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ABSTRACT 

Pituitary microadenoma (PM) is often difficult to detect by MR imaging alone. We employed a computer-aided PM 

diagnosis (PM-CAD) system based on deep learning to assist radiologists in clinical workflow. We enrolled 1,228 

participants and stratified into 3 non-overlapping cohorts for training, validation and testing purposes. Our PM-CAD 

system outperformed 6 existing established convolutional neural network models for detection of PM. In test dataset, 

diagnostic accuracy of PM-CAD system was comparable to radiologists with > 10 years of professional expertise 

(94% versus 95%). The diagnostic accuracy in internal and external dataset was 94% and 90%, respectively. 

Importantly, PM-CAD system detected the presence of PM that had been previously misdiagnosed by radiologists. 

This is the first report showing that PM-CAD system is a viable tool for detecting PM. Our results suggest that PM-

CAD system is applicable to radiology departments, especially in primary health care institutions. 
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INTRODUCTION 

Prevalence of pituitary adenomas (PA) ranges from 1 in 865 to 1 in 2688 adults. PA may hypersecrete hormones or 

cause mass effects, which result in various clinical symptoms, including infertility, diabetes insipidus and 

hypopituitarism [1]. The end of the one-child policy and social shifts in China have resulted in the increasing demand 

for fertility treatments. Pituitary tumors, although usually benign, can inhibit the production of follicle-stimulating 

hormone (FSH) or luteinizing hormone (LH) and cause infertility. Functional PA have been found in many infertile 

patients, the most common is prolactinoma. Approximately 50% of all pituitary adenomas and 90% of prolactinomas 

are microadenomas, that rarely increase in size[2, 3]. Timely diagnosis and follow-up of pituitary microadenoma (PM), 

especially functional PM, is particularly important [4]. Due to its relatively small in size and variable anatomical 

structure among individuals, the diagnosis of PM is not easy by applying the technique of magnetic resonance 

imaging (MRI) alone [1, 5]. Manual analysis of MRI data is usually difficult, biased and time-consuming, and the 

diagnostic accuracy is closely related to the radiologist's experience. Therefore, MRI-based diagnosis for PM needs 

to be improved [6, 7]. The increase in the demand for radiologist is an inevitable trend, but the supply of radiologist 

has not increased proportionally [8]. A shortage of radiologists restricts the continuity in radiology services and causes 

a delay in diagnosis, compromising the overall quality of service to patients [8, 9]. Recently, we have encountered 

several cases of misdiagnosed PM in our hospital (Fig 1). Deep learning has dominated various computer vision 

areas since 2012 due to its effective representation capability [10]. The development of convolutional neural network 

(CNN) has significantly improved the performance of image classification and object detection [11]. Deep learning 

has the potential to revolutionize disease diagnosis and management by improving the diagnostic accuracy and 

reducing the workload of clinicians. Specifically, CNN has achieved great progresses in the diagnosis of breast cancer 

[12, 13], diabetes retinopathy [14, 15], fibrotic lung disease [16] and COVID-19 [17]. Furthermore, reports demonstrated 

that computer-aided diagnosis (CAD) system can accurately diagnose patients with PA from MR images [18-20]. 

However, the information for CAD-based diagnosis of PM is limited [5, 6]. In this work, we have constructed a 

computer-aided PM diagnosis (PM-CAD) system based on deep learning and aimed to provide an accurate and timely 

diagnosis of PM from pituitary MR images.  

 

RESULTS 

Cases of misdiagnosed pituitary microadenoma in our hospital 

Our current research in applying deep learning algorithms to aid in the diagnosis of PM was prompted by several 

misdiagnosed cases in our hospital. A female patient in her 40’s suffered from diabetes, osteoporosis and recurrent 

cellulitis. Laboratory examination and functional test were consistent with the presentation of Cushing’s disease (Tab 

