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Abstract—The optimal treatment strategy for volume resusci-
tation and vasopressor dosing to combat hypotensive episodes in
septic patients remains a subject of ongoing controversy and can
vary from clinician to clinician. We develop a machine learning
approach to guide a fluid and vasopressor dosing strategy that
adapts to patient-specific clinical states to improve the survival
of septic patients. We adopt a model-free reinforcement learning
(RL) framework in a continuous action space with a clinically
significant reward function, and use a Switching Generalized
Linear Model (SGLM) to characterize patient-specific clinical
states. We use retrospective data from the MIMIC III database
to train this model to learn volume resuscitation and vasopressor
dosing strategies among the 5,366 patients (totalling 352,328
unique hourly measurements) with ICU-onset sepsis or septic
shock, as diagnosed by the Sepsis-3 definition. The RL agent
receives short- and long-term rewards associated with optimizing
in-hospital survival and avoiding end-organ damage to learn
volume resuscitation and vasopressor dosing strategies. On av-
erage, the RL agent learns to resuscitate patients earlier than
clinicians with a fluid bolus (one hour vs. four hours after the
diagnosis of sepsis), and improves the expected survival by ≈ 3%.
Our preliminary results indicate that adherence to RL-based
individualized fluid and vasopressor dosing recommendations is
associated with a significant mortality reduction in septic patients,
even after adjusting for severity of illness.

I. INTRODUCTION

Sepsis is a life-threatening condition that arises when the
body’s response to infection injures its own tissues [1]. Sepsis
is diagnosed when there is a suspected infection (indicated
by the administration of antibiotics or collection of cultures)
and a two-point increase in the Sequential Organ Failure
Assessment Score (SOFA-Score) [1]. In the US nearly 6%
of all hospitalized patients carry a diagnosis of sepsis. When
all hospital deaths are considered nearly 35% can be attributed
to sepsis [2].

Even when sepsis is recognized in a timely manner it can
proceed to septic shock. Shankar-Hari et al. define septic shock
as a subset of sepsis in which underlying circulatory, cellular,
and metabolic abnormalities are associated with a greater risk
of mortality than sepsis alone [3]. The Sepsis-3 Guidelines
for diagnosis of septic shock are hypotension (abnormally low
blood pressure) requiring therapeutic intervention to maintain
mean arterial blood pressure (MAP) of 65 mmHg or greater

[1] and lactate > 2mmol/L. While there is a general consensus
regarding the first hour of treatment, there exists no dosing or
prescribing guidelines beyond the recommendation to maintain
a MAP ≥ 65 mmHg. The use of vasopressors and IV fluids
can vary according to concomitant patient comorbidities, a
clinician’s area of expertise, and institutional policies making
it difficult to ascertain which combination of vasopressors
and IV fluids is ideal for septic patients during hypotensive
episodes. As such, the optimal treatment strategy for volume
resuscitation and vasopressor dosing to enhance outcomes of
sepsis remains the subject of ongoing controversy.

Medication dosing in a critical care setting is a complex
sequential decision making process that depends not only
on a patient’s clinical course, but also unique multifactorial
covariates. Moreover, due to the intermittent nature of lab-
oratory measurements clinicians have to deal with delayed
feedback and the problem of credit assignment (i.e., deciding
which of the many treatments will stabilize the patient).
Reinforcement learning provides a natural solution to these
types of sequential decision making problems [4]. Based on
the patient state (measured by vital signs and clinical tests)
and covariate factors (age, gender, etc.) an agent can provide
treatment recommendations to clinicians (i.e., what amount of
intraveneous fluids to provide to a septic patient to prevent
their blood pressure from dropping). Indeed, reinforcement
learning has begun to appear in the clinical machine learning
literature. Examples include balancing anesthesia levels [5],
blood thinner dosing [6], training an artificial pancreas [7],
and optimizing mechanical ventilators [8]. Recently, a set
of guidelines [9] for the treatment of machine learning in
medicine appeared in Nature Medicine.

