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Abstract 
 
The National COVID-19 Chest Imaging Database (NCCID) is a centralised database containing 

chest X-rays, chest Computed Tomography (CT) scans and cardiac Magnetic Resonance 

Images (MRI) from patients across the UK, jointly established by NHSX, the British Society of 

Thoracic Imaging (BSTI), Royal Surrey NHS Foundation Trust (RSNFT) and Faculty. The 

objective of the initiative is to support a better understanding of the coronavirus SARS-CoV-2 

disease (COVID-19) and development of machine learning (ML) technologies that will improve 

care for patients hospitalised with a severe COVID-19 infection. The NCCID is now 

accumulating data from 20 NHS Trusts and Health Boards across England and Wales, with a 

total contribution of approximately 25,000 imaging studies in the training set (at time of writing) 

and is actively being used as a research tool by several organisations. This paper introduces 

the training dataset, including a snapshot analysis performed by NHSX covering: the 

completeness of clinical data, the availability of image data for the various use-cases (diagnosis, 

prognosis and longitudinal risk) and potential model confounders within the imaging data. The 

aim is to inform both existing and potential data users of the NCCID’s suitability for developing 

diagnostic/prognostic models. In addition, a cohort analysis was performed to measure the 

representativeness of the NCCID to the wider COVID-19 affected population. Three major 

aspects were included: geographic, demographic and temporal coverage, revealing good 

alignment in some categories, e.g., sex and identifying areas for improvements to data 

collection methods, particularly with respect to geographic coverage. All analyses and 
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discussions are focused on the implications for building ML tools that will generalise well to the 

clinical use cases. 

 

 

Background & Summary 
 

Radiology has played a significant role during the pandemic, informing our understanding of the 

COVID-19 disease (Hosseiny 2020, Kooraki 2020, Shi 2020, Lee 2020) and guiding decision 

making along care pathways. Clinicians have identified characteristic features of COVID-19 

acute respiratory distress from thoracic imaging studies; such features can be used to 

differentiate COVID-19 patients from those suffering other respiratory conditions (Shi 2020, 

Chung 2020, Kanne 2020). However, these differences in disease manifestation are often 

subtle (Cleverley 2020) and may be more quantitatively delineated using computational 

methods.  

 

One corollary of the widespread adoption of radiology during the pandemic is the accumulation 

of large volumes of clinical imaging data spread across hospital sites throughout the UK. The 

National COVID-19 Chest Imaging Database (NCCID) was established to collate this mass of 

X-ray, CT and MRI scans into an accessible imaging database. The end goal of the NCCID is 

to facilitate researchers and technology developers in the creation of fair, effective and 

generalisable ML technologies that can support diagnosis, prognosis and risk stratification of 

the COVID-affected population, ultimately aiding clinicians to improve patient outcomes. 

 

The initiative was formed as part of the NHS AI lab’s mission of enabling the safe adoption of 

AI technologies in the NHS (NHSX, AI lab n.d.) and was successfully set up through 

partnerships with the Royal Surrey NHS Foundation Trust, the British Society of Thoracic 

Imaging (BSTI) and Faculty, an AI technology company. This combination of data processing 

and clinical expertise has been leveraged to create a data warehouse comprising 

pseudonymised thoracic imaging and relevant clinical data points for thousands of patients 

across the UK.   

 

The legal basis for the NCCID is provided by the notice under regulation 3(4) of the UK National 

Health Service (Control of Patient Information) Regulations 2002 (COPI Notice), and ethical 

approval was obtained for the NCCID to operate as a research database by the UK Health 

Research Authority. Further information on the NCCID’s remit and rationale are described in an 

article in the European Respiratory Journal (Jacob 2020). 

 

A portion of the data is transferred to the training set, which contained 24,465 imaging studies 

from 7,685 patients at time of writing (latest figures can be found on the NCCID information 

page). This training data is available to any users, including software vendors, academics and 

clinicians, via a rigorous Data Access Request (DAR) process. Applications are adjudicated by 

an independent committee based on several factors including but not limited to relevance to 

COVID-19 and compliance with information governance regulations. The required paperwork 

and additional instructions are detailed on the website. 

 

The remaining portion of data is allocated to the validation set, which is protected as a hold-out 

set for NHSX to conduct future performance assessments of COVID-19 chest-imaging AI 

technologies, ensuring that they are safe and effective before testing in a real-world clinical 

setting. Results presented in this paper are solely focused on the training data, in order to 

maintain the integrity of the validation data as a hold-out benchmarking tool. 
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This article aims to describe key characteristics of the data and indicate its usefulness for 

developing algorithms that can support COVID-19 diagnosis and prognosis from chest images. 

The work was conducted on pseudonymised data within the existing NHSE AWS cloud 

infrastructure for the NCCID. To preserve the privacy of individuals, suppression of small 

numbers has been implemented throughout the paper. Suppressed data is indicated within plots 

and tables by the presence of an asterisk (*) for categories containing less than 7 individuals.  

 

As the data is submitted in two parts - the images themselves, and the clinical data separately 

- the analysis has naturally been structured in this manner with an additional investigation of 

how the geographic, demographic and temporal coverage of the dataset compares with publicly 

available datasets for the wider COVID-affected population. The implications of these findings 

for developing algorithms related to COVID-19 is provided in the Discussion, alongside a list of 

future aims that have been identified to improve the dataset.  

 

Methodology 

Database setup 
 

 

Figure 1 diagram of the data collection pipeline for the NCCID warehouse. 

 
Figure 1 provides an overview of the data collection pipeline for the NCCID warehouse, which 
can be broadly broken down into the following stages: 

1. NCCID participating collection sites (hospitals) are requested to contribute imaging data 

for patients that have undergone a real-time Reverse Transcription Polymerase Chain 

Reaction (RT-PCR) test for COVID-19. In addition to the images, two spreadsheets with 

different fields for the positive and negative cases are populated to capture 

accompanying clinical data (see clinical data and supplementary resources for more 

information). 

2. The Scientific Computing Team at RSNFT have established a dedicated node on 

Sectra’s Image Exchange Portal (IEP) for receiving the images. IEP is a widely used 

network for sharing images between hospitals. The images are received by a SMART 

(Secure Medical-Image Anonymiser Receiver for Trials) box in Random Access 
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Memory (RAM) and de-identified before writing to disk, ensuring that no patient 

identifiable information leaves the sites. The clinical data spreadsheet is also de-

identified by means of a common pseudonym, generated via a one-way hashing 

algorithm combined with a complex salt and uploaded to a web portal. Upon receiving 

images and clinical information, RSNFT links the two sources using the pseudonym. 

Patient’s unique digital identifiers (NHS number or equivalent for devolved nations) are 

also encrypted using an Advanced Encryption Standard (AES) algorithm and a complex 

salt to allow linkage with other national-level datasets.  

3. The data is transferred to a central NCCID data warehouse hosted inside NHS 

England’s (NHSE) Amazon Web Services (AWS) infrastructure, designed and 

implemented by Faculty and NHXS. The warehouse is backed by a single Simple 

Storage Service (S3) bucket within a separate sub-account under NHSE’s AWS 

organisation. All data within the S3 bucket is encrypted at rest using AES-256 

encryption. Data is regularly split into training and validation sets based on a 

randomisation of patients: once a patient has entered the training or validation set, any 

new images for that patient are automatically added to the same set. The codebase for 

warehouse infrastructure is open-source (see supplementary resources). 

4. Data users that have been approved through the DAR process can access the training 

set. Image files are available in DICOM format, and clinical data is stored as JSON files. 

AWS credentials for the S3 bucket are provided to an organisation via an encrypted 

communication. Further support, including guidelines and code for access the data are 

provided through the information site.  

 

Inclusion criteria 

The inclusion criteria for individuals within the NCCID database are as follows: 

● The person has undergone a COVID-19 swab test (RT-PCR). The outcome of the test 

may have been positive or negative. Some individuals may have undergone multiple 

swab tests; 

● The person has undergone chest imaging in the three weeks before or after the swab. 

The positive cohort consists of the individuals that returned one or more positive swab tests. All 

imaging data associated with a positive patient’s COVID-19 hospital episode have been 

requested. To provide insight on longitudinal risk factors, historical images up to January 2017 

are also requested.  

 

The negative cohort consists of individuals for whom all acquired swab tests return negative. 