S1). The patient underwent three times of MRI scanning over a period of 20 months. However, the radiologists did 

not detect any pituitary adenoma (Fig 1a). Nevertheless, this patient was given bromocriptine and cyproheptadine 

for 2 years, but the magnitude of the disease was not under effective control. Subsequently, the inferior petrosal sinus 

sampling (IPSS) was performed on this patients and a functional microadenoma was finally detected in her right 

pituitary gland. We performed another MRI examination on this patient and were able to detect 2 pituitary 

microadenomas (with diameters of 5 mm and 3 mm, respectively) (Fig 1a). One week later, we performed 

transsphenoidal PM resectioning on this patient. Shortly after the completion of the operation, the serum 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.02.21252010doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.02.21252010


concentration of ACTH and free cortisol of this patient was normalized (Tab S1). Information for additional cases of 

misdiagnosed PM in our hospital was presented in Figure 1b and Tab S1.  

Performance of our PM-CAD system versus other established CNN models 

We evaluated the diagnosis performance of 6 established CNN models as well as our PM-CAD system. Overall, in 

validation dataset, our PM-CAD system outperforms those 6 established CNN models (i.e., GoogLeNet [21], 3D-

CNN [22], VGG [23], ResNet [24], DenseNet [25] and ResNeXt [26]) (Tab 1, Fig S1and Fig S2). Specifically, scores of 

AUC, F1, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of PM-CAD system were 

98.13%, 92.09%, 94.36%, 87.67%, and 98.36%, respectively (Tab 1). Then we compared those parameters with 

currently available well-established 6 CNN models, the 6 models also scored well, all of them the AUC above 95% 

and the diagnosis accuracy above 90% (Tab 1, Fig S1 and Fig S2). As we showed that performance of our PM-CAD 

is superior to 6 established CNN models. We then employed our PM-CAD system for the following investigation. 

Diagnosis performance of our PM-CAD system versus radiologists 

An independent test A (100 participants: 50 PM patients and 50 controls) was used to compare our PM-CAD system 

with radiologists in our hospital. Six general radiologists were instructed to make a diagnosis for each MRI image. 

We evaluated the important parameters of diagnosis performance including F1 score, accuracy, sensitivity, PPV and 

NPV. We showed that the accuracy of our PM-CAD system is comparable to radiologist with more than 10 years of 

professional experience. The performance of our PM-CAD system is F1-score (93.88%), accuracy (94.00%), 

sensitivity (92.00%), PPV (95.83%), specificity (96.00%) and NPV is (92.31%) (Tab S2). In contrast, the 

performance of our best radiologist #6 is F1-score (94.95%), accuracy (95.00%), sensitivity (94.00%), PPV (95.92%), 

specificity (96.00%) and NPV is (94.12%) (Tab S2). The receiver operating characteristics (ROC) curves (showing 

both true-positive rate and false-positive rate for diagnosis performance) achieved on Test A are shown in Figure 2a. 

The AUC of PM-CAD system was 95.56%, and outperformed other five radiologists. At the same false-positive rate, 

the true positive rate of the PM-CAD system is higher than results of other 5 radiologists (Fig 2a). A false-positive 

result may cause unnecessary examination or excessive treatment. Moreover, a false-negative result may delay 

treatment and results in irreversible loss. To account for these issues, weighted error scoring [10] was incorporated 

during modelling and evaluation by radiologists. The PM-CAD system produces a weighted error of 10.00%, which 

is far below the average weighted error of 21.67% achieved by 6 radiologists (Fig 2b). The difference of negative or 

positive likelihood ratios [10] between our PM-CAD system and radiologists has achieved statistical significance (Fig 

2c, d). Thus, our PM-CAD system demonstrates a better diagnostic accuracy than those of 5 radiologists in our 

hospital. The performance of PM-CAD system and radiologists are further evaluated by using the standard confusion 

matrices (Tab S3), with the number of true positives, false-positives, true negatives, and false-negatives being 

reported. We showed that PM-CAD system has obvious advantages in the diagnosis of PM than those of radiologists. 