Formally, a reinforcement learning setup consists of an
agent placed in some Markov Decision Process (MDP) envi-
ronment composed of a set of states, S = {s0, s1, . . .}, a set of
actions for the agent,A = {a0, a1, . . .}, transition probabilities
P (s′|s, a) (that is, the probability of the next state s′ given the
current state s and action a), and a reward function r(s, a) that
depends on a given state-action pair. In the setting of dosing
septic patients with vasopressors and fluids, for patient k the
state at each time point t is represented by s(k)

t = [x
(k)
t c(k)],
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where x
(k)
t ∈ Rdf is a vector of the observations (vital

signs and clinical variables) and c(k) ∈ Rdc is a vector of
the covariates. For each state si, the agent takes an action
a ∈ R2, the dose pair (afluid, apressor) of intravenous fluids
and vasopressors. By tracking the reward function r(s, a), the
agent learns a policy denoted by π, which associates a given
action a with each state s that will yield the best (in the
experience of the agent) reward.

Traditionally, the components of a reinforcement learning
environment are fairly obvious. Consider for example the
now-classic RL setting of training an agent to play Atari
games [10]. The state consists of the pixels that compose the
game screen for a given frame, the actions are the possible
game controller options (up, down, left, right, and pressing
the action button), and the reward is the change in the score
corresponding to a given state and action pair.

The critical care setting provides multiple challenges to
the reinforcement learning framework. The first issue is that
with few exceptions, there is no in silico test-bed in which
an agent can freely explore the state-action space by testing
various actions on simulated patients. In other words, an
agent can only use real, retrospective action data to form its
action policy, it can not test actions for itself and see what
consequences come from those actions. The most fundamental
issue pertains to quantifying a “reward” from the clinical
setting. In general, the most natural “reward” in this setting
is the patient becoming healthier in response to a treatment,
however this is difficult to objectively quantify and usually
occurs on a larger time-scale than the observational data is
presented.

The layout of this paper is as follows. In Section 2, first we
briefly review the critical care dataset used in this study. Then,
we detail the methods used for training the RL agent and the
state space model. After that, we outline the methods we use to
evaluate the RL agent’s policy using counterfactual reasoning
and causal treatment effects analysis. In Section 3, we review
the results obtained by our model and discuss how our full
model compares to less complicated versions of our model
(such as a model that learns only from short-term rewards, or
a model that does not estimate the state space as well). Lastly,
in Section 4, we discuss how our work compares to similar
work in the literature, and the implications of our work to the
treatment of septic patients. Finally, we highlight meaningful
extensions to this work.

II. MATERIALS AND METHODS

A. Dataset

We use retrospective data from the MIMIC III database
[11] to develop a model-free reinforcement learning approach
to volume resuscitation. Clinical and physiological variables
(e.g., laboratory values and vital signs — see the Appendix
for a list of the variables included) from the onset of sepsis
and the proceeding 72-hour observation window (if avail-
able) was utilized in a Switching Generalized Linear Model
(SGLM) framework to classify patient-specific clinical states.
Our RL agent receives short- and long-term rewards associated
with avoiding hypotensive episodes and optimizing in-hospital

survival, respectively, among 5,366 patients with ICU-onset
sepsis (as defined by the Sepsis-3 criteria).

Clinicians recognize that blood pressure depends on three
factors: cardiac output (CO), the diameter of the arteries,
and the quantity of fluid inside the vasculature. In critically
ill hypotensive patients, vasopressors are routinely used to
increase CO and decrease arterial diameter. Additionally, the
administration of intravenous (IV) fluids positively influences
MAP by increasing the total circulating volume. We utilize
fluid administration and normalized vasopressor dosages in
each hour to define a continuous two-dimensional set of
actions. Age, gender, Elixhauser comorbidity index, and Charl-
son Comorbidity Index were included as covariates to adjust
for severity of illness of each patient. Additional discussion of
the dataset is included in the Appendix.