This may differ from some clinical databases where the control cohort represents healthy 

individuals but was deemed the correct method for curating a dataset that could train the most 

useful diagnostic models that differentiate COVID-19 characteristic features from other 

respiratory conditions. Thoracic images acquired within the six-week window surrounding the 

test are requested. 

 

Although the status of a patient’s RT-PCR swab test serves as a proxy for ground truth, users 

should be aware of the limitations of these labels. In particular, this method of testing has a 

relatively low sensitivity score, where estimates range from 0.71-0.98 (Watson 2020), this 

causes the false omission rate to be quite high. In addition, the probability of having a COVID-

19 infection is higher in those attending hospital with respiratory symptoms, than for the general 

public. Given these factors, data users should expect the negative cohort to contain a non-
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negligible portion of mislabelled positive patients. Additional clinical assessment of the images 

may be required to improve the accuracy of labels. 
 

Imaging data 

The NCCID is a continually growing asset, as such, all subsequent figures and analyses 

reported in this paper refer to the training data as of 29 October 2020 (unless otherwise stated). 

On this date, the NCCID training dataset contained data for 7,500 patients; Table 1.1 details 

how this cohort is split by control/disease and data availability. There were 1,307 patients with 

clinical data only due to the fact that the accompanying images had not yet been uploaded by 

the PACS teams.  

PCR-RT swab status: Patients with images 
and clinical data:  

Patients with clinical 
data only  

Totals: 

Positive patients 2,881 287 3,168 

Negative patients 3,312 1,020 4,332 

Totals: 6,193 1,307 7,500 

Table 1.1 Breakdown of patient cohorts 

 

Table 1.2 details the image modality breakdown for the patients that have had their imaging 

data uploaded to the training dataset. The majority of the image studies (see glossary in 

Appendix A for definition) in the NCCID are X-rays, followed by CTs. Only a small number of 

MRIs, 17, have been submitted, therefore MRI data is excluded from further analysis. A single 

patient may have multiple studies within the NCCID, for instance, if multiple diagnostic scans 

were taken during their treatment pathway or historic scans were provided (see image 

characteristics section for more details). 

 

PCR-RT swab 
status: 

No. of X-ray studies  No. of CT studies 
 

Totals 

Positive patients 11,725 1,565 13,294 

Negative patients 5,532 1,112 6,651 

Totals 17,257 2,677 19,945 

Table 1.2 Modality breakdown of image studies by patient cohort 

 

Clinical data 

 

The NCCID sites have been asked to provide additional clinical information alongside imaging 

data for any patients that have tested positively for COVID-19 via the RT-PCR swab test. The 

intended purpose of this additional information is to provide researchers with insight into 

potential causal risk factors, such as comorbidities, as well as potential variables that indicate 

severity of disease. The clinical data can be broken down into five broad categories:  

1. Demographic information - age, sex, ethnicity. This data is discussed in detail in the 

demographics section. 

2. Important dates such as swab dates, image dates and date of admission. 

3. Patient medical history, specifying any pre-existing conditions, and the current use of 

some drugs such as blood pressure medications. 
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4. Admission metrics, detailing the condition of the patient on admission to hospital i.e., 

blood pressure, lymphocyte count, partial pressure of O2 etc. 

5. COVID information, pertaining to how the patient was treated (intubation, admitted to 

ITU), the results of their RT-PCR-tests, the severity associated with their chest X-ray 

(BSTI n.d.), and their ultimate COVID and mortality status.  

 

For patients in the control cohort, only a subset of this information was requested: patient 

pseudonym, submitting centre, date of RT-PCR, and result of RT-PCR. This decision was made 

to reduce the burden on busy ward staff during the pandemic. Schemas for both spreadsheets 

are available through the supplementary resources section. 

 

Initial investigation of the clinical data revealed several data quality issues, as can be expected 

during a pandemic when resources and time are understandably limited. Issues included: non-

numeric values, such as blank spaces reported for numeric fields; inconsistency of date/time 

formats with some entries in US (month-day-year) versus UK (day-month-year) format; 

mismatch in format for reporting categorical data (e.g., M, F for Male, Female versus 0, 1); 

different sites using different unit scales to report clinical metrics, e.g., mg/L versus ng/L. To 

address many of these issues a data cleaning pipeline was created and made publicly available 

to data users, alongside additional details on the data quality issues, and guidance on the 

expected format of the clinical data fields (see supplementary resources section).  

 

Missing values in the demographic data were backfilled using a segmentation dataset provided 

by NHS England and Improvement (NHSE&I) for ethnicity data (internal resource, citation 

pending), and DICOM header information for sex and age. Making these sensitive attributes 

available to users is vital for measuring and facilitating equality of care, particularly through bias 

mitigation of ML models. As such, the additional source of ethnicity data has also been made 

available to data users. 

 

The results that are reported in this paper are based on the cleaned data for which known errors, 

such as non-numerical entries have been removed. Text input has been parsed to extract 

embedded numeric values, and categorical values have been mapped to standard schemas. 

Issues arising from ambiguous dates (i.e., 03/04 vs 04/03) and mixed measurement units have 

not been fully rectified by the cleaning pipeline and may persist.  
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Analysis of training data 
 

The following analyses are provided to aid data users in understanding the suitability of the 

NCCID training dataset for developing diagnostic and prognostic algorithms based on COVID-

19 chest imaging: 

1. Clinical data completeness: assess the completeness and quality of the clinical data, 

particularly in relation to pertinent information (e.g., comorbidities, disease severity, 

outcomes) that can provide additional training variables or labels for ML models. 

2. Imaging characteristics: considers the availability of historical data for longitudinal 

studies, the implications of the timing of image acquisition along care pathways, and 

potential model confounders such as the scanner type. 

3. Cohort analysis: to inform NCCID users of any potential biases in the training dataset 

that could impede their ability to develop fair, effective, and generalisable AI models. 

To achieve this, we compared the geographic, demographic, and temporal distributions 

of patients in the NCCID with publicly available datasets, measuring how far the data is 

representative of the wider population that has been affected by COVID-19.  

The subsequent sections follow the structure of the above three categories, each containing a 

description of the methodology (if applicable) alongside the key results. The implications of 

these findings for building ML models are elaborated in the discussion section.   

1. Clinical data completeness 
 

To understand the utility and limitations of the clinical data with respect to developing diagnostic 

or prognostic AI models, we assessed the completeness of each field in the four categories: 

important dates, patient medical history, admission metrics, and COVID information. 

Completeness was quantified in terms of the percentage of null and not-null values submitted 

for each field across all COVID-positive patients.  

 

Figures 1.1 A-D show the completeness of the clinical data after applying the cleaning pipeline 

(see the clinical data methodology section). For each field of the clinical data, the percentage 

of entries with non-null values are shown in orange against the percentage of null values in 

blue. The data exhibits varying degrees of completeness with several well-reported fields 

present in over 80% of patients, but the majority of fields are between 0%-50% complete. The 

subsequent subsections investigate each plot more closely. 

Dates 

The date of 1st PCR result, positive COVID swab, latest COVID swab, admission, and 1st chest 

X-ray (CXR) were well reported, with 79-97% coverage, whilst dates of subsequent PCR 

tests/results, X-rays, ITU admission, intubation and death were present for just 4%-50% of 

patients. Coverage for date of death increased from 14.6% to 66% when limiting analysis to the 

subset of patients for whom the death status had also been reported as positive.  
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Figure 1.1 completeness of clinical data fields related to (A) dates, (B) patient medical history, 

(C) symptoms on admissions and (D) COVID-related information.  

Medical history 

The presence of cardiovascular disease (CVS) and chronic kidney diseases (CKD) were both 

reported for approximately 90% of patients. The presence of other pre-existing conditions, 

hypertension, type 2 diabetes mellitus, and lung diseases were reported for 66%, 55% and 51% 

of patients, respectively. The use of angiotensin receptor blockers, ACE inhibitors (ACEI), and 

non-steroidal anti-inflammatory drugs (NSAID) were known for between 40-43% of patients. 

The patient’s smoking status (never, previous, current) was known for 25% of patients, with the 

packs per year history known for 4.4%, increasing to 25% when filtering for patients with current 

or previous smoking status. Finally, the stage of chronic kidney disease (if CKD, stage) was 

available for 7.5% of patients overall, rising to 49% in the subset in which CKD is reported. 