Further assessment for the accuracy of the PM-CAD system  

We evaluated the accuracy of PM-CAD system in detecting positive cases and negative cases of PM. Timely 

diagnosis and treatment of positive cases can significantly improve disease prognosis. We sampled three double 

positive cases (both diagnosed by radiologists as well as PM-CAD system). Which undergoing surgical treatment, 

the double positive cases were confirmed by a subsequent pathological examination (Fig 3a and Tab S1). A false-

negative result could lead to delay in treatment. We tested whether PM-CAD system could detect the false-negative 
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cases of PM previously misdiagnosed by radiologist. We utilized the MRI dataset from 3 clinically misdiagnosed 

PM cases. Specifically, these 3 patients underwent surgical treatment (2 cases of Cushing's disease and 1 case of 

TSH secreting adenoma). The presence of PM on those patients was confirmed by a subsequent pathological 

evaluation of the extracted tissue samples as well as other relevant clinical information (Fig 3b and Tab S1). To our 

delight, PM-CAD system was able to detect the presence of PM in all 3 previous misdiagnosed cases.  

Application of our PM-CAD system for PM diagnosis 

We used both internal and external dataset to test the robust generalization performance of our PM-CAD system. The 

performance of our system was further tested in additional 150 patients from 3 different hospitals. Six general 

radiologists from each hospital were recruited (2 radiologists with < 5 years professional experience, 2 radiologists 

with 5 - 10 years professional experience while additional 2 radiologists with > 10 years professional experience). 

We observed that the accuracy of respective PM diagnosis was positively correlated to the radiologist’s professional 

experience as well as the time allocated for each image reading (Fig 4a, b). The diagnostic accuracy achieved by 

radiologists with professional experience >10 years was above 90%. Meanwhile, the diagnostic accuracy was higher 

than 88% when the MRI reading time for each patient was over 45 seconds. In contrast, the diagnosis accuracies 

achieved by PM-CAD system in internal hospital was 94 % and in external hospitals were 90 % and 88 %, 

respectively (Fig 4a). The results in the external datasets are very encouraging, we showed that the diagnosis 

performance of our PM-CAD system is comparable to radiologists with 5-10 years of professional experience and 

has negligible of time cost. 

 

DISCUSSION 

Deep learning has been used to diagnose various diseases [15-17]. However, existing CNN based pituitary diagnosis 

models mainly focus on pituitary macroadenoma [18-20]. Our work provides the first evidence in applying CNN model 

for pituitary microadenoma diagnosis. We showed that our PM-CAD system outperforms 6 existing established 

CNNs-based models (i.e., GoogLeNet [21], 3D-CNN [22], VGG [23], ResNet [24], DenseNet [25] and ResNeXt [26]) in 

diagnosis of PM, achieves satisfactory predictions on the validation dataset, with an accuracy of 94.36%, a sensitivity 

of 96.97%, and a specificity of 93.02%. Diagnosis of PM requires its fine-grained feature in MR images. However, 

the aggressive downsampling of most modern 2D CNN models harms the forward propagation of fine-grained 

feature [27]. Furthermore, a large training dataset is required to train neural network parameters [28]. To address the 

issues faced by fine-grained feature learning and overfitting, we introduced an improved backbone and an attention 

module (further information is listed in Supplementary information for Materials & Methods, section B– 

microadenoma diagnosis model) to our PM-CAD system. We showed that our PM-CAD system is more suitable for 

microadenoma diagnosis than 6 existing CNN models. 

We also showed that the PM-CAD system outperformed 5 general radiologists in PM diagnosis. The weighted 

error achieved by PM-CAD was 10.00%, which was much lower that by radiologists (26.67%). The AUC achieved 

by PM-CAD system was 95.56% and was comparable to our radiologist with > 10 years of professional expertise 

(Fig 2a). By comparing the negative and positive likelihood ratio, we showed that the PM-CAD system achieved 

better diagnosis performance, with a higher positive diagnosis rate and a lower false-negative rate than radiologists. 