B. RL Dosing Agent

We seek to construct a RL agent that utilizes the actions of
the clinicians in the cohort of sepsis and septic shock patients
along with a prescribed reward function to learn optimal
dosing strategies. First, we devise a reward function that in
some way quantifies the effective improvement of a patient
over the last hour given their state variables and the treatment
actions that they received. In general, the reward function at
time t is of the form

rt(x
(k)
t ) = β · x(k)

t = β1x
(k)
t,1 + β2x

(k)
t,2 + · · ·+ βdfx

(k)
t,df

, (1)

where the xt is the observational data at time t and β is
a vector of weights for the corresponding observations. The
vector of weights β should be chosen with some clinical
insight that is reasonable for a septic patient, i.e many of the
weights could be zero, indicating that specific observational
inputs are not significant in determining if a patient is im-
proving. For this study, we compute the reward using only the
following observational variables: the change in SOFA score1

and all of its end-organ related components (i.e., respiratory
SOFA, cardiovascular SOFA, liver SOFA, and kidney SOFA),
duration of hypotensive episodes, urine output over the last
four hours, and a hyperbolic tangent function of MAP that
assigns a positive reward to a MAP of greater than 65 mmHg.
All of these variables are highly correlated with a septic
patient’s status improving, making them a reasonable choice
for the independent variables for the reward function. The
vector of weights β is then treated as a hyperparameter that
can be tuned using optimization techniques, which we will
discuss in more detail in the section “Policy Evaluation and
Causal Treatment Effects”.

1) Patient State Estimation: As a first step to learning
a reinforcement policy, the agent must be able to identify
the “state” that the patient is in at any given point in time.
We utilize a supervised approach to hidden state estimation
under the assumption of Markovianity and a linear state
transition model [13]. This approach obviates the need for
a generative model for the observations which often include
a combination of continuous and categorical variables. We

1Sequential Organ Failure Assessment (SOFA) scores are often used by
clinicians to quickly assess organ-specific deterioration [12].



3

assume that there are J possible hidden states (or modes) in
the time series data2, and the likelihood function of states
takes the form of a softmax classifier with parameters α;
mapping the observations to the likelihood of the J latent
states. The network uses a forward pass over the time series
data to predict the latent states using the transition matrix Z
and the supervised likelihood model. Learning of the model
parameters is achieved by unrolling the model into a neural
network and training the resulting network to find a set of
states and parameters that optimizes the RL agent’s cost
function (i.e., training is done end-to-end akin to a deep
reinforcement learning model).

For a Hidden Markov Model, the posterior probability of
the latent state at time t given the set of observations up to
that time is given by [14]:

PΘ

(
s

(k)
t = j|

{
y

(k)
1:t

})
= 1

CL
(k)
t (j)

∑
i

Z(i, j)·

·PΘ

(
s

(k)
t−1 = i|

{
y

(k)
1:t−1

})
(2)

where PΘ

(
s

(k)
t = j|

{
y

(k)
1:t

})
denotes the probability that the

latent state s at time t is equal to j given the observations y(k)
1:t ,

C is a normalizing factor, L(k)
t (j) is the likelihood function

that is given by L
(k)
t (j) = PΘ

(
y

(k)
t |s

(k)
t = j

)
(that is, the

computed probability of the observation y(k)
t given the latent

state s(k)
t is j), and Θ = {α,Z} is the set of model parameters.

In a supervised setting, the likelihood function can be replaced
with a softmax classifier that will be trained along with the
rest of the RL agent network, so that with each pass through
the observational data, not only will the RL agent learn more
effective treatments to use given the set of time series points,
but the model will also be able to more accurately predict the
hidden state of the patient at each time point. The network
describing the estimation of the latent patient states is depicted
in the lower right portion of Fig. 1. Henceforth, we call this
network a switching generalized linear model (or SGLM).

