1 Genome sequencing and detection of Philippine SARS-CoV-2 infections with viruses classified under 2 the B.1.1.7 lineage Francis A. Tablizo¹, Cynthia P. Saloma^{2,7}*, Marc Jerrone R. Castro¹, Kenneth M. Kim¹, Maria Sofia L. 3 Yangzon¹, Carlo M. Lapid¹, Benedict A. Maralit³, Marc Edsel C. Ayes⁴, Jan Michael C. Yap¹, Jo-Hannah S. 4 Llames³, Shiela Mae M. Araiza³, Kris P. Punayan³, Irish Coleen A. Asin³, Candice Francheska B. Tambaoan³, 5 Asia Louisa U. Chong³, Karol Sophia Agape R. Padilla³, Rianna Patricia S. Cruz¹, El King D. Morado¹, Joshua 6 Gregor A. Dizon¹, Eva Maria Cutiongco-de la Paz^{2,7}, Alethea R. de Guzman⁵, Razel Nikka M. Hao⁶, Arianne 7 8 A. Zamora⁵, Devon Ray Pacial⁵, Juan Antonio R. Magalang⁵, Marissa Alejandria⁷, Celia Carlos⁷, Anna Ong-Lim⁷, Edsel Maurice Salvaña⁷, John Q. Wong⁷, Jaime C. Montoya⁷, and Maria Rosario Singh-Vergeire⁷ 9 10 * To whom correspondence should be addressed. Email address: cpsaloma@up.edu.ph 11 12 13 ¹ Core Facility for Bioinformatics, Philippine Genome Center, University of the Philippines System 14 ² Philippine Genome Center, University of the Philippines System 15 ³ DNA Sequencing Core Facility, Philippine Genome Center, University of the Philippines System 16 ⁴ Clinical Genomics Laboratory, Philippine Genome Center, University of the Philippines System 17 ⁵ Epidemiology Bureau, Department of Health, Philippines 18 ⁶ Disease Prevention and Control Bureau, Department of Health, Philippines

⁷ Inter-Agency Task Force on Emerging Infectious Diseases (IATF) Task Force on COVID-19 Variants,

19

20

Department of Health, Philippines

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ABSTRACT We report the sequencing and detection of 39 Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in the Philippines identified to be caused by viruses under the B.1.1.7 lineage (UK variant). Genome sequences obtained from these samples carry the lineage-defining mutations associated with the said variant of concern. **ANNOUNCEMENT** In this study, we present the genome sequences of 39 cases of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections in the Philippines that were found to be caused by lineage B.1.1.7 viruses, more commonly known as the UK variant. This particular virus variant was initially identified in the United Kingdom and has been reported to cause a surge of SARS-CoV-2 infections in the said country (Kirby, 2021). Initial studies also suggest that the B.1.1.7 viruses appear to have replicative advantage (Grabowski et al., 2021) and are more transmissible (Leung et al., 2021). **Table 1** shows the primary consensus assembly metrics for these samples. The average depth of coverage across all the sequences is 1,128x, with 33 of the samples carrying all 17 hallmark mutations of the B.1.1.7 lineage (Figure 1) as listed in the PANGO Lineages report for the B.1.1.7 variant of concern (https://covlineages.org/global report B.1.1.7.html). The detection of B.1.1.7 from returning overseas Filipino workers and in the community highlights the need for genomic surveillance at the country's ports of entry and the general population to monitor the importation and local transmission of emerging variants of concern that may impact the public health response to the SARS-CoV-2 pandemic in the Philippines.

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

METHODS In order to detect the entry of B.1.1.7 infection in the Philippines, nasopharyngeal swabs were collected between December 10, 2020 to January 31, 2021 from returning overseas Filipinos testing positive for SARS-CoV-2, as well as from local case clusters mainly from the Cordillera Administrative Region of the country, among others. The collected swab samples were then subjected to RNA extraction followed by genome sequencing, which was done using the Illumina COVIDSeq workflow. Afterwards, the resulting sequence reads were mapped to the reference SARS-CoV-2 genome (NCBI Accession Number NC 045512.2) using Minimap2 (Li, 2018) version 2.17-r941, with the `-x sr` parameter for short accurate genomic reads alignment. Primer clipping and quality trimming, intrahost variant calling, removal of reads associated with mismatched primer indices, and consensus sequence assembly were all done following the suggested workflow of iVar (Grubaugh et al., 2019) version 1.2.2, using default parameters. The consensus variants were identified by comparing the resulting assemblies with the reference sequence using MUMmer (Kurtz et al., 2004) as implemented in the RATT software (Otto et al., 2011). SARS-CoV-2 lineage classifications were also assigned to the local viral samples using Pangolin version 2.3.2 (github.com/covlineages/pangolin; Rambaut et al., 2020). **PUBLIC AVAILABILITY AND ACCESSION NUMBERS** The consensus sequence assemblies reported in this study are deposited in the EpiCoVTM database of the GISAID. The accession codes are shown in **Table 1**.