To further confirm the diagnosis performance of PM-CAD system, three double positive cases (verified by PM-
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CAD system and radiologists) and three false-negative cases (misdiagnosed by radiologists) were selected. The 

diagnosis accuracy of PM-CAD system on false-negative cases was 100%, which was confirmed by a subsequent 

pathological examination. Three false-negative cases were hormone-producing microadenomas, with small size and 

irregular morphology which were difficult to detect by using MRI alone. The current MRI diagnostic sensitivity for 

hormone-producing primary and recurrent pituitary microadenomas was only 47% and 39% respectively [5]. Our 

PM-CAD system demonstrates the excellent diagnosis performance in detecting those hormone-producing PM.  

For this study, the MR images were collected from different MRI machines. It is important that our PM-CAD 

system achieves a robust generalization performance on images collected from different MRI machines. Images from 

3 additional hospitals (1 internal and 2 external datasets) have been used to test the generalization diagnostic 

performance of PM-CAD system. The diagnostic accuracy achieved by the PM-CAD system in 3 hospitals were 

94%, 90%, and 88%, respectively (Fig 4a). The internal test dataset and the training dataset have the same MR images 

sources, whereas the images in the external test dataset were generated with different MRI machines from different 

hospitals. Previous results suggest that CNN model performs better in the internal dataset than external dataset [29, 

30]. Similar to those previous observations, we showed that PM-CAD system performs better on our internal test 

dataset than external dataset. Nevertheless, the diagnostic accuracy of PM-CAD system on external datasets was 90% 

and 88%, comparable to the diagnostic accuracy of radiologists with 5-10 years professional experience. We showed 

that our PM-CAD system could achieve robust generalization performance. The techniques presented in this study 

may potentially be applied to other hospitals in assisting for the diagnosis of PM. 

MRI techniques for detection and depiction of pituitary adenomas have witnessed rapid evolution ranging from 

the non-contrast MRI scans to thin section contrast MRI scans [7, 31]. Modern MRI device has led to a rise in detection 

of PM as it allows evaluation of sella and perisellar lesions with high soft tissue contrast and excellent anatomical 

resolution [32, 33]. However, it is worth noting that accurate diagnosis of PM is still largely relied on the radiologist’s 

professional experience. As shown in Figure 4, the radiologist diagnostic accuracy for PM is proportionally enhanced 

with professional experience as well as allocated reading time for image. In this aspect, PM-CAD system has a 

distinct advantage in reading time and stability.  

This work provides the first deep learning system for the diagnosis of PM. Our PM-CAD system provides a 

diagnostic accuracy comparable to experienced radiologists with marginal deployment costs. We acknowledge that 

there are several limitations for the current investigation. First, this is a retrospective study on multi-medical centers. 

Further validation with larger and prospective study is needed for clinical applications. Second, although a total of 

1,228 participants have been used for training and testing of our deep learning system, the dataset is still insufficient. 

The robustness and accuracy of deep learning models can further be increased with more training data. 

 In conclusion, results from this investigation have highlighted the potential applications of deep learning on 

the diagnosis of patients with PM. With the rapid development of computing power, deep learning algorithms can 

surpass gold diagnosis standard. Machine learning for the diagnosis of PM will serve as an important component in 

improving patient care and outcomes. 
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MATERIALS AND METHODS 

Ethical Approval 

This study is approved by the research ethics committee of the Institute of Basic Research in Clinical Medicine, The 

Third Affiliated Hospital of Sun Yat-Sen University ([2020]02-089-01). This research is registered at the Chinese 

Clinical Trials Registry (http://www.chictr.org.cn/index.aspx) with the number ChiCTR2000032762. 

Data collection and pre-procession of MRI data 

A total of 1,228 participants (543 PM patients and 685 controls) with pituitary MR images (28,839 images) (acquired 

by GE or Philips machines) were selected from the retrospective cohorts of patients from 3 hospitals from January 

2014 to December 2019. All these MR images were randomly assigned regardless of the type of MRI machine or 

manufacturer. The internal dataset was collected from The Third Affiliated Hospital of Sun Yat-Sen University (i.e., 

hospital 1) and was mainly used for training, validation and test A and B. The external dataset collected from The 

Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University (i.e., hospital 2) and The Second Affiliated Hospital of 