 

For all of these fields other than pack year history and CKD stage, the reporting includes the 

negative status of not having the condition. Missing values include that the presence of the 

condition was marked as unknown or left blank. 

Admission metrics  

Of the clinical measurements recorded when a patient is admitted to hospital, blood pressure 

(systolic and diastolic) was available for 84% of patients and was by far the most complete field 

in this category. The majority of remaining fields were reported for between 33-48% of patients. 

However, Ferritin, FiO2, Troponin I, Fibrinogen, and D-dimer were reported for 10-19% of 

patients, and Troponin T, APACHE score and O2 saturation for only 1-3% of patients. 

COVID information 

The most complete COVID information by far was the result of the 1st PCR test and death 

status, which were present for 97% and 94% of patients respectively. Admission to ITU, final 

COVID status and COVID code were reported for 45-49% of patients, and use of intubation for 

36%. Beyond these the completeness of the fields declined, with chest X-ray severity data 

available for 21% of patients, COVID code 2 for 19%, result of second PCR test for 16% and 

chest X-ray severity 2 for 11%. 
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2. Image characteristics 

This section is designed to inform users on general characteristics of the image data whilst also 

highlighting potential confounders that might hinder the ability to build effective AI models.  

Subsequent sections of the analysis utilise the DICOM header tags associated with image files, 

these tags were read using open-source package Pydicom (Pydicom n.d.). MRI images are 

excluded from all analyses due to low numbers in the database at the time of analysis. 

Historic and acute images 

Both acute (related to COVID-19 hospital admission) and historic image studies (up to January 

2017) are available for a subset of the NCCID patients. Historic image studies may be used to 

infer longitudinal risk factors or decouple the effects of pre-existing pathologies from COVID-

related symptoms.  

 

Figures 2.1 shows the distributions of the number of historical/acute/total X-ray (A) and CT (B) 

studies per COVID-positive patient. This number was calculated based on the date of 

admission and the DICOM StudyDate (0008, 0020), where a study was considered acute if it 

occurs on or after the admission date and historic otherwise. Date of admission was available 

through the clinical data for n=2,826 COVID-positive patients; reported results are based on 

this sample size. In both sets of boxplots, outliers are indicated by dots outside the limit of the 

plot whiskers and whiskers correspond to Q1 or Q3 +/- 1.5*iqr (interquartile range).  

 

The total number of CTs per patient was median=1, iqr=1-2, this was lower than for X-rays 

(median=3, iqr=1-5). This consequently resulted in lower availability of acute CT studies, 

median=1, iqr=0-1, max=6, and even lower availability of historic CT studies, median=0, iqr=0-

1, but with a handful of patients having 2-12 studies. For X-rays the median number of acute 

studies per patient was 1, similar to CT but the iqr=1-2 is higher, indicating that patients are 

more likely to have multiple X-rays taken in the acute setting. There was also more historic 

data available for X-rays, with a median=1, iqr=0-2. 
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Figure 2.1: Number of historical/acute/total image studies per NCCID COVID-positive patient  
(n=2, 826) for (A) X-rays and (B) CTs. 

Acquisition timing 

The timing of imaging acquisition along the patient treatment pathway was investigated to 

understand if different modalities were used for differing purposes in the clinical setting. Two 

time lags were compared across X-ray studies and CT studies:  

1. 𝑑𝑎𝑦𝑠𝑠𝑤𝑎𝑏 𝑡𝑜 𝑖𝑚𝑎𝑔𝑒 =  𝑑𝑎𝑡𝑒𝑖𝑚𝑎𝑔𝑒 −  𝑑𝑎𝑡𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑤𝑎𝑏 𝑡𝑒𝑠𝑡 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑒𝑟𝑒𝑑  

 

2. 𝑑𝑎𝑦𝑠𝑠𝑦𝑚𝑝𝑡𝑜𝑚 𝑜𝑛𝑠𝑒𝑡 𝑡𝑜 𝑖𝑚𝑎𝑔𝑒 =  𝑑𝑎𝑡𝑒𝑖𝑚𝑎𝑔𝑒 − (𝑑𝑎𝑡𝑒𝑎𝑑𝑚𝑖𝑠𝑠𝑖𝑜𝑛  −  𝑑𝑎𝑦𝑠𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠) 

Image dates were established from the StudyDate field of the DICOM headers and lags were 

calculated based on the first image after the admission date of each patient. This limited 

analysis to the images taken during the patient’s treatment for COVID-19 in the acute setting. 

Box plots are used because of the skewed nature of timing data. The distributions of these lags 

are shown for X-ray (orange) and CT (blue) scans in Figures 2.2 A and B.  

 

For A), the median offset between swab date and study date was -1 day for X-rays and +1 day 

for CT scans. The high number of -1 day lags for X-ray shows that the majority of X-rays had 

been taken before a patient’s COVID-19 status was known. The overall distribution across X-

rays was far narrower, with an iqr= -2-0 compared to iqr= -1-12 for CTs. This suggests that the 

timing of X-rays is very consistent across patients, whereas longer tails in the CT distribution 

indicates more variance of usage between patients.  

 

Both modalities display outliers with large negative offsets. These negative offsets suggest that 

some patients had images taken up to 87 days prior to the positive RT-PCR swab. In practice, 

the majority of these cases are likely driven by data quality issues surrounding ambiguous 

dates, such as 03/10 vs 10/03 (see clinical data section of methods).  

 

The delay between onset of symptoms and image dates tell a similar story to the above. X-rays 

had a median offset of 7 days (iqr = 3-11 days), whilst CTs had a median offset of 15 days and 

a wider iqr = 8 - 34 days. Although calculated on a smaller subset of studies (936 compared to 
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2917) for which duration of symptoms data was available, this analysis corroborates the 

hypothesis that X-rays were consistently used earlier in the care pathway, potentially as 

diagnostic aids. 

 

 

 
Figure 2.2(A) Number of days between the patient’s RT-PCR swab test and the image acquisition  

(nXRAY= 2,410, nCT= 507) and (B) Number of days between patient symptom onset and image  

acquisition (nXRAY= 803, nCT= 133) 

 

Scanner types 

To investigate the variety of medical imaging equipment within the NCCID database, two 

analyses were performed: 
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● Study counts by machine manufacturer were generated using the Manufacturer 

attribute (0008, 0070) from the DICOM headers.  

● Study counts for model types available within each manufacturer were generated 

through the combination of DICOM attributes Manufacturer + Manufacturer’s Model 

Name (0008, 1090). This combined attribute is hereby referred to as model. The results 

for this additional breakdown are provided in Appendix B.  

 

In both cases, all available DICOM tags were read from each X-ray image file in a study, but 

only from the first file of each CT study, as the DICOM attributes of interest were the same 

across all files in a given CT study. Studies for the positive cohort were filtered to exclude 

historical data based on DICOM Acquisition Date (0008, 0022) and date of admission.  

 

Manufacturers  

The counts of scanner manufacturers across NCCID positive (orange) and control (blue) 

cohorts are displayed in Figure 2.3, where ordering of manufacturers is based on the total 

counts (positive+negative). The total, non-historic, study counts across all manufacturers were 

11,086  (positive=5552, negative=5534) for X-ray and 1746 (positive=634, negative=1112) for 

CT.  

 

The largest suppliers for X-rays were Fujifilm, Siemens and Philips Medical Systems, which 

contributed 2687, 2588 and 2297 studies each. The next largest supplier was Carestream 

Health, with 1261 studies, after which the number of studies steadily declined for the remaining 

8 suppliers. In the case of CT studies, Siemens far outweighed the other 4 providers, accounting 

for 1518 studies.  

 

All X-ray and CT manufacturers had studies for both positive and negative patients. However, 

some manufacturers, such as Siemens, had significantly more studies in one of the two groups. 
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Figure 2.3 Number of COVID-positive and negative (A) X-ray studies by manufacturer and (B) 
CT studies by manufacturer. In both cases the manufacturers are ordered by highest to lowest 
total (positive+negative) number of studies 

 

Portable versus stationary 

 

It was suspected that X-ray data in the NCCID originates from a combination of portable and 

stationary machines. This was partly a consequence of operational restrictions caused by the 

pandemic, where portable scanners were easier to regularly disinfect and could be transported 

to dedicated COVID-19 wards as part of infection control procedures (Kooraki 2020). As such, 

the use of portable machines was expected to be more prevalent in the COVID-positive cohort 

of the NCCID.  