2) Reinforcement Learning in Continuous State and Action
Spaces: After deciphering the patient’s mode (hidden state)
from the set of J modes, the agent can then be presented
with the state, observational data, and the patient’s covariates
to judge the appropriate action to be taken. Because the RL
agent is not permitted to freely explore the state and action
space itself, it relies on the existing patient data to learn the
utility of each action. In effect, the agent treats the actions
of the clinician as a “random” exploration of the state and
action space. After finding an appropriate set of weights
β that allows for computing a scalar reward from Eq. (1)
the agent can be trained using the REINFORCE algorithm
[15], to recommended dosing as a pair (afluid

t , apressor
t ) in

the continuous domain. The REINFORCE network learns to
maximize the expected accumulated reward of the policy under
the probability distribution generated by the SGLM model,
E
P (s

(k)
1:T ;Θ)

[∑T
t=1 r

(k)
t

]
= EP (sk1:T ;Θ)

[
R(k)

]
. The gradient of

2In this study, we assumed J is a hyper parameter for Bayesian Optimiza-
tion

this cost function is known to be easily approximated by

1

N

N∑
k=1

T∑
t=1

∇Θ log π
(
a

(k)
t |s

(k)
1:t ; Θ

)
R

(k)
t , (3)

where R(k)
t =

∑T
t′=1 r

(k)
t′ is the cumulative reward obtained

following the action a
(k)
t , and Θ (with a slight abuse of

notation) is now the combined parameters of the REINFORCE
network and the SGLM state estimator. Essentially, the agent
observes how state action pairs are rewarded (over an entire
patient trajectory), and changes in the REINFORCE network
policy are informed directly by the magnitude and sign of
the reward for a given state action pair. Put more simply,
the network is encouraged to take actions in a specific state
that yield more positive accumulated long-term rewards, and
discouraged to take actions that yield negative accumulated
long-term rewards.

Figure 1 summarizes the RL agent network structure.
Observations xt are used to predict the state st, which is
then used to predict the next state and also fed into the
Reinforcement Learning network (along with the observations
xt and covariates c). In practice, we observe that the RL agent
performs better when having access to both xt and st, which
is likely due to the federated information flow induced by this
network architecture [16].

Fig. 1. Conceptual scheme for the dosing recommendation process. The model
receives the patient clinical features xt from which the current state st is
predicted. Then, using the predicted state, the clinical features, and covariate
features c, the network recommends a dosing action pair

(
afluid, apressor

)
t
.

Color indicates latent states and RL policy requiring inference and learning
via gradient backpropagation.

C. Policy Evaluation and Causal Treatment Effects:

Training a reinforcement learning agent to make sequential
decisions from historic data is insufficient to make a claim
that the agent is useful in practice. Since the data distribution
is directly affected by a new policy (πa), and it is impossible
to determine exactly how the agent’s action at a given time
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point will affect the environment downstream if it differs from
the existing policy (πc). However, a number of approaches
have been proposed for off-policy evaluations in such setting
[17], [18]. These methods rely on learning a model of the
system from the existing data and using importance sampling
to correct the mismatch between the distributions of the system
trajectory induced by the new and the existing policies. These
methods correct the mismatch between the distributions by
assigning no (or almost no) weight to the trajectories where
the agent and real clinician recommend different actions.
Additionally, these methods focus on the internal rewards used
to train the new policy, whereas our goal is to assess the
potential effect of a new policy on the long-term outcome
of a patient (e.g., in-hospital or 30-days survival). Therefore,
we propose to estimate the causal effects associated with the
observed deviations from the RL policy in the clinical practice
and the long-term outcomes of patients.

The propensity score was first introduced as a way to
estimate the propensity of a subject (here a patient) in a
study to get exposed to an intervention (here a treatment
policy) based on observed covariates [19]. Propensity scores
were originally presented as a way to make causal inferences
about the relationship between covariates and binary treatment
levels. The Generalized Propensity Score (GPS) method was
developed to extend causal inference to the case of multiple
and continuous treatments. More formally, the GPS is the
conditional probability that an individual receives treatment
t ∈ T = {τ1, τ2, . . . , τn} given covariates x. Although the
GPS has been extended to continuous treatment spaces [20],
[21] by means of estimating the conditional density function,
we elect to limit our attention to the case of discrete treatment
levels for the sake of simplicity.