Harbin Medical University (i.e., hospital 3) was used for Test C. Workflow diagram for the overall experimental 

design was in Fig 5. MRI was performed as a part of patients’ routine clinical care. There were no exclusion criteria 

based on age, gender or ethnicity. Local electronic medical record databases for the newly diagnoses PM (PM group) 

and normal pituitary (control group) were included. The coronal dynamic enhancement T1 -weighted imaging (T1WI) 

sequence of MRI (DICOM) was downloaded with a standard image format according to the manufacturer’s software 

and instructions. All pituitary images were read by 2 neuroradiologistes and 1 neurosurgeon who had > 10 years of 

professional experience, and the diagnosis agreed by all 3 doctors were proceed for further investigation in this study. 

These data were randomly divided into training, validation or test sets for further analysis. In the training and 

validation datasets, all images present PM were selected by 4 general radiologists (> 5 years of professional 

experience) and reviewed by 2 neuroradiologistes. All images of coronal dynamic enhancement T1WI sequence were 

used for test A, B and C datasets without additional human intervention. MRI was performed with a 1.5 or 3.0 T MRI 

unit (GE, Philips company) in the head-first supine position, 380 ms/12.5 ms (repetition time /echo time) and 1 or 3 

mm-thick section. We excluded the MR images without complete pituitary scan or with too many MRI artifacts. 6 

endocrinology fellows were involved in collecting patient clinical information, and the dataset were reviewed by 2 

endocrinologists. Among PM patients, there were 391 cases of non-functional pituitary microadenomas and 152 

cases of functional pituitary microadenomas (Fig S3). The MR image and relevant clinical information was retrieved 

from the digital database of respective hospitals.  

Classification of the dataset 

All participants were split into 5 parts (the training dataset, the validation dataset, the test A, B and C dataset.). 

Workflow diagram for the overall experimental design was illustrated in Fig 5. The training dataset was used to train 

the deep learning models. It consists of 780 participants, including 274 PM patients and 506 normal controls, from 

the Third Affiliated Hospital of Sun Yat-Sen University. The validation dataset was used to tune the hyper-parameters 

(e.g., learning rate, number of training epochs) of the models and select the best model. It consists of 195 participants 

from the same hospital as the training dataset, including 66 PM patients and 129 normal controls. The test dataset 

was divided into three parts, namely Test A, B and C for the diagnosis performance comparison between radiologists 

and PM-CAD system. Test A consists of 100 participants (50 PM patients and 50 control subjests) from hospital 1 
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and has been used to comparing the PM diagnosis performance of PM-CAD system and general radiologists. There 

is no overlap among images in the training and validation datasets. Six radiologists were recruited for this study. 

Radiologists 1 and 2 has professional experience < 5 years, Radiologists 3 and 4 has professional experience for 5 to 

10 years, Radiologist 5 and 6 has professional experience > 10 years. Each radiologist read 100 participants MR 

images independently in 50 minutes (about 30 second for each MRI). In test B, we tested the diagnosis performances 

of our PM-CAD system on 3 misdiagnosed cases of PM. Test C has been used to evaluate the generalization ability 

and stability of the PM-CAD system on MRI scan from three hospitals (hospital 1 was used to form the internal 

dataset, hospital 2 and 3 were used to form the external dataset) and each hospital provided 50 cases of PM images. 

Six general radiologists were also recruited to read MR images, and the diagnostic accuracy of those radiologists 

were evaluated. 

Overview of our PM-CAD system 

The pipeline of our PM-CAD system is shown in Figure 6. Specifically, each section of a MR image was first 

diagnosed by our CAD system. The MRI scan was then determined as normal if all sections of this MR images were 

diagnosed as non-microadenoma. In the pituitary detection model, the Faster R-CNN framework [34] was employed 

to locate pituitary region from MR images. The input MR image was processed by this model to generate 

classification and regression maps, which were further used to extract the pituitary bounding box in MR image.  
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Table1. Compare performance of PM-CAD system versus 6 established CNN models. We evaluate the performance of different models by using a series of metrics 
including the area under receiver operating characteristic curve (AUC) score (which is independent of probability threshold), F1-score, accuracy, sensitivity, positive 
predictive value (PPV), negative specificity and negative predictive value (NPV). Further information for each specific metric has been listed in Supplementary 
information for Materials and Methods, B.3. Experiment - Evaluation metric.  