 

The percentage of portable scanners was estimated to investigate the presence of potential 

model confounders caused by e.g., lower image resolution in portable scanners: 

● Studies with references to portable, e.g., CHEST PORTABLE in the Body Part 

Examined attribute (0018, 0015) were counted. Different variations were mapped e.g., 

PORT CHEST to CHEST PORTABLE. Studies that did not include any reference to 

portable in this attribute were assumed to originate from stationary scanners. 

● Counts were then adjusted by taking the unique set of eight models from the above 

step (highlighted in Table B.1) and extrapolating the portable status to all studies 

acquired on these models, under the assumption that operators forgot to indicate 

portability in these cases.  

 

Table 2.1 below displays estimated portable machine counts within the NCCID training data, 

excluding historic images. For positive patients, there were 78 studies labelled with some 

reference to portable in their Body Part Examined DICOM attribute (original counts), accounting 

for approximately 1.4% of X-ray studies. In comparison, the number of portable machines 

indicated by this DICOM attribute accounted for 0.9% of negative patient studies. After 

extrapolating the portable status to all studies taken on the models where portability was 

indicated at least once, the proportion of X-ray studies taken on portable devices increased to 

approximately 14.3% for positive patients and 16.7% for negatives (adjusted counts). 
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scanner type COVID-positive COVID-negative 

 original count adjusted count original count adjusted count 

stationary 5489 (98.6%) 4770 (85.7%) 5490 (99.1%) 4610 (83.3%) 

portable 78 (1.4%) 795 (14.3%) 49 (0.9%) 927 (16.7%) 

Table 2.1 - Estimated number of X-ray studies originating from either stationary or portable 

machines for COVID positive and negative patients. 

 

 

3. Cohort analysis 
 

This section explores the geographic, demographic and temporal coverage of the NCCID 

database. The aim is to measure if/how the NCCID differs from the general COVID-affected 

population and how any disparities might limit the generalisability of AI solutions.   

Geographic Coverage 

 

Figure 3.1 details the number of patients submitted to the NCCID from each NHS England 

region (NHS, Regional teams n.d.) and Wales, split by their confirmed COVID-19 status, as 

measured via a RT-PCR swab test (positive = orange, negative = blue). The regional data was 

aggregated from the 19 sites that had submitted data by the analysis cut-off date. 

 

In addition, Figure 3.2 displays two choropleth maps showing (A) the proportion of COVID-19 

hospital admissions, within each NHS England region and Wales, as reported by Public Health 

England (PHE, coronavirus dashboard n.d.) and (B) the proportion of COVID-19 positive 

patients in the NCCID for the same geographic boundaries. Boundary data was sourced from 

the ONS geoportal (ONS, geography portal n.d.). 

 

The highest proportion of data originated from the East of England region, which accounted for 

2,134 patients in total. However, the vast majority of these (1,862) were negative patients, 

submitted by a single site. The second highest reporting region was the Midlands, with a 

combined total of 1,769 patients in the database. In contrast to the East of England, the vast 

majority of patients submitted in the Midlands were positive cases (1,638), and 1,511 of these 

originated from a single site. 

 

Other regions submitted less data overall, but regions in the South of England (including 

London) and Wales had comparatively even contributions of positive and negative cases. 

Coverage of positive cases in the North of England and Yorkshire was limited, with the North 

East and Yorkshire region having only 33 patients in total. 

 

The NCCID’s geographic coverage of COVID-19 patients was largely concentrated in the 

Midlands, accounting for 54.8% of positive patients in the training data. After the Midlands, the 

East of England, London, South East and South West of England accounted for 41.6% of 

positive patients in total (9.2%, 10.2%, 10.5%, and 11.7%, respectively). Data from Wales, the 
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North West, and the North East and Yorkshire regions collectively made up just 3.6% of NCCID 

positive patients.  

 

This was at odds with COVID-19 hospital admissions (as reported by PHE) which were more 

evenly spread across England and Wales. Specifically, London, the Midlands, North East and 

Yorkshire and the North West accounted for approximately 15-18% of admissions each. Wales, 

the South East, East of England and South West accounted for smaller proportions of 10.3%, 

9.8%, 7.0% and 5.1% of admissions, respectively. 

 

 

 
Figure 3.1 NCCID positive and negative patients submitted by region, sorted by total contribution. 

 

 

Figure 3.2 Comparison of national COVID-19 admissions at a regional level with NCCID positive 

cases 
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Demographic Coverage 

The purpose of this section is to establish how generally representative the NCCID cohort is of 

the population hospitalised due to COVID-19 and whether good representation carries through 

to the most severe outcomes (through the mortality variable). Understanding the underlying 

causes of any demographic differences in COVID-19 prevalence or outcomes is beyond the 

scope of this paper.  

 

Subsequent to applying the cleaning and merging pipeline (see clinical data methods section), 

demographic data was available for sex=85%, ethnicity=69%, and age=86% of patients in the 

NCCID (n=3,168). Distributions of these categories within the NCCID were compared against 

reference datasets, where available, or COVID-related statistics reported by the International 

Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) and the general UK 

population reported by the 2011 national census. Equivalent comparative data was not publicly 

available for Wales, as such, data from Welsh health boards is excluded from the subsequent 

demographic results. Comparisons were made for both admissions and mortality rates where 

the total sample size of patients with recorded deaths was n=694. In all subsequent comparison 

plots the NCCID is indicated using blue and comparative datasets are displayed in orange and 

green.  

 

The NCCID is a subsample of the population that is hospitalised due to COVID-19, and a 

dynamic resource that will continue to grow over the coming months. It is sensible to assume 

that the sample of NCCID data being scrutinised in this paper will deviate from the final 

population of both the NCCID and general COVID-effected population. To account for some of 

this sampling error in the below comparisons, we applied a bootstrap method to generate 

confidence intervals for the NCCID data. The plotted proportions of a given category, e.g., 

percentage of patients aged 18-64, represent the median percentage across 1000 bootstrap 

samples. Similarly, error bars on the subsequent plots represent the 95% confidence interval 

(ci) of measurements across the bootstrap samples. In each case, the sample size of the 

bootstrapped distributions was equal to the size of the relevant original NCCID sample (i.e., if 

the original NCCID sample had n=3000 patients with sex data available then the bootstrapped 

samples each contained n=3000 entries). 

 

Sex 

Figure 3.3(A) compares the split of male (n=1,797) and female (n=1,295) positive cases within 

the NCCID to that of the general UK population via the 2011 national census (ONS, Census 

2011 n.d.) n=63,182,000, and the COVID-effected population reported by ISARIC (Docherty 

2020), n=20,113. At 58% male to 42% female (ci = 56-60%male:40-44%female), the NCCID 

was more closely aligned to the 60%:40% ratio reported in COVID-19 admissions than the 

51%:49% split of the general UK population.  

 

Figure 3.3(B) compares the male:female mortality rates within the NCCID cohort (n=673) 

against those reported by NHSE (n=32,483), up to the cut-off date, 29/10/2020 (NHS, COVID-

19 Daily Deaths n.d.). The NHSE mortality data exhibited a male to female ratio of 61%:39%. 

This fell within the 95% confidence interval for the NCCID, 60-67%:33-40%. 
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Figure 3.3 Comparison of sex split within: (A) the NCCID COVID-19 patients, the general UK 

population (as reported in the 2011 census) and COVID-19 hospital admissions (reported by 

ISARIC); (B) NCCID recorded deaths and NHS England COVID-19 hospital mortality data. 

Ethnicity 

Figure 3.4(A) compares the ethnicity proportions (Asian, Black, Other, White) of NCCID 

patients, n=2854, against the general UK population as reported in the 2011 UK census, 

n=63,182,000, (ONS, Census 2011 n.d.) and the COVID-affected population reported by 

ISARIC, n=30,693 (Harrison 2020).  

 

The White group accounted for 83% of individuals in both the census and ISARIC populations. 