ACKNOWLEDGEMENT

This project was supported by a Genomics Biosurveillance grant from the Philippine Department of Health, and a Department of Science and Technology — Philippine Council for Health Research and Development grant to BM and the University of the Philippines.

ETHICS APPROVAL

The protocols used in this study were reviewed and approved by the Single Joint Research Ethics Board of the Department of Health, with approval code SJREB-2021-11, as part of a larger research program entitled "A retrospective study on the national genomic surveillance of COVID-19 transmission in the Philippines by SARS-CoV-2 genome sequencing and bioinformatics analysis".

REFERENCES

81

- 82 Grabowski F., Preibisch G., Kochanczyk M., and Lipniacki T. (2021). SARS-CoV-2 Variant Under
- 83 Investigation 202012/01 has more than twofold replicative advantage. medRXiV.
- 84 DOI: https://doi.org/10.1101/2020.12.28.20248906.
- 85 Grubaugh N., Gangavarapu K., Quick J., et al. (2019). An amplicon-based sequencing framework for
- accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology. 20(8).
- 87 DOI:https://doi.org/10.1186/s13059-018-1618-7.
- 88 Kirby T. (2021). New variant of SARS-COV-2 in UK causes surge of COVID-19. Lancet Respiratory Medicine.
- 89 DOI:https://doi.org/10.1016/S2213-2600(21)00005-9.
- 90 Kurtz S., Phillippy A., Delcher A., Smoot M., Shumway M., Antonescu C., and Salzberg S. (2004). Versatile
- and open software for comparing large genomes. Genome Biology. 5:R12.
- 92 Leung K., Shum M., Leung G., Lam T., and Wu J. (2021). Early transmissibility assessment of the N501Y
- mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. EuroSurveillance.
- 94 26(1):pii=2002106. DOI:https://doi.org/10.2807/1560-7917.ES.2020.26.1.2002106.
- 95 Li H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 34:3094-3100.
- 96 doi:10.1093/bioinformatics/bty191.
- 97 Otto T., Dillon G., Degrave W., and Berriman M. (2011). RATT: rapid annotation transfer tool. Nucleic Acids
- 98 Research. 39(9):e57. DOI:https://doi.org/10.1093/nar/gkq1268.
- 99 Rambaut, A., Holmes, E.C., O'Toole, Á. et al. (2020). A dynamic nomenclature proposal for SARS-CoV-2
- lineages to assist genomic epidemiology. Nature Microbiology. 5:1403–140.
- 101 DOI:https://doi.org/10.1038/s41564-020-0770-5.
- 102 Shu, Y., and McCauley, J. (2017). GISAID: Global initiative on sharing all influenza data from vision to
- reality. EuroSurveillance. 22(13). DOI:10.2807/1560-7917.ES.2017.22.13.30494.

Table 1. Primary consensus sequence assembly metrics.

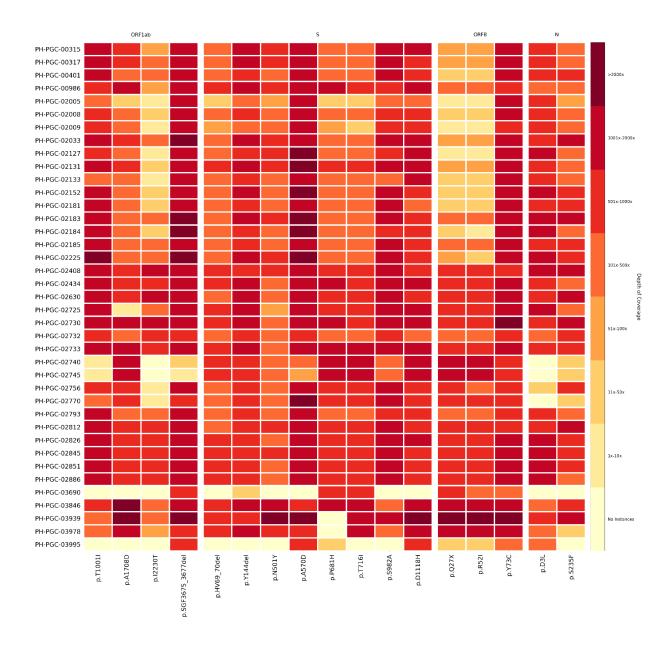
Sample Code	GISAID Accession Code	Collection Date	Sample Source	Mean Coverage Depth	# Consensus SNPs	# B.1.1.7 SNPs	% N	Length
PH-PGC-00315	EPI ISL 1081793	29-Dec-20	ROF	1,201.27	52	17	1.76	29,884
PH-PGC-00317	EPI_ISL_1081794	29-Dec-20	ROF	1,194.12	50	17	1.30	29,884
PH-PGC-00401	EPI_ISL_1081795	10-Dec-20	ROF	996.07	51	17	2.12	29,884
PH-PGC-00986	EPI_ISL_1081796	7-Jan-21	ROF	1,164.12	50	17	2.26	29,884
PH-PGC-02005	EPI_ISL_1081797	4-Jan-21	CAR	508.19	44	14	16.82	29,884
PH-PGC-02008	EPI_ISL_1081798	3-Jan-21	CAR	740.89	48	17	6.87	29,884
PH-PGC-02009	EPI_ISL_1081799	3-Jan-21	CAR	689.44	45	14	10.19	29,884
PH-PGC-02033	EPI_ISL_1081800	5-Jan-21	CAR	1,362.04	49	17	1.52	29,884
PH-PGC-02127	EPI_ISL_1081801	7-Jan-21	CAR	973.77	45	14	11.36	29,884
PH-PGC-02131	EPI_ISL_1081802	7-Jan-21	CAR	1,326.01	49	17	3.77	29,885
PH-PGC-02133	EPI_ISL_1081803	7-Jan-21	CAR	892.30	49	16	10.20	29,884
PH-PGC-02152	EPI ISL 1081804	9-Jan-21	CAR	1,086.44	38	16	4.80	29,884
PH-PGC-02181	EPI_ISL_1081805	8-Jan-21	CAR	882.19	50	17	4.18	29,884
PH-PGC-02183	EPI_ISL_1081806	8-Jan-21	CAR	1,210.23	51	17	2.42	29,884
PH-PGC-02184	EPI_ISL_1081807	8-Jan-21	CAR	891.29	48	16	7.54	29,884
PH-PGC-02185	EPI ISL 1081808	8-Jan-21	CAR	1,131.33	49	17	1.69	29,884
PH-PGC-02225	EPI_ISL_1081809	8-Jan-21	CAR	1,303.29	51	17	2.14	29,884
PH-PGC-02408	EPI ISL 1081810	7-Jan-21	ROF	1,652.89	51	17	0.10	29,884
PH-PGC-02434	EPI_ISL_1081811	12-Jan-21	ROF	1,168.26	53	17	0.78	29,884
PH-PGC-02630	EPI_ISL_1081812	16-Jan-21	ROF	1,307.23	48	17	0.41	29,884
PH-PGC-02725	EPI_ISL_1081813	14-Jan-21	ROF	1,140.03	52	17	2.04	29,884
PH-PGC-02730	EPI_ISL_1081814	16-Jan-21	ROF	1,620.34	52	17	0.13	29,884

