (Equation (1)) which has a range of [0,1] where 1 signifies perfect agreement

between the segmentations and 0 is no agreement.

Ten simulated images for each of the subjects of both the University of Virginia and Harvard

Dataverse cohort were generated for each of the three categories of randomly generated

artefacts: noise, nonlinearities, and combined noise and intensity nonlinearites. The original

image as well as the simulated images were segmented using each of the five algorithms.

Following our earlier protocol, we maintained the original Clusters 1 and 2 per algorithm

and combined the remaining clusters into a single third cluster. This allowed us to compare
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Figure 10: University of Virginia image cohort: (Left) The deviation in resulting segmentation
caused by distortions produced noise, histogram-based intensity nonlinearities, and their
combination as measured by the Dice metric. Each segmentation is reduced to three labels
for comparison: “ventilation defect” (Cluster 1), “hypo-ventilation” (Cluster 2), “other
ventilation” (Cluster 3). (Right) Results from the Tukey Test following one-way ANOVA
to compare the deviations. Higher positive values are indicative of increased robustness to
simulated image distortions.

between algorithms and maintain separate those clusters which are the most studied and

reported in the literature. The Dice metric was used to quantify the amount of deviation,

per cluster, between the segmentation produced by the original image and the corresponding

simulated distorted image segmentation which are plotted in Figures 10 and 11 (left column).

These results were then compared, on a per-cluster and per-artefact basis, using a one-way

ANOVA followed by Tukey’s Honest Significant Difference (HSD) test. 95% confidence

intervals are provided in the right column of Figures 10 and 11.
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Figure 11: Harvard Dataverse image cohort: (Left) The deviation in resulting segmentation
caused by distortions produced noise, histogram-based intensity nonlinearities, and their
combination as measured by the Dice metric. Each segmentation is reduced to three labels
for comparison: “ventilation defect” (Cluster 1), “hypo-ventilation” (Cluster 2), “other
ventilation” (Cluster 3). (Right) Results from the Tukey Test following one-way ANOVA
to compare the deviations. Higher positive values are indicative of increased robustness to
simulated image distortions.

4 Discussion

Over the past decade, multiple segmentation algorithms have been proposed for hyperpolarized

gas images which, as we have pointed out, are all highly dependent on the image intensity

histogram for optimization. All these algorithms use the histogram information primarily

(with many using it exclusively) for optimization much to the detriment of algorithmic

robustness and segmentation quality. This is due to the simple observation that these

approaches discard a vital piece of information essential for image interpretation, i.e., the

spatial relationships between voxel intensities. A brief summary of criticisms related to
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current algorithms is as follows:

• In addition to completely discarding spatial information, linear binning is based on

overly simplistic assumptions, especially given common MR artefacts. The additional

requirement of a reference distribution, with its questionable assumption of Gaussianity

and known distributional parameters for healthy controls, is also a potential source of

output variance.

• Both hierarchical and adaptive k-means also ignore spatial information and, although

they do use a principled optimization criterion, this criterion is not adequately tailored

for hyperpolarized gas imaging and is susceptible to various levels of noise.

• Similar to k-means, spatial fuzzy c-means is optimized to minimize the within-class

intensity variance but does incorporate spatial considerations which softens the hard

threshold values and demonstrates improved robustness to noise. However, it is suscepti-

ble to variations caused by MR nonlinear intensity variation, similar to the GMM-MRF

technique.

• The GMM-MRF approach does employ spatial considerations in the form of Markov

random fields but these are highly simplistic, based on prior modeling of local voxel

neighborhoods which do not capture the complexity of ventilation defects/heterogeneity

appearance in the images. Although the simplistic assumptions provide some robustness

to noise, the highly variable histogram structure in the presence of MR nonlinearities

can cause significant variation in the resulting GMM fitting.

While simplifying the underlying complexity of the segmentation problem, all of these

algorithms are deficient in leveraging the general modelling principle of incorporating as much

available prior information to any solution method. In fact, this is a fundamental implication

of the “No Free Lunch Theorem” (23)—algorithmic performance hinges on available prior

information.

As illustrated in Figure 2, measures based on the human visual system seem to quantify

what is understood intuitively that image domain information is much more robust than

histogram domain information in the presence of image transformations, such as distortions.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 9, 2021. ; https://doi.org/10.1101/2021.03.04.21252588doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.04.21252588
http://creativecommons.org/licenses/by/4.0/


This appears to also be supported in our simulation experiments illustrated in Figure 10 and

11 where the histogram-based algorithms, overall, performed worse than El Bicho. As a CNN,

El Bicho optimizes the governing network weights over image features as opposed to strictly

relative intensities. This work should motivate additional exploration focusing on issues

related to algorithmic bias on a voxelwise scale which would require going beyond simple

globally based assessment measures (such as the diagnostic prediction evaluation detailed

above using global volume proportions). This would enable investigating differentiating

spatial patterns within the images as evidence of disease and/or growth and correlations with

non-imaging data using sophisticated voxel-scale statistical techniques (e.g., similarity-driven

multivariate linear reconstruction (1, 9)).

It should be noted that El Bicho was developed in parallel with the writing of this manuscript

merely to showcase the incredible potential that deep learning can have in the field of

hyperpolarized gas imaging (as well as to update our earlier work (56)). We certainly

recognize and expect that alternative deep learning strategies (e.g., hyperparameter choice,

training data selection, data augmentation, etc.) would provide comparable and even superior

performance to what was presented with El Bicho. However, that is precisely our motivation

for presenting this work—deep learning, generally, presents a much better alternative than

histogram approaches as network training directly takes place in the image (i.e., spatial)

domain and not in a transformed space where key information has been discarded.

Just as important, deep learning provides other avenues for research exploration and develop-

ment. For example, given the relatively lower resolution of the acquisition image, exploration

of the effects of deep learning-based super-resolution might prove worthy of application-specific

investigation (10) (see, for example, ANTsRNet::mriSuperResolution). Also, with the same

network software libraries, high-performing classification networks can be constructed and

trained which might yield novel insights regarding image-based characterization of disease.

One additional modification that we did not explore in this work, but is extremely important,

is the confound caused by multi-site data which has yet to be explored in-depth. With neural

networks, such confounds can be handled as part of the training process or as an explicit

network modification. Either would be important to consider for future work.
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