In contrast, only 72% (ci = 70-73%) of NCCID COVID-positive patients were from White ethnic 

backgrounds. This was counterbalanced by higher proportions of Asian (median=14%, ci=13-
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16%) and Black (median=9%, ci=8-10%) people, than observed in either the Census (Asian = 

9%, Black = 3%) or ISARIC (Asian = 5%, Black = 4%). In addition, ISARIC reported higher 

proportions of patients from Other minority backgrounds (8%) than in NCCID (median=5%, 

ci=4-6%), whilst the census data indicated that approximately 4% of the UK population belonged 

to this group.   

 

Figure 3.4(B) compares the ethnicity proportions within the subset of NCCID patients that have 

recorded deaths and ethnicity data (n=633) to the ethnicity proportions reported by NHSE for 

COVID-19 in-hospital deaths in England (NHS, COVID-19 Daily Deaths n.d.), up to the reporting 

cut-off date (n=29,610).  

 

Similar to the admissions data above, the NCCID mortality data was under-representative of 

the White ethnic group (median=78% ci=74-81%), and over-representative of the Asian 

(median=11%, ci=9-13%) and Black (median=8%, ci=6-10%) groups, compared to mortality 

rates in the broader COVID-population (White=85%, Asian=8%, Black=5%).  
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Figure 3.4 Comparison of ethnicity proportions within (A) the NCCID COVID-19 patients, the UK 

population (as reported in the 2011 national census) and COVID-19 hospital admissions 

(reported by ISARIC); (B) the NCCID recorded deaths and NHS England COVID-19 hospital 

mortality data. 

 

Age 

 

Figure 3.5 compares the percentage of NCCID patients within a set of age bands (0-5, 6-17, 

18-64, 65-85, 85+) to the percentages for COVID-19 hospital admissions across England, as 

reported by Public Health England (PHE, coronavirus dashboard n.d.). The comparisons are 

shown at both the national level as well as within each NHS England region. 

 

As reflected in the geographic analysis, regions in the North of England had insufficient data to 

make meaningful comparisons. Specifically, data availability was below the suppression 

threshold in all age groups for the North East and Yorkshire and most age groups for the North 

West. The error bars for the remaining age groups in the North West, 18-64, and 65-85, 

spanned 30-34 percentage points respectively.  

 

Amongst the regions that had enough data to support comparisons, most showed no statistically 

significant differences between the NCCID and PHE. For London (nPHE = 25,804, nNCCID = 353) 

and the South East (nPHE = 15,690, nNCCID = 335) PHE data fell within the NCCID confidence 

intervals for all age-groups. The two data sets were closely aligned in the South West (nPHE= 

26,876, nNCCID= 463), where only the 18-64 and 65-85 age bands fell outside the confidence 

interval by just 1% each. Similarly, in the East of England (nPHE= 11,252, nNCCID= 272), the PHE 

data for the 18-64 age group was again just 1% outside the upper bound for the NCCID, and 

all other age bands fell within the confidence interval.  

 

The single exception was the Midlands, which exhibited a large difference of 18% (ci=15-20%) 

between PHE (n=26,661) records and the NCCID (n=1638) for the 18-64 age band. This was 

counterbalanced by smaller proportions of over 65s than observed by PHE. These deviations 

can be reasonably attributed to the fact that data was collected by a single site, located in an 

urban area. Furthermore, given that the Midlands contributed a substantial volume of positive 
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patients to the NCCID, this overrepresentation of 18-64 year olds extended to the national level 

comparison (medianNCCID= 42%, ci = 40-43%, nNCCID= 3088, medianPHE= 33.7%, nPHE= 

137,757).  

 

The NCCID had low numbers of patients in the 0-5 group at a national level, and low numbers 

for the 6-17 group in all geographies. 

 

  

  

  

  

Figure 3.5 Comparison of age proportions between COVID-19 hospital admissions (reported by 

PHE) and NCCID positive patients for (A) England, (B) East of England, (C) London, (D) 

Midlands, (E) North East and Yorkshire, (F) North West (G) South East and (H) South West 
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Figure 3.6 compares age breakdown of NCCID patients with recorded deaths to age 

breakdowns of in-hospital COVID-related deaths reported by NHSE (NHS, COVID-19 Daily 

Deaths n.d.). A different set of age bands were used to align to the NHSE data: 0 - 19, 20 - 39, 

40 - 59, 60- 79, 80+.  

 

Although the age bands used by NHSE (n=32,484) are different to those used in the admissions 

comparisons above, we can see a general knock-on effect, where over-representation of 

younger people in the dataset resulted in a larger percentage of 40-59 year olds with recorded 

deaths in the NCCID (median=10%, ci=8-13%, NHSE=7%).  

 

Figure 3.6 Comparison of age distributions between recorded COVID-19 deaths (as reported by 
NHSE) and the NCCID (England only). 

 

Temporal coverage  

This section investigates the approximate hospital admission dates of the NCCID patients to 

identify how well the NCCID has captured patients across the course of the pandemic. The total 

number of NCCID patients with a positive RT-PCR swab test occurring each week since 1 

March 2020 was compared to the total number of confirmed COVID-19 patients admitted to 

hospital each week for the same period according to PHE data (PHE, coronavirus dashboard 

n.d.). This analysis was performed at a national level, including data across the whole of 

England and Wales. Given that there were (at the time of study) no NCCID sites in Scotland 

and Northern Ireland, data from these nations was omitted from PHE admissions calculations. 

The two time series are displayed in Figure 3.7. 

 

The peak of both datasets was aligned, occurring on 5 April, with a gradual decrease in numbers 

until the summer period, July to September 2020. From September onwards the national 

COVID-19 admissions began to rise again, however this was not (up to the analysis cut-off 

29/10/20) reflected by a rise in positive patients admitted into the NCCID database. 
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Figure 3.7 Comparison of COVID-19 admissions to NCCID positive cases by week 
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Discussion 

Findings of data completeness analysis 
Clinical information is an important complement to the chest images. Gaps in the clinical 

information can deprive researchers of contextual data on the patient’s health for inclusion in 

analyses and ML models. For instance, incompleteness of the FiO2 data may hinder the 

development of mortality or deterioration risk scores that take this field into account. 

Analogously, since clinical information may be used to control for confounders, missing entries 

can reduce a researcher’s ability to draw firm conclusions from the data. 

 

The overall availability of clinical data varies by each field in the dataset. Key dates including 

when the RT-PCR swab was taken and when a patient was admitted to hospital are well 

covered, and can provide useful insight into the timelines of image acquisition during the patient 

care pathway (e.g., Figures 2.1 and 2.2). 

 

The occurrence of pre-existing conditions is also relatively well characterised, particularly for 

cardiovascular and kidney diseases. This information should allow data users to account for the 

effects of comorbidities in their analyses, which have been shown to play a significant role in 

disease outcomes for COVID-19 patients (Guan 2020, Wang 2020, de Lucena 2020, Petrilli 

2020).  

 

Information relating to the patients’ conditions upon hospital admission (e.g., blood pressure 

and white-cell count) were the least well reported, with a mean of 65% null values in this 

category compared to 49% for dates, 53% for medical history, and 56% for COVID-19 fields. 

Data users should also be aware that the reporting units for these metrics may vary between 

sites, making it difficult to disambiguate overlapping values, and causing artificially high 

variances for some metrics (see Table C.1 of Appendix). To remedy this, we plan to make site-

specific unit information available to users once collated, even though it is unlikely that all 

participating sites will be able to provide such information. It should also be noted that some of 

the missing data originates from the fact that specific hospitals do not commonly measure all of 

the listed metrics. For example, several sites report that they do not routinely measure Troponin 

T on admission. Furthermore, some fields such as O2 saturation are obsolete and no longer 

requested in the data collection spreadsheet. 

 

Overall, the causes of missing information in the NCCID are difficult to identify because of their 

number and diversity. It is nevertheless known that the following factors have contributed to 

incompleteness of clinical data across the different categories: 

● Staff at data-collection sites may have been unable to fill in certain fields due to time 

pressure and the emergency situation. 

● Depending on the site, data has been gathered by staff (research nurses, radiologists, 

etc.,) with access to different clinical information systems and records. Therefore, the 

person collecting and uploading data to the NCCID may have been unable to get hold 

of specific clinical information. 