 

 

 AUC F1-score Accuracy 
Positive Metrics 

Sensitivity             PPV 

Negative Metrics 

Specificity              NPV 

GoogLeNet 
0.9676 

[0.9390~0.9894] 

0.8857 (124/140) 

[0.8210~0.9332] 

0.9179 (179/195) 

[0.8702~0.9524] 

  0.9394 (62/66) 

  [0.8520~0.9832] 

0.8378 (62/74) 

[0.7339~0.9133] 

0.9070 (117/129) 

[0.8431~0.9510] 

0.9669 (117/121) 

[0.9175~0.9909] 

3D-CNN 
0.9686 

[0.9433~0.9886] 

0.8767 (128/146) 

[0.8122~0.9253] 

0.9077 (177/195) 

[0.8580~0.9444] 

  0.9697 (64/66) 

  [0.8948~0.9963] 

0.8000 (64/80) 

[0.6956~0.8811] 

0.8760 (113/129) 

[0.8064~0.9274] 

0.9826 (113/115) 

[0.9386~0.9979] 

VGG 
0.9689 

[0.9449~0.9877] 

0.8841 (122/138) 

[0.8186~0.9323] 

0.9179 (179/195) 

[0.8702~0.9524] 

  0.9242 (61/66) 

  [0.8320~0.9749] 

0.8472 (61/72) 

[0.7431~0.9212] 

0.9147 (118/129) 

[0.8526~0.9567] 

0.9593 (118/123) 

[0.9077~0.9867] 

ResNet 
0.9728 

[0.9508~0.9898] 

0.8936 (126/141) 

[0.8306~0.9392] 

0.9231 (180/195) 

[0.8763~0.9563] 

  0.9545 (63/66) 

  [0.8729~0.9905] 

0.8400 (63/75) 

[0.7372~0.9145] 

0.9070 (117/129) 

[0.8431~0.9510] 

0.9750 (117/120) 

[0.9287~0.9948] 

DenseNet 
0.9733 

[0.9529~0.9888] 

0.8921 (124/139) 

[0.8283~0.9383] 

0.9231 (180/195) 

[0.8763~0.9563] 

  0.9394 (62/66) 

  [0.8520~0.9832] 

0.8493 (62/73) 

[0.7464~0.9223] 

0.9147 (118/129) 

[0.8526~0.9567] 

0.9672 (118/122) 

[0.9182~0.9910] 

ResNeXt 
0.9740 

[0.9480~0.9935] 

0.9160 (120/131) 

[0.8547~0.9573] 

0.9436 (184/195) 

[0.9013~0.9715] 

  0.9091 (60/66) 

  [0.8126~0.9659] 

0.9231 (60/65) 

[0.8295~0.9745] 

0.9612 (124/129) 

[0.9119~0.9873] 

0.9538 (124/130) 

[0.9022~0.9829] 

PM-CAD 

(ours) 

0.9813 

[0.9625~0.9953] 

0.9209 (128/139) 

[0.8628~0.9598] 

0.9436 (184/195) 

[0.9013~0.9715] 

  0.9697 (64/66) 

  [0.8948~0.9963] 

0.8767 (64/73) 

[0.7788~0.9420] 

0.9302 (120/129) 

[0.8717~0.9676] 

0.9836 (120/122) 

[0.9420~0.9980] 
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Figure legend 

 

Fig 1. Cases of 4 misdiagnosed pituitary microadenoma. (a) 4 consecutive pituitary MRI scans over 

a period of 20 months in a misdiagnosed patient with pituitary microadenoma. The radiologists have 

not detected the pituitary microadenoma during the first 3 MRI examinations. A functional 

microadenoma has been localized by the subsequent ACTH examination of the inferior petrosal 

sinus in the region of right pituitary gland. On the 4th MRI scanning, two microadenoma are 

detected by radiologist. (b) Additional 3 cases of misdiagnosed microadenoma. Patient 1 has a very 

small microadenoma with a diameter < 3 mm. Patient 2 has an irregularly shaped microadenoma. 