To define the treatment levels, we first compute the dis-
tance (d) between the recommended policy, π(a|s, θ), and the
policy implemented by the clinicians in the ICU, πc(x). This
distance, δπ(a

(k)
t |x

(k)
t ) = πc(a

(k)
t |x

(k)
t )− π(a

(k)
t |x

(k)
t , s

(k)
t ; θ)

represents how different the agent’s recommended policy is
for patient k at time t from the clinician’s policy. We then
partition this policy difference space into m2 bins (m for
intravenous fluids and m for vasopressors). This space defines
the treatment levels for the purpose of causal treatment effects
assessment and policy evaluation. Note that a treatment level
of zero (dt = 0) for intravenous fluids and vasopressors
corresponds to the case where the clinical actions exactly
match the RL recommended actions.

The propensity to receive each different treatment level
τi (given by GPS(τi|x)) can then be treated as a softmax
classifier (namely the GPS-network), where given a set of
observations at a given time, the model returns the patients’
propensity to receive a given treatment level (including the
need to deviate from the clinician’s dosage). This propensity
score enables us to assess the effects of a given treatment
level on the patient outcome (Y ), through causal inference
with discrete treatment levels and binary outcomes [20], [22].
Creating an averaged dose response function (ADRF) by
mapping the received treatment levels and the associated GPS
to the outcome of interest (e.g., hospital survival) allows us
to explore counterfactual reasoning for vasopressor and fluid

dosing. That is, how might a patient’s outcome change if the
patient is given different levels of treatment than the hospital
policy recommends? This is one of the key questions in the
application of RL to sequential dosing of medications in many
clinical settings. In this work, we utilize a neural network
with a logistic classification layer (namely the ADRF-network,
which can be trained as a normal logistic classifier) to model
the ADRF function. Given a set of clinical observations and
counterfactual levels of treatment, first the GPS-network is
used to map the observations to the GPS score for the different
treatment levels. Next, the GPS scores and the counterfactual
treatments are fed into the ADRF-network model to estimate
the expected effect size, that is, the difference between the
ADRF-network output evaluated at the counterfactual (dt = 0)
and the actual (dt = δ

(k)
π (t)) treatment levels. The correspond-

ing cost function is defined as:

cost(πa;β) = −
(
E[Y

(k)
t |dt = 0, GPS(0|x(k)

t )]−

E[Y
(k)
t |dt = δ

(k)
π (t), GPS(δ

(k)
π (t)|x(k)

t )]
)
,

(4)

where the first term inside the parentheses on the right-
hand-side of the question is the propensity-adjusted expected
survival assuming the clinician’s action was exactly the same
as the RL agents suggestion, and the second term is the
propensity adjusted expected survival under the observed level
of treatment. Note, that minimization of the cost function in
Eq. (4) can be accomplished by 1) optimizing the reward func-
tion in Eq. (1), and 2) improving the learned RL policy via Eq.
(3). To accomplish the former we use Bayesian Optimization
[23] to optimize the reward function parameters β. Next, given
the reward function, the REINFORCE algorithm is used to
learn an optimal dosing policy. This allows our model to be
trained using both short- and long-term rewards, which creates
a more balanced dosing agent. A high-level algorithm for
training the reward function parameters and RL Agent/Patient
State Estimator is given in Algorithm 1.

Algorithm 1 Train Dosing Agent and Reward
1: procedure TRAIN REWARD AND AGENT
2: Randomly initialize β(0)

3: for k = 1 : K do
4: R

(k)
t = β

(0)
1 x

(k)
1,t + β

(0)
2 x

(k)
2,t + · · ·+ β

(0)
df
x

(k)
df ,t

Nb ← # of Bayesian Optimization (BO) iterations
5: for n = 0 : Nb − 1 do
6: Train REINFORCE agent to learn the policy πa.
7: Calculate distance δπ from clinician policy (πc).
8: Train GPS network.
9: Train ADRF network.