● Certain fields could only be present in a relevant subset of patients, and were otherwise 

left empty. For example, a few fields referred to secondary RT-PCR swab tests (date 

of acquisition, date of result, result) and secondary chest X-rays (date, severity), which 

were only required, and consequently filled in for some patients. Additionally, the 

reporting of date of death, and stage of chronic kidney disease were much higher when 

selecting the subset of patients for whom death or presence of kidney disease had been 

reported. Similar effects are likely to be the underlying cause of the relatively high 

occurrence of missing values in COVID-19 fields such as ITU admission, intubation and 

severity of disease (BSTI n.d.) in secondary images. 
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● Information such as medical history may not have been provided by the patient, for 

example because they were incapacitated. 

● Data may not have been gathered as part of routine clinical practice, see the above 

remarks. 

 

Plans are in place to establish a link between the NCCID and ISARIC-4C (ISARIC n.d.) that will 

automatically populate clinical information for patients included in both datasets. This link aims 

to improve the availability of clinical data in the NCCID whilst relieving the burden on clinical 

staff to provide additional information. 

 

Findings of image characteristics analysis 

Historic vs acute images 

The number of total, acute or historic image studies varied across COVID-positive patients. In 

general, patients were less likely to have historic CT data available (median=0 studies), 

compared to X-ray (median=1 study). This is likely driven by the general disparities in availability 

between the two modalities, given that X-rays are faster and cheaper to acquire, and are 

therefore more frequently used in the UK clinical setting. Investigators that wish to incorporate 

historical data as a means of accounting for pre-existing pathologies or understanding 

longitudinal risk factors should possibly focus on X-ray studies.  

 

Both X-ray and CT had a median of 1 study per patient, but there were many more X-ray studies 

available overall (approximately 12,000 compared to 1,500). It is sensible that researchers 

building diagnostic tools should focus on X-ray data, as these are also likely to be most useful 

in the UK clinical setting. However, given that CTs are likely to be used in the more 

severe/difficult cases, those wishing to analyse disease severity/prognosis can utilise CT data. 

One advantage of the CT data is that it provides much richer imaging information, encoded into 

a 3D volume where different view planes and slices through the relevant anatomy can be 

probed. In comparison, X-ray image resolution tends to be higher but only a single projection is 

possible. 

 

The total number of MRI studies is currently too low (17 studies) to be useful in the machine 

learning setting. This is likely to remain true even as the database grows, as low numbers are 

caused by the rarer adoption of MRI in the treatment of COVID-19 patients, which in turn, limits 

the clinical relevance of this modality.  

Acquisition timing 

Analysis of image timings with respect to patient PCR-RT swab dates and onset of symptom 

dates revealed that X-rays were predominantly used at the early stages of a patient’s care 

pathway. Interestingly we identified the median offset between swab date and X-ray was -1 day, 

which suggests that X-rays were commonly being used as diagnostic aids. This is likely a result 

of limited testing capacity during the earlier stages of the pandemic. In contrast, CT images 

were generally used later in the care pathway, with greater variance between patients on the 

specific timing of scans. These findings reflect BSTI clinical guidelines for the UK, which 

stipulated that CT should be used sparingly as a diagnostic tool, to preserve capacity for normal 

operation (BSTI n.d.). 

 

Concentrating on the response to COVID-19 in the UK and the NCCID, data users may want to 

focus on building diagnostic tools using X-ray images, and could potentially use CT scans to 

study disease severity, progression and prognosis. It remains to be seen whether improved 
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testing capacity or other factors will modify the timings for either modality in the later stages of 

the pandemic, and therefore change the technological needs of the response to COVID-19 in 

the UK. 

Scanner types 

X-ray and CT images present in the NCCID were captured on a range of systems from multiple 

manufacturers, providing variability in the type of images available. This was true for both 

positive and negative patients, although the ratio of positive to negative varied somewhat by 

manufacturer. Users of NCCID should take into account the relative frequencies of imaging 

across the different manufacturers (and models) to minimise unwanted bias. For instance, 

Siemens is the dominant manufacturer for CT, but large amounts of X-ray data was available 

for a number of providers, which could help produce generalisable models.  

 

Due to limitations imposed by the pandemic, it was suspected that imaging data in the NCCID 

would originate from a combination of portable and stationary X-ray machines. Portable 

machines are easier to quickly sanitise between sessions and could more readily be moved to 

quarantine wards as part of hospital infection control measures, making it possible that there 

would be a higher prevalence of such machines in the patient cohort (Kooraki 2020). Exploration 

of the DICOM headers initially identified a small proportion of positive scans (1.4%) acquired 

on portable devices, with just over half of this this percentage negative scans (0.9%). This was 

then extended to all studies taken on the same scanner models, such that 14.3% of positive X-

rays and 16.7% of negative X-rays were estimated to come from portable machines. These 

preliminary findings do not suggest a large imbalance in the ratio of portable and non-portable 

scanners between the positive and control cohorts. However, in lieu of a more definitive method 

for identifying portable machines from DICOM information we estimated prevalence based on 

notes in the Body Part Examined attribute. It is plausible that this method under-estimates the 

true number of portable scanners, as such, further investigation of this issue is recommended. 

Examining a sample of images from the various devices may provide a more robust measure 

of portability for data users but the above analysis serves to highlight this aspect of the NCCID 

data.  

 

Awareness of potential model confounders is crucial to ensure efficacy of ML models, 

particularly with respect to how performance generalises beyond the training data. For instance, 

significant disparities in the prevalence of certain equipment types between the positive and 

control cohorts could produce an ML model that successfully differentiates the two groups. 

However, is it conceivable that the decision boundaries in such a model are based on attributes 

of the medical imaging machinery (e.g., resolution, projection etc.) rather than disease related 

attributes. Data users should take care to balance their training samples, ensuring a good 

variety of scanner types within both cohorts, to build models that generalise well to the variety 

of clinical imaging equipment used in the UK. Indeed, there are many additional confounders to 

be aware of including but not limited to:  

 

● Digital radiography (DR) vs computed radiography (CR) which are different techniques 

for digitising the X-ray signal, either directly from the panel (DR) or by scanning 

cassette-based phosphor storage plates into digital format (CR) (Table B.3 in Appendix 

B). 

● Photometric interpretation, which refers to the image contrast such that 

MONOCHROME1 scans should be inverted to match MONOCHROME2 scans or vice 

versa (Table B.4 in Appendix B).  

● View positions, e.g., Anterior-Posterior (AP), Posterior-Anterior (PA), Lateral (LL), etc., 

(Table B.5 in Appendix B).  
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By collecting data from multiple Trusts and Health Boards across the UK, the NCCID strives to 

provide a training database that can cover many of these confounding factors, and improve the 

efficacy of any resulting machine learning models in the clinical setting. 

 

Findings of cohort analysis 

Geographic coverage 

At time of analysis, the NCCID was not evenly sampled across the participating regions. We 

observed that COVID-19 positive-patients in the database largely originated from the Midlands, 

and very few patients originated from Wales and Northern England (Figure 3.1). 

 

Several factors may underpin these disparities, including: 1) the number of NCCID sites within 

each region 2) the size and population coverage at each hospital site; 3) the number of positive 

COVID-19 cases recorded at each site; 4) the duration of time the site has been contributing to 

the NCCID for; and 5) the availability of research coordinators and PACS teams to upload all 

cases. Reason 3, is unlikely to be the driving factor, as indicated by Figure 3.2 in which PHE 

reported a more equal distribution of COVID-19 hospital admissions.  

 

Low submissions from the North of England reflect the relatively small number of participating 

NCCID sites in these regions. The fact that the uptake of the programme has been uneven 

across different regions can be attributed to factors such as the reach of our professional 

network, constrained availability of staff to support our database, and variable responsiveness 

of local sites to national initiatives. 

 

Regional disparities in the number of positive and negative cases submitted are more likely to 

be driven by factor 5, the capacity of PACS teams. The guidance given to hospital sites was to 

submit all positive cases with images taken in the acute setting, and a smaller sample of 

negative cases with acute imaging (approximately 100 per week if available). Due to the request 

for accompanying clinical data in positive cases, it is much easier for sites to submit negative 

cases, for whom only the images and a small number of clinical data points are required. 

