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Abstract

In this paper, we design a Nonlinear Observer (NLO) to estimate the effective reproduction number
(Rt) of infectious diseases. The NLO is designed from a discrete-time augmented Susceptible-Infectious-
Removed (SIR) model. The observer gain is obtained by solving a Linear Matrix Inequality (LMI). The
method is used to estimate Rt in Jakarta using epidemiological data during COVID-19 pandemic. If the
observer gain is tuned properly, this approach produces similar result compared to existing approach
such as Extended Kalman filter (EKF).
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I. INTRODUCTION

Governments around the world are using the reproduction numbers as criteria when deciding public
health policies during COVID-19 pandemic. In principal, there are two types of reproduction numbers: basic
reproduction number and effective reproduction number. The basic reproduction number (denoted by R0)
shows the average expected number of cases generated by one case in a population where all individuals are
susceptible. The effective reproduction number (denoted by Rt) shows the average expected number of cases
generated in the current state of a population. In practice, R0 is used to determine how many population that
needs to be immune to reach herd immunity. In this case, the herd-immunity threshold is 1 − 1

R0
. On the

other hand, Rt is used to monitor transmissions of the disease in a population during the outbreak. Hence,
this number is usually used as one of the main criteria to evaluate the public health policies. Theoretically,
Rt needs to be below 1 to ensure the transmission is under control.

Many researchers have provided calculations to estimate Rt using different approaches, e.g., Bayesian
estimation [1], serial interval [2], Extended Kalman filter [3], and parameter fitting [4]. If the estimation
parameters are tuned properly, all of these approaches will provide similar pattern with small variation. Once
the estimated Rt is obtained, we can create short-term forecasts to determine different reopening scenarios
[5]–[7].

The aim of this paper is to provide a novel approach to estimate the effective reproduction number Rt
of infectious diseases. To this end, we design a Nonlinear Observer (NLO) from a discrete-time augmented
Susceptible-Infectious-Removed (SIR) model. The method is efficient in the sense that the epidemiological
data is injected directly into the model once we found a constant observer gain. The observer gain is obtained
by solving a Linear Matrix Inequality (LMI). While the majority of estimation methods are based on stochastic
process, this new approach is deterministic. The Confidence Interval (CI) provided in our estimation is
inherited from the uncertainty in the infectious time and not from the method itself.

The paper is organized as follow. In Section II, we derive a discrete-time augmented SIR model. In this
section, we consider the time-varying Rt as an augmented state. Furthermore, we assume its value is a piece-
wise constant function. In Section III, we derive a sufficient condition for the observer gain in terms of LMI.
Simulation results using epidemiological data from Jakarta is presented in Section IV. Finally, conclusions
are given in Section V.
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II. MODEL

We use a simple SIR model in this paper for several reasons. First, it can be used to described transmissions
of many infectious diseases. Furthermore and most importantly, the actual data of the three compartments are
available in most outbreak events. The removed compartment consists of individuals who are either recovered
or died. Assuming constancy of population N , the SIR model can be written as follow [8]:

Ṡ(t) = −βI(t)S(t)

N
, (1)

İ(t) =
βI(t)S(t)

N
− γI(t), (2)

Ṙ(t) = γI(t), (3)

where S denotes the number of susceptible individuals, I denotes the number of infected individuals or active
cases, and R denotes the number removed individuals. The model has two parameters: the transmission rate
β and the removal rate γ. By definition, β is the average number of contacts per person per time, multiplied
by the probability of disease transmission in a contact between a susceptible and an infectious individual.
Thus, in principal β is time-varying due to interventions. For this reason, in the remaining of this paper we
consider β as a parameter that depends on time t and is unknown. On the other hand, the removal rate γ is
an inverse of the average infectious time, i.e., γ = 1

Ti
. The infectious time can be obtained through medical

data and is usually known together with its Confidence Interval (CI). Taking into account reduction in the
number of susceptible individuals, the effective reproduction number can be estimated as follow [9]:

Rt(t) =
S(t)

N

(
β(t)

γ

)
≈ β(t)

γ
. (4)

Discretizing (1)-(3) using the Euler discretization method, substituting β(t) = γRt(t) into the model, and
augmenting Rt(t) as a new state variable, we obtain the following discrete-time augmented SIR model:

S(k + 1) = S(k)− γ∆t

N
Rt(k)I(k)S(k), (5)

I(k + 1) = (1− γ∆t)I(k) +
γ∆t

N
Rt(k)I(k)S(k), (6)

R(k + 1) = R(k) + γ∆tI(k), (7)
Rt(k + 1) = Rt(k). (8)

Remark that, in the last equation we assume Rt as a piece-wise constant function with jumps every time
new data come in. To simplify the model, let us define:

x(k) =
(
S(k) I(k) R(k) Rt(k)

)ᵀ
. (9)

The discrete-time augmented SIR model (5)-(8), can be written as the following nonlinear state-space
representation:

x(k + 1) = Ax(k) + f(x(k)), (10)

where

A =


1 0 0 0
0 1− γ∆t 0 0
0 γ∆t 1 0
0 0 0 1

 and f(x(k)) =


−γ∆t

N Rt(k)I(k)S(k)
γ∆t
N Rt(k)I(k)S(k)

0
0

 . (11)

Since data for S(k), I(k), and R(k) are available, the measurement vector y(k) ∈ R3 is given by:

y(k) = Cx(k), (12)
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where

C =

1 0 0 0
0 1 0 0
0 0 1 0

 . (13)

III. METHOD

We design the NLO as follow:

x̄(k + 1) = Ax̄(k) + f(x̄(k)) + K (y(k)− ȳ(k)) , (14)

where x̄(k) ∈ R4 is the estimated state from the NLO and K ∈ R4×3 is the observer gain to be determined
later. Let x̃(k) = x(k) − x̄(k), ỹ(k) = y(k) − ȳ(k), and ∆f(k) = f(x(k)) − f(x̄(k)). Subtracting (10)
with (14), we obtain:

x̃(k + 1) = (A−KC) x̃(k) + ∆f(k). (15)

The problem is to find K such that the error x̃(k) is asymptotically converges toward zero, which guarantees
the estimated states converge to the actual states. Designing a NLO for a nonlinear system is not trivial and
sometime impossible. Thus, we can simplify the problem using some assumptions, for example by assuming
the non-linearity is locally Lipschitz and bounded. These assumptions are common when designing NLO for
nonlinear systems, e.g., see [10], [11]. Therefore, the following assumptions are used in this paper:

Assumption 1. The nonlinear function f is a one-sided Lipschitz, i.e., it satisfies

ε1

(
x̃(k)

∆f(k)

)ᵀ( −I4 − 1
2I4

− 1
2I4 0n

)(
x̃(k)

∆f(k)

)
≥ 0, (16)

for ε1 > 0, where I4 denotes a 4× 4 identity matrix.

Assumption 2. The nonlinear function f satisfies the quadratic inner-boundedness condition, i.e.,

ε2

(
x̃(k)

∆f(k)

)ᵀ(
I4

ν
2I4

0 −I4

)(
x̃(k)

∆f(k)

)
≥ 0. (17)

for ε2 > 0 and ν ∈ R.

Utilizing the above assumptions, we can derive a sufficient condition for the observer gain in terms of
LMI.