Patient 3 has two microadenoma (with diameters of 2.8 mm and 6.1 mm, respectively) and the 

smaller one was misdiagnosed. The comprehensive clinical data for patients were listed in 

Supplementary Table 1. ACTH: Adrenocorticotropic Hormone. MRI: magnetic resonance imaging. 

T1WI-COR: T1 weighted imaging-coronal. MRI bar = 5 mm. The yellow arrow and the area inside 

the red circle represent adenomas. 

 

Fig 2. The PM-CAD system outperforms 5 radiologists in diagnosing PM. (a) ROC and AUC: ROC 

curve shows the true positive rates (sensitivity) with respect to different false-positive rates (1-

specificity). The ROC results show that the PM-CAD system outperforms 5 radiologists. The area 

under ROC curve (AUC) of PM-CAD system is 95.56%. (b) Weighted error. A penalty weight of 2 

is applied to false-negatives and a penalty weight of 1 is assigned to false-positives. The PM-CAD 

system produces a weighted error of 10%, whereas the radiologists produce a weighted error of 

26.67%. (c & d) The negative likelihood ratio and the positive likelihood ratio: The negative 

likelihood ratio is defined as the false-negative rate over the true negative rate, so that a decreasing 

likelihood ratio < 1 indicated increasing probability the absence of PM. The positive likelihood ratio 

is defined as the true positive rate over the false-positive rate, so that an increasing likelihood ratio > 

1 indicated increasing probability the diagnosis of PM. The confidence intervals show that the PM-

CAD system demonstrates statistically better screening performance in terms of both negative 

likelihood ratio and positive likelihood ratio than radiologists. Radiologist 1 & 2: with < 5 years 

professional experience, Radiologist 3 & 4: with 5 - 10 years professional experience, Radiologist 

5 & 6: with > 10 years professional experience. PM, pituitary microadenoma; receiver operating 

characteristics (ROC); the area under ROC curve (AUC).  

 

Fig 3. The MRI and pathologic images of double positive and false-negative cases. (a, b) 3 double 

positive and 3 false-negative cases, which were functional PM, as confirmed by subsequent 

pathological examination. (b) The PM-CAD system detects 3 false-negative cases previously 

misdiagnosed by radiologists. The comprehensive clinical data for these 3 misdiagnosed patients 

are listed in Supplementary Table 1. PM: pituitary microadenoma. MRI: magnetic resonance 

imaging. AI: Artificial intelligence. HE: hematoxylin and eosin. ACTH: adrenocorticotropic 

hormone. GH: growth hormone. TSH: thyroid stimulating hormone. PRL: prolactin. MR bar = 5mm. 

Pathology bar =100 μm. The yellow arrow indicates a pituitary microadenoma. 
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Fig 4. Application of the PM-CAD system in diagnosing PM. MR images are obtained from 3 

hospitals. (a) The diagnosis accuracy rate is significantly increased in senior radiologist and the 

diagnosis accuracy of PM-CAD system is comparable to those radiologists >10 years of professional 

experience. (b) The diagnosis accuracy is significantly increased by radiologists with longer reading 

times allocated for each MRI scan. Bar means p < 0.05 for comparison of the two groups. PM: 

pituitary microadenoma. AI: Artificial intelligence. MR: magnetic resonance. 

 

Fig 5. Workflow diagram for the overall experimental design. Pituitary MRI was performed as a 

part of patients’ routine clinical care. There were no exclusion criteria based on age, gender, or race. 

PM: pituitary microadenoma. MRI: magnetic resonance imaging. 