 

Demographic coverage 

The NCCID aims to be a UK-wide initiative assembling a database that is as representative as 

possible of the entire population. Nevertheless, the present geographical coverage of the 

NCCID is partially skewed, which, if additional data curation is not applied rigorously, may 

produce biases in ML models trained on this resource. For example, issues may occur because 

of the incorrect representation of specific demographic groups and clinical risk factors such as 

pre-existing conditions (Docherty 2020, Pollán 2020). Indeed, we observed some of these 

downstream effects in the population analysis, particularly in the regional proportions of age-

groups within the NCCID, which deviated most significantly from PHE data in the Midlands and 

Northern England. These effects accumulated in a general over-representation of younger adult 

patients compared to more elderly patients in the NCCID for both admissions and mortality. 

 

In addition, the NCCID contains very low numbers of patients in the 0-5 and 6-17 age groups, 

partly because of the active omission of under-11s due to small counts, where the underlying 

cause is the low prevalence of symptomatic COVID-19 in children (Ludvigsson 2020, Dong 

2020). Reduced availability of data for under-18s limits the use of the NCCID to adult 

diagnostic/prognostic models for the time being. This may change as the database grows, 

particularly as the exclusion of data from under-11s will be stopped once sufficiently high 

numbers are available. 
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The ethnic composition of the NCCID deviated from the 2011 UK census data. Whilst 

establishing the causes of this discrepancy would require additional investigation, the over-

representation of Asian and Black groups for the admission data may, to some extent, be due 

to differences in the incidence of COVID-19. As a matter of fact, several studies have indicated 

higher corrected hospitalisation odds ratios for minority ethnic groups compared to people of 

white backgrounds (Martin 2020, Sze 2020, Harrison 2020, Docherty 2020). The reliability of 

the comparison between the NCCID and the census, however, is diminished by the fact that the 

latter is a decade old, so that more recent estimates (including the imminent 2021 national 

census) could exhibit a significant demographic shift in the benchmark for the UK population as 

a whole. 

 

The comparison with ISARIC data was crucial for understanding how representative the NCCID 

is of the COVID-19 patient population that it is sampled from. Again, the NCCID displayed higher 

percentages of Asian and Black patients and lower percentages of White patients than the 

hospital admissions data from ISARIC. A similar effect was seen in the comparison with 

mortality data from NHSE. 

 

The reasons why the NCCID diverges from other datasets in relation to ethnicity are not fully 

understood. Nevertheless, we believe that the most likely issue is the uneven geographical 

representation of the NCCID. This would be consistent with the fact that the Asian and Black 

groups are overrepresented, and the White group is underrepresented in every comparison of 

the NCCID with other nationwide datasets (UK census, NHSE and ISARIC). It is clear from the 

literature that the distribution of ethnicities in COVID related hospital admissions varies 

considerably between different regions (PHE 2020, Pollán 2020). For example, Sapey et al. 

(Sapey 2020), which looked specifically at COVID positive hospital admissions from around 

Birmingham saw a much higher proportion (18.5%) of patients of South Asian ethnicity. Apea 

et al. (Apea 2021), which carried out a similar analysis looking at COVID positive hospital 

admissions from around East London, saw a much higher proportion of patients of both South 

Asian and Black ethnicity (31% and 20% respectively). In an analogous way, the fact that a 

large fraction of the data in the NCCID has been collected in an urban area of the Midlands may 

have increased the representation of Asian and Black groups, and reduced that of the White 

group. 

 

The male to female ratio of NCCID patients was found to closely align with the 60%:40% split 

reported for COVID-patients by ISARIC. This is a departure from the approximately 50%:50% 

split expected in the general population, as measured by the 2011 census data (where sex 

ratios are less likely to significantly vary over time, making the age of the census less of a 

limiting factor), and reflects findings of other COVID-19 studies (Gebhard 2020, Klein 2020, 

Petrilli 2020). A similar increased hazard ratio was observed in the male to female mortality 

rates, where the NCCID was well aligned to NHSE in hospital deaths data. Data users should 

be aware that there is a class imbalance (as is common in clinical studies) but unlikely to be 

severe enough to prevent the training of models that will generalise.  

 

Overall, data users should keep in mind that, owing to the variable incidence of COVID-19, the 

NCCID is expected to have slightly different demographic composition to the general 

population. Several studies have reported different COVID-19 prevalence rates between men 

and women, ethnic groups and age groups (PHE 2020, Docherty 2020, Petrilli 2020, Gebhard 

2020, Klein 2020, Sapey 2020, Sze 2020, Harrison 2020). As more sites are on-boarded and 

the database grows, we expect the composition of the NCCID to more closely reflect the 

populations reported by e.g., PHE, ISARIC, and NHSE. For the meantime, data users should 

be aware of these differences, and how underrepresentation of certain groups might affect 

model performance for those individuals. Whilst the risk of model unfairness relating to 
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demographic disparities is less obvious in medical imaging than for other ML applications (e.g., 

facial recognition for law enforcement (Fussey 2019)), it is probable that disease manifestation 

differs across age groups and ethnicities, or that the prevalence of comorbidities varies across 

ethnicities and between urban and non-urban populations. Therefore, these characteristics may 

still have negative effects on the fairness of ML models. Furthermore, disease-related class 

imbalances play a relevant role in quantifying algorithmic bias, where fairness definitions based 

on pure demographic parity (Begley 2020) (Mehrabi 2019) may provide misleading measures 

of success and failure in this problem space, unless corrected to the relevant ratios.  

 

Temporal coverage 

The low numbers of positive cases uploaded to the NCCID training dataset since September 

2020 suggest that the data capture pipelines were (up to the analysis cut-off in October) still 

processing the large backlog of patients from the first wave of the pandemic. Users should note 

that ML models built from the training data will capture the characteristics of the first peak, and 

may not generalise completely to patients admitted during the subsequent winter peaks, 

particularly in view of the emergence of a new strain of SARS-CoV-2, lineage B.1.1.7 (Andrew 

Rambaut 2020). Failures to generalise over time could arise from several factors, including: 

 

● potential changes to disease manifestation associated with the new strain of SARS-

CoV-2 that has dominated prevalence in the UK starting from December 2020 (Kirby 

2021, Volz 2021), though such effects are speculative at the time of publishing; 

● the prevalence of flu-related comorbidities, expected to be more common in winter 

months; 

● any changes in the use of imaging for diagnostic/prognostic purposes between the early 

stages and later stages of the pandemic; 

● changes to treatment policies over time (such as the introduction of dexamethasone) 

and how these affect disease severity; 

● the roll-out of the COVID-19 vaccination programme, which in the UK has begun on 8 

December 2020 (BBC 2020), and has delivered almost 18 million first doses (GOV 

2020) at the time of writing; 

● changes to non-pharmaceutical interventions (behavioural restrictions like lockdowns) 

and the down-stream effects these have on which members of the population are 

exposed to the virus. 

 

It is noteworthy that COVID-19 admissions for the general population peaked at approximately 

20,000 per week (for the period and regions studied in this article), whilst the peak of positive 

patients in the NCCID was orders of magnitude lower, at just under 400. Any statistics or models 

derived from the NCCID database are therefore likely to suffer from sampling error, which 

should be considered when reporting such analyses. 

 

 

Next Steps 
The NCCID has made significant progress within the space of a few months to collect a sizable 

dataset to support research into COVID-19. However, there are a number of next steps, 

summarised below, which the NCCID initiative aims to implement in the short-to-medium term 

in order to better support data users: 

1. We will re-engage with existing hospital sites to understand the reasons behind a 

decline in submission of recent cases and implement mitigating actions (see point 5). 
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2. We will engage new sites across the UK, focusing on rural and other underrepresented 

geographies, such as the North of England, Wales, Northern Ireland (point 4) and 

Scotland (point 3) to expand the geographic and demographic coverage of the NCCID. 

3. We will implement a linkage with the Scottish National PACS and Safe Haven Network 

and  

4. In Northern Ireland we will start by establishing a linkage with the Northern Trust PACS 

team. 

5. We will implement a connection with the ISARIC-4C (ISARIC n.d.) dataset to improve 

the completeness of the clinical data fields while reducing the burden on hospital staff, 

since the data is linked across as opposed to collected afresh. It is hoped that lighter 

data-gathering processes will attract new sites, and motivate existing ones to contribute 

even more to the database. 

6. We will carry out investigative work beyond clinical variables and metadata into the 

quality of the images themselves so as to assess their utility for algorithmic 

development. 

7. We will implement automation pilots in a selection of sites to establish a continuous 

feed of images for positive and negative patients. Clinical data for these sites will be 

provided through the ISARIC-4C linkage. 