Theorem III.1. Under Assumption 1 and Assumption 2, the error dynamics (15) is asymptotically stable if
there exist matrices G = Gᵀ > 0 and R ∈ R3×4 such that the following LMI holds −G + (ε2 − ε1)I4 AᵀG−CᵀR + νε2−ε1

2 I4 AᵀG−CᵀR
GA−RᵀC + νε2−ε1

2 I4 G− ε2I4 0
GA−RᵀC 0 −G

 < 0. (18)

Furthermore, the observer gain is given by:

K = G−1Rᵀ. (19)

Proof. Let us define a Lyapunov function:

V (k) = x̃(k)ᵀGx̃(k). (20)

Thus, if ∆V (k + 1) = V (k + 1)− V (k), then we have:

∆V (k + 1) = x̃(k)ᵀ ((A−KC)
ᵀ
G (A−KC)−G) x̃(k) + 2x̃(k)ᵀ (A−KC)

ᵀ
G∆f(k)

+∆f(k)ᵀG∆f(k). (21)
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Expressing the right hand side of (21) as a matrix multiplication, we have:

∆V (k + 1) =

(
x̃(k)

∆f(k)

)ᵀ(
(A−KC)

ᵀ
G (A−KC)−G (A−KC)

ᵀ
G

G (A−KC) G

)(
x̃(k)

∆f(k)

)
. (22)

Adding the left hand side of (16) and (17) into (22), we have:

∆V (k + 1) ≤
(

x̃(k)
∆f(k)

)ᵀ

Φ

(
x̃(k)

∆f(k)

)
, (23)

where

Φ =

(
(A−KC)

ᵀ
G (A−KC)−G + (ε2 − ε1)I4 (A−KC)

ᵀ
G + νε2−ε1

2 I4

G (A−KC) + νε2−ε1
2 I4 G− ε2I4

)
. (24)

Substituting (19) and applying Schur complement to (24), then Φ < 0 is equivalent to (18). This completes
the proof.

IV. ESTIMATION OF Rt IN JAKARTA

Daily epidemiological data of COVID-19, such as the number of active case and the number of removed
case between April 2020 until August 2020, are used in our estimation. Code and data are available in:
https://github.com/agusisma/COVIDNLO. In this simulation, we use the following parameters: ε1 = 10,
ε2 = 1, and ν = 9. Furthermore, the symmetric matrix G is chosen as G = 0.1I4, while the matrix R is
chosen as:

R =

 0.0363 −0.0032 0 −0.0013
−0.0320 0.0745 0 0.0057

0 0 0.0916 0

 . (25)

We assume the average infectious time 1
γ = 12 days with standard deviation of 3 days. Using these

parameters, the LMI (18) is negative definite with the largest and smallest Eigenvalues are -0.0989 and
-9.1294, respectively. The observer gain is then given by:

K =


0.3630 −0.3200 0
−0.0320 0.7453 0

0 0 0.9160
−0.0134 0.0573 0

 . (26)

Figure 1 shows estimation results from the NLO for the daily number of active and removed case. It can
be observed from the estimation errors that the NLO estimates these numbers reasonably accurate. The NLO
is compared with the EKF method presented in [3] and the results can be seen from Figure 2. It can be
observed that the estimation results are virtually almost identical. We should note, however, that these results
are obtained after a lengthy process of trial and error when determining the matrix R. Unfortunately, there
is no method that can be used to determine matrix R automatically. Having said that, the main advantage
of using NLO is its stability and efficiency compare to EKF, since the NLO doesn’t require calculation of
inverse matrices.

V. CONCLUSION

In this paper, we have presented a new approach to estimate the effective reproduction number Rt of
infectious diseases. The idea is to inject the discrete-time augmented SIR model with epidemiological data,
such as active and removed case. The main challenge is to find a suitable observer gain, since there are no
methods to solve the LMI automatically. However, once the observer gain is found, the method is comparable
with EKF. The main advantage of using NLO is its stability compared to EKF. Furthermore, it doesn’t require
computation of inverse covariance matrices, which makes NLO more efficient.
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Fig. 1: Real-time data fitting from the NLO for active and removed case with their estimation errors.

Fig. 2: Comparison of the effective reproduction numbers Rt from NLO and EKF. The Confidence Interval
(CI), indicated by the band, is a result from uncertainty in the infectious time 1

γ .
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