10: cost(πa;β)← Evaluate Eq.(4)
11: Propose the next sampling point β(n+1).
12: for k = 1 : K do
13: R

(k)
t = β

(n+1)
1 x

(k)
1,t + β

(n+1)
2 x

(k)
2,t + · · · +

β
(n+1)
df

x
(k)
df ,t

14: β ← arg min [cost(πa;β)]
β∈{β0,...βNb}
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1) Calibrating the Dose Response Function: Predicting the
average response to a treatment can have many pitfalls that
one should be cognizant of, and treat with care. The most
significant of which is the potential for a classifier to be
uncalibrated. That is, when the probabilities the classifier out-
puts do not adequately represent the corresponding proportions
in the underlying population. For example, when predicting
mortality, ideally the subset of a patient cohort that receives a
probability of 0.1 should have a 10% prevalence of mortality.
Often, with trained models, calibrating the outputs of the
classifier can be done just by performing a shift on the outputs.
One popular such shift is isotonic regression [24], [25], [26],
which fits a non-decreasing curve to a set of data. Using
isotonic regression, we can map the outputs of our ADRF
network to their corresponding proportions in the dataset,
without losing the ordering of the predictions.

To assess whether or not a classifier is calibrated, one
can perform a Hosmer-Lemeshow goodness-of-fit test [27].
The H-L goodness-of-fit test amounts to using a Pearson’s
chi-squared test on a test statistic that is constructed from
percentile (typically decile) binning of the data. This test gives
a reasonable idea as to whether or not the empirical values
and predicted values feasibly represent the same underlying
distribution.

When training our model, we use the H-L p value to de-
termine whether or not the dose-response model is calibrated.
Then, pending the results of the test calibrate the model, if
necessary, using isotonic regression.

III. RESULTS

We trained and tested our Reinforcement Learning dosing
agent on a subset of the sepsis and septic shock patients
from the MIMIC III database. Figure 2 shows a time series
comparision of the different dosing recommendations of the
clinician (red) and the RL agent (blue) along-side a patient’s
MAP and the estimated reward function. It is important to
note that the RL agent’s decisions only take into account the
patient’s time series, and not its previous actions (because it
cannot directly influence the environment). This means that
the RL agent is not recommending repeated doses of pressors
necessarily, but rather suggesting that based on the current
state of the patient at a given hour that pressors be given.
Remarkably (as evidenced by this figure and numerous other
instances in the test set), the agent learns the inverse relation-
ship between Mean Arterial Pressure (MAP) and vasopressor
dosing. Typically, vasopressors are given to patients whose
blood pressure drops below 65 and can not be restored through
intravenous fluids.

A. Comparative Performance

The clinician and the RL dosing agent take noticeably
different approaches to fluid resuscitation in patients. Table
I outlines the key distinctions between the two policies. The
RL agent tends to recommend fluids earlier and in higher
amounts than the clinician, while simultaneously delaying and
recommending fewer pressors. Intravenous fluids are typically
the first methods clinicians use to raise blood pressure in septic

Fig. 2. Example of pressor (top) and fluid (second from top) dosing by
clinicians (red) and the RL agent (blue) alongside the patient’s MAP (second
from bottom) and the calculated reward (bottom) for the clinician at each
time point. In the MAP and Reward panels, red indicates MAP < 65 and
reward < 0, respectively.

patients, and it is an encouraging sign for the agent to learn
this from the environment.

Clinician Mean RL Agent
[5%, 95%] [5%, 95%]

Time to 1st pressor 11 [1, 41] 13 [1, 48]
Time to 1st fluid 6 [1, 20] 2 [1, 11]
Vol. of 1st pressor 0.2 [0.03, 0.68] 0.16 [0, 0.89]
Vol. of 1st fluid 283 [5, 1050] 926 [2, 2500]
Mean pressor dose 0.1 [0.002, 0.35] 0.05 [0, 0.25]
Mean fluid dose 89 [1, 138] 847 [1, 765]
Max. pressor dose 0.35 [0.04, 0.91] 0.49 [0, 0.99]
Max. fluid dose 813 [30, 2030] 1973 [42.5, 2500]

TABLE I
COMPARISON OF THE CLINICAL POLICY AND THE RL AGENT DOSING

POLICY.

Figure 3 shows the result of counterfactual reasoning over
five different pressor and fluid distance levels. The best per-
formance, in terms of the expected improvement in survival
rate, is achieved when the clinician dosing policy closely
follows the RL recommended dosing of fluids and pressors. As
expected, dramatic deviations from the RL policy (represented
by δPressor and δFluid far from 0) are not associated with a
positive change in survival rate, and may even hurt the patients.
Indeed, the most dramatic improvement in the survival rate
occurs when the policy is close to the RL policy (indicated
by δFluid ∈ [−500, 500] and δPressor ∈ [−0.2, 0.2]). This
corresponds to a survival rate improvement of ≈ 3%.