Conclusion 

This paper aimed to provide further detail on the content of the NCCID’s training dataset, in 

order to support existing data users with their research efforts, raise awareness for the NCCID 

as a valuable resource that others may want to access, and inform both existing and potential 

data users of improvements we aim to make in future. The decision to publish this paper now, 

rather than after the improvements have been made, reflects the iterative nature of this 

particular initiative, and the urgency presented by the pandemic to ensure information is made 

available as quickly, transparently and securely as possible. The NCCID initiative has collected 

a large volume of imaging and clinical data within a short period of time; this has been achieved 

through the expertise of NCCID partners, lean agile delivery methods, and the prioritisation of 

COVID-19 response work. However, there are a number of considerations in the NCCID training 

dataset to be aware of, namely: 1) the limitations of its geographic and, consequently, 

demographic representation; 2) issues with clinical data quality and completeness. We have 

identified a number of improvements to address these considerations, and will continue to 

expand and refine the quality of the NCCID training dataset as an important tool in supporting 

the global response to COVID-19.  

 

Supplementary resources 

Additional information on the NCCID, including an overview of participating sites, existing data 
processors, live updates on the size of the training data and instructions for requesting access 
are all available through the main webpage. 

More information on guidelines and schemas for the clinical data are available through RSNFT, 
further detail is also provided through the HDRUK portal. The open-source data cleaning 
pipeline can be found on NHSX github. 

The codebase for the data warehouse is also open source and available through the NHSX 
github. 
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Appendix 

A. Glossary 
 

Imaging study - a study is either an X-ray, CT or MRI examination. Studies may contain 

multiple images (series) if i.e., several projections, body positions, fields of view, contrast 

types etc., were acquired during the appointment, but all of these individual images (image 

volumes for 3D modalities) are all amalgamated to a single data point in time - a study. Each 

study is assigned a unique accession number on PACS. 

 

Site Definition - when referring to a ‘site’ in this paper we are talking about a Submitting 

Centre for NCCID.  This is a Trust in England, or a Health Board in Wales.  A single Trust or a 

Health Board can contain many different contributing hospital sites. 

 

Sites contributing as of 29th October 2020: 
 

● Ashford and St Peter’s Hospitals NHS Foundation Trust 

● Betsi Cadwaladr University Health Board 

● Brighton and Sussex University Hospitals NHS Trust 

● Cambridge University Hospitals NHS Foundation Trust 

● Cwm Taf Morgannwg University Health Board 

● George Eliot Hospital NHS Trust 

● Hampshire Hospitals NHS Foundation Trust 

● Imperial College Healthcare NHS Trust 

● Liverpool Heart and Chest Hospital NHS Foundation Trust 
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● London North West University Healthcare NHS Trust 

● Norfolk and Norwich University Hospitals NHS Foundation Trust 

● Oxford University Hospitals NHS Foundation Trust 

● Royal Cornwall Hospitals NHS Trust 

● Royal Surrey NHS Foundation Trust 

● Royal United Hospitals Bath NHS Foundation Trust 

● Sandwell and West Birmingham NHS Trust 

● Sheffield Children’s NHS Foundation Trust 

● Somerset NHS Foundation Trust 

● West Suffolk NHS Foundation Trust 

 

The NCCID are continually onboarding new sites, a up to date list of submitters is available on 

the NCCID information page1 

 
 

B. Scanner and image types 
 

Models 

The full list of model types for X-ray and CT across all imaging available in the dataset are 

included in Tables B.1 and B.2 in the Appendix where counts below 100, have been suppressed 

for brevity but all the model names have been listed below.  

 
A single model type accounts for all X-ray studies from the largest supplier: Siemens - fluorospot 

compact FD. For the second largest X-ray supplier, Fujifilm, the model attribute was universally 

missing, making it hard to determine if single or multiple models are present. Most other X-ray 

manufacturers had multiple models available in the dataset. In the case of CT studies, the 

dominant manufacturer (Siemens) was split across ten different models, two of which had more 

than 500 studies each.  

 
Table B.1 - Model Manufacturer Name (X-ray). Machines that are suspected to be portable have 

been highlighted in bold red. 

 

Manufacturer - Model (X-ray) Studies 

siemens - fluorospot compact fd 5093 

fujifilm corporation - missing 3560 

philips medical systems - digitaldiagnost 2414 

carestream health - drx-revolution 1050 

agfa - 3543eze 719 

philips medical systems - mobilediagnost wdr 538 

ge healthcare - optima xr220 526 

ge healthcare - discovery xr656 hd 277 

 
1 https://nhsx.github.io/covid-chest-imaging-database/index.html 
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philips medical systems - digitaldiagnost c90 249 

kodak - cr850a 224 

samsung electronics - gm85 211 

carestream health - cr975/cr0975 188 

carestream health - drx-evolution 179 

samsung electronics - gr40cw 174 

ge healthcare - definium 6000 168 

varian - varian_4336 151 

agfa - cr 35 143 

kodak - dr 7500 132 

agfa - cr30-x 117 

agfa - cr 85 115 

ge healthcare - thunder platform 110 

varian - varian_4343r 110 

 

For counts of studies below 100, we also have X-ray examples from:  

agfa - cr15-x, dx-g, dxd30_wireless, dxd40_1000c, pixium_4343e_csi 

canon inc. - axiom-multix m, cxdi, cxdi control software ne 

carestream health - classic cr, cr0850a, drx-1, elite cr 

drgem - gxr system 

ge healthcare - discovery xr656, geode platform, global 1 platform, wdr1 

kodak - classic cr, cr850, cr950, cr975/cr0975, drx-evolution, elite cr 

konica minolta - 0862, cs-7 

philips medical systems - pcr eleva 

samsung electronics - dgr-c26u2b/us, dgr-ma1ba1/wr, dgr2aaa1cae21w, gc85a, gm85basic, 

sdr-agc80/com 

siemens - siemens fd-x 

toshiba_mec - tfd-3000a1 

 

Table B.2 - Model Manufacturer Name (CT) 

 

Manufacturer - Model (CT) Studies 

siemens - somatom definition as 624 

siemens - somatom definition flash 568 

siemens - somatom definition as+ 412 

siemens - somatom drive 200 

siemens - somatom definition edge  141 

siemens - somatom perspective 109 
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siemens - somatom force 103 

 

For counts of studies below 100, we also have CT examples from: 

canon medical systems - aquilion one, aquilion prime sp 

ge medical systems - discovery 710, discovery ct750 hd, lightspeed16, lightspeed vct, optima 

ct660, revolution ct, revolution evo 

philips medical systems - brilliance 64, ict 256, ingenuity core 128, ingenuity ct 

siemens - emotion 16 (2007), sensation 64, somatom edge plus, somatom go.top, symbia 

intevo 16 

toshiba - aquilion, aquilion one, aquilion prime, aquilion prime sp 

 

X-ray format 

 
Table B.3 The number of X-ray studies in Digital Radiography (DX) and Computed Radiography 
(CR) formats as identified from the Modality DICOM attribute (0008, 0060) for COVID positive and 
negative patients. 
 

Modality (X-ray Studies) Positive Negative 

DX (Digital Radiography) 5026 4056 

CR (Computed Radiography) 6699 1476 

 

Photometric interpretation 

 
Table B.4. The number of MONOCHROME1 and MONOCHROME2 X-ray studies as identified by the 
Photometric Interpretation attribute (0028, 0004) for COVID positive and negative patients. Images 
identified as MONOCHROME1 will need to be inverted to be aligned with those with 
MONOCHROME2. 
 

Photometric Interpretation (X-ray Studies) Positive Negative 

MONOCHROME2 8254 2562 

MONOCHROME1 3478 2971 

 

View position 

 
Table B.5 The number of X-ray studies by View Position attribute (0018, 5101) for COVID positive 
and negative patients e.g., Anterior-Posterior (AP), Posterior-Anterior (PA), Lateral (LL). 

View Position (X-ray Studies) Positive Negative 

Missing            6662 2692 

AP 3076 1598 

PA 2003 1394 

OTHER 10 < 7 
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C. Clinical Data 
 

 
Table C.1 shows the summary statistics for the clinical admission metric (as of 29 October 2020). 
suppression of low counts is indicated by an asterisk (*). 
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