ROF – Returning Overseas Filipino

CAR – Cordillera Administrative Region

NCR – National Capital Region

NM –Northern Mindanao


Sample Code	GISAID Accession Code	Collection Date	Sample Source	Mean Coverage Depth	# Consensus SNPs	# B.1.1.7 SNPs	% N	Length
PH-PGC-02732	EPI_ISL_1081815	17-Jan-21	ROF	724.58	52	17	0.25	29,884
PH-PGC-02733	EPI_ISL_1081816	17-Jan-21	ROF	1,499.29	51	17	0.15	29,884
PH-PGC-02740	EPI_ISL_1081817	19-Jan-21	ROF	769.66	30	12	14.07	29,894
PH-PGC-02745	EPI_ISL_1081818	19-Jan-21	ROF	679.99	32	12	19.71	29,894
PH-PGC-02756	EPI_ISL_1081819	15-Jan-21	CAR	1,037.94	50	17	2.23	29,884
PH-PGC-02770	EPI_ISL_1081820	15-Jan-21	ROF	971.34	44	14	6.34	29,885
PH-PGC-02793	EPI_ISL_1081821	19-Jan-21	ROF	1,290.90	50	17	0.90	29,884
PH-PGC-02812	EPI_ISL_1081822	24-Jan-21	CAR	1,654.09	50	17	0.18	29,884
PH-PGC-02826	EPI_ISL_1081823	21-Jan-21	CAR	1,346.54	52	17	0.31	29,884
PH-PGC-02845	EPI_ISL_1081824	13-Jan-21	CAR	1,454.34	51	17	0.58	29,884
PH-PGC-02851	EPI_ISL_1081825	11-Jan-21	CAR	1,563.14	49	17	0.28	29,884
PH-PGC-02886	EPI_ISL_1081826	16-Jan-21	CAR	1,411.43	51	17	0.86	29,884
PH-PGC-03690	EPI_ISL_1081829	22-Dec-20	Calabarzon	421.38	20	5	50.35	29,900
PH-PGC-03846	EPI_ISL_1081830	24-Jan-21	ROF	1,458.88	49	17	0.16	29,884
PH-PGC-03939	EPI_ISL_1081831	31-Jan-21	ROF	2,082.45	50	16	0.27	29,885
PH-PGC-03978	EPI_ISL_1081832	25-Jan-21	NCR	990.68	53	16	2.01	29,884
PH-PGC-03995	EPI_ISL_1081841	25-Jan-21	NM	206.76	22	7	37.77	29,896

ROF – Returning Overseas Filipino

CAR – Cordillera Administrative Region

NCR – National Capital Region

NM –Northern Mindanao

Figure 1. Presence of B.1.1.7 lineage defining mutations in the Philippine SARS-CoV-2 samples. Sequence read coverage for the 17 lineage defining mutations of the B.1.1.7 viruses are shown for each of the locally collected samples classified under the said viral lineage.