This improvement in performance contrasts with the per-
formance of versions of the model i. with no reward (using
Imitation Learning [28]), ii. that focus only on short-term
rewards, or iii. that do not include the temporal component (by
virtue of the SGLM network). The imitation learning model
acts as a “mean” clinician policy, in that during training, the
model sees a random sample of patient states and policies. The
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Fig. 3. Summary of the expected improvement in survival rate for as function
of deviation from the RL dosing policy (i.e., negative of the cost function in
Eq. (4)). The largest survival rate increase occurs when δFluid and δPressor
are close to zero, indicating adherence to the RL policy may result in better
outcomes even after adjusting for confounding factors via proposing matching.

model that only learns from short-term rewards (for example
only dosing based on a patient’s MAP value) is penalized when
viewing causal treatment effects, because vasoactive drugs
have potentially toxic effects [29]. Lastly, the REINFORCE
model without the SGLM temporal components fails to cap-
italize on information from a patient’s history. Respectively,
these models see a 1.3x% (IL), 1.2% (short-term only), and
1.9% (vanilla REINFORCE) increase in survival for the test
cohort.

IV. DISCUSSIONS AND CONCLUSION

We have shown that by combining reinforcement learning
with the framework of causal treatment effects one may simul-
taneously learn reward functions and treatment policies that are
directly tuned to optimize a long-term outcome. This enables
the end-to-end training of a model that increases survival
rates in the testing cohort to ≈ 3%. While the application
of reinforcement learning to medication dosing in critically ill
patients was previously suggested by [6], [30], and [31] in the
context of sepsis and septic shock, our work presents several
novel contributions.

Compared to the model proposed by Raghu, et al., our agent
learns to provide treatment in a continuous action space that di-
rectly corresponds to the clinical action space, whereas Raghu,
et. al. discretize their 2D action space to utilize Q-learning,
which can result in a loss of treatment precision. Secondly,
while Raghu, et. al. train their Q-Network and auto-encoder
separately, we use end-to-end training of the state estimator
and the reinforcement learning agent (REINFORCE). End-to-
end training is known to provide more optimal models, as
only a single cost function is optimized. Finally, Raghu, et. al.
limit their reward to in-hospital mortality. Without adjusting
for confounding factors, defining the reward in this way tends
to bias the learned policy towards treatment strategies that
clinicians use on less sick patients who have a higher chance
of survival.

In another recent work [31], Komorowski, et. al. present
a reinforcement learning agent trained using policy iteration
[4]. This method requires the authors to discretize both the
patient clinical course and covariate factors, as well as the
action space. This reduction of dimensionality can reduce
the richness of the information provided to a model, and
subsequently affect the ability of the model to make decisions.
Furthermore, Komorowski, et. al. do not limit their cohort to
septic patients requiring vasopressor therapy. This skews both
the state representation of their patients, as well as the dosing
recommendation of their agent – their agent is much more
likely to recommend minimal doses. Most significantly, the
method of policy evaluation they use, importance sampling
[32], biases the evaluation to ignore patient trajectories in
which the AI Clinician’s policy differs from the real clinician.
This ultimately predisposes their clinician to inaction in pa-
tients with a higher mortality rate. We discuss the limitations
of their agent in more detail in [33]. Our methods are in
stark contrast to this, as our agent is trained in a continuous
state space, and our evaluation methods adjust for confounding
factors using causal treatment effects.

In [32] and [9], the authors present the two primary con-
founds that underlie utilizing and evaluating reinforcement
learning methods in a critical care setting: proper patient state
representation and proper statistical evaluation of policy to
compensate for confounding factors. They recommend utiliz-
ing causal inference-based methods for evaluating the policy
and limiting policies that are similar to clinician policies.
This second recommendation is critical in medicine. It is
particularly challenging to evaluate treatment policies that are
dramatically different than the clinical policy, because there
are inevitably additional confounding factors that influence
clinicians’ decisions when providing treatment. We have taken
these recommendations and have carefully devised the first
reinforcement learning algorithm in a critical care setting that
properly adjusts for confounding factors, with the intention of
making meaningful and informed decisions.

Our method constructs a clinically-significant reward func-
tion and then simultaneously learns to assign a state to a patient
from their clinical information and recommend a treatment
based on their state and covariate factors. We then estimate
patients’ propensity to receive treatment and their expected
response to that treatment to gauge their expected change
in survival under the new treatment policy. We find that
adherence to the individualized fluid and vasopressor dosing
policy is significantly associated with mortality reduction of
≈ 3% in patients suffering from sepsis or septic shock, even
after adjusting for severity of illness.

Our method is not without its limitations. Currently, the
agent cannot be placed in a real patient treatment environment.
It must learn its policy from observing clinicians exploring
the action space and being rewarded by patient improvement
over short and long time scales. Indeed, off-policy evaluation
can be particularly challenging. In our method, we evalu-
ate our policy using standard counterfactual reasoning in a
retrospective setting, there is room to use other evaluation
metrics and techniques. Additionally, we recognize that each
class of vasopressors and (to a lesser degree) fluids induce
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a unique physiologic response. In this study we normalize
both types of treatments to simplify our agent’s action space.
In reality, every type of vasopressor or fluid does not carry
the same utility depending on patient status and history, and
are even dosed differently. The choice of clinical features to
use in the reward function was based on known factors in
judging a patient’s improvement when suffering from sepsis.
The reward function should be analyzed more methodically to
understand the roles of different clinical factors in assessing
improvement in patient state; methods like functional ANOVA
[34] that determine the dependence of a function on the input
variables can improve the reward function and potentially add
new clinically significant meaning to it.

Despite these simplifications which will be explored in
future work, this precursory reinforcement learning approach
marks an exciting first step towards providing real-time, in-
dividualized computer-assisted treatment of the hypotensive
episodes that can accompany sepsis and septic shock.
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APPENDIX - DATA DESCRIPTION AND EXTRACTION

This appendix contains specific details about the clinical
variables used from the MIMIC III database [11] for the cohort
of sepsis and septic shock patients. Vital signs and clinical
variables were binned on an hourly basis. The following
time-varying variables were included: heart rate, mean blood
pressure, systolic blood pressure, respiratory rate, temperature,
Glasgow Coma Scale (GCS), SpO2, FiO2, PaO2/FiO2 ratio,
paO2, paCO2, arterial base excess, arterial pH, arterial lactate,
bicarbonate (HCO3), potassium, sodium, chloride, glucose,
blood urea nitrogen (BUN), creatinine, magnesium, calcium,
total bilirubin, albumin, hemoglobin, white blood cell (WBC)
count, platelets count, urine output, and Sequential Organ
Failure Assessment score (SOFA). Additionally, we include
the total fluid input administered and median vasopressor
dosage in a given hour. We used carry-forward to fill in
missing values on an hourly basis, except for input and output
events (i.e. urine output and amount of fluids administered)
and vasopressor dosage. At each time step, the mean blood
pressure, fluids and vasopressor dosage from the previous three
time-steps were also included to infer patient states.

The following static variables were included: gender, age,
Elixhauser co-morbidity index, and five severity-of-illness
scores computed using data from the first 24-hours patients
were in the ICU, including SAPS-II, APS-III, OASIS, SOFA,
and Charlson Comorbidity Index (CCI).

There are many different types of vasopressors that are
dosed differently. Vasopressors are standardized using the
relative strength to norepinephrine (aka noradrenaline or no-
rad). The vasopressors included: norad (or norepinephrine or

levophed), epi (adrenaline), vasopressin, phenyl, and dopa. The
unit of measurement is mcg/kg/minute except for vasopressin
(rate is expressed as units/minute). The standardization step
involves multiplying the rate of each vasopressor by a scaling
constant based on usual dosing of each drug. Norad is typically
dosed at 0-1 mcg/kg/min. If multiple vasopresors were used
in the same time bin, the median dose is reported.
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