 

Fig 6. Overview of our PM-CAD system. (a) First the MR images are fed into our PM-CAD system 

for automatic diagnosis. The proposed PM-CAD system consists of two models: (b) the pituitary 

detection model localizes the pituitary region in cerebral MRI. The MR images are processed with 

multiple convolutional layers and two maps (classification map is used to predict the center and the 

regression map is used to refine the height and width of the rectangle box) are produced to predict 

a rectangle box enclosing the pituitary region. The pituitary rectangle region is cropped, stacked, 

and then fed into the PM diagnosis model. (c) it employs the proposed PM-Net model to extract 

features. A softmax layer is employed to transform the feature into the presence probability of PM. 

CAD: computer-aided diagnosis. MRI: magnetic resonance imaging. MR: magnetic resonance. PM: 

pituitary microadenoma. 

 

Fig 7. Performance of the PM-CAD system on the training and validation datasets. (a). Accuracy 

curves achieved by the PM-CAD system on the training and validation datasets. (b). Cross entropy 

loss curves achieved by the PM-CAD system on the training and validation datasets. We train the 

PM-CAD system for 500 epochs. 
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Supplementary information for Materials and Methods 

A. Pituitary Detection Model 

Although pituitary occupies a small region of MR images, radiologists can diagnose microadenoma based on the 

appearance of such a small region. On the other hand, directly feeding the whole MR images into a deep learning based 

diagnosis method imposes a huge challenge since non-pituitary regions will hinder microadenoma diagnosis significantly. 

Therefore, we employ a detection model to locate the pituitary region before diagnosis. The design of the detection model 

potentially benefits the consequence task in two aspects: 

� It enhances pituitary microadenoma (PM) feature by discarding irrelevant regions, and promotes the microadenoma 

diagnosis performance since the designed detection model can help the microadenoma diagnosis process focus on the 

pituitary region. 

� It reduces the overfitting problem of our microadenoma diagnosis model with a limited amount of data. 

A.1. Architecture 

 

Figure 1. The pipeline of our pituitary detection model. The model consists of three prats: ResNet-50 FPN is used to extract 

the features in different scales, Region Proposals & Detection is used to generate the bounding boxes (which indicate 

pituitary regions), and Post-processing is used to refine the detection result. 

 

Given several consecutive MR images at the same anatomical section of the brain from the coronal dynamic enhancement 

T1 -weighted imaging (T1WI) sequence of MRI scan, our pituitary detection model aims at locating the pituitary in each 

image. The pituitary detection model is build upon the Faster-RCNN [1] framework, and mainly consists of three parts: 

ResNet-50 FPN [2] extracts the multi-scale features from each image, Region Proposals & Detection produces the 

bounding box of pituitary from the multi-scale features, and Post-processing refines the detection results. (See Fig 1.) 

ResNet-50 FPN 

We use ResNet-50 FPN as our backbone to efficiently extract multi-scale features from each MR image. Specifically, ResNet-

50 [3] is employed to process the input MR image, and four feature maps from conv2_3, conv3_4, conv4_6 and conv5_3 are 

further used as the input for the feature pyramid network (FPN). These four feature maps have 4×, 8×, 16×, 32× strided 

resolution compared to the input image. 

FPN aggregates the above four feature maps, and produces four feature maps in different scales (i.e., feature_x where 

). The four feature maps are firstly processed by a 1×1 convolutional layer, to make them have the same number 

of channels. We denote the processed four feature maps as P_1, P_2, P_3 and P_4. The feature_4 is obtained by upsampling 

P4 with nearest interpolation. Feature_x (where ) is obtained by upsampling the combination of the feature_(x-1) 

and the lateral feature map P_x. Therefore, four multi-scale features maps are used as the input for the following part. 

Region Proposals & Detection 

In this part, we process each feature map from ResNet-50 FPN independently, and several candidate bounding boxes 

indicating pituitary are produced. Specifically, given a feature map feature_x, two branch layers (each with one convolutional 

layer) are used to generate two feature maps. One branch is used to classify whether the anchor contains an object, and the 

another branch is used to regress the size (i.e., height, width) and position (i.e., x, y) from the default anchor. We obtain the 

bounding box proposals from these two feature maps using the non-maximum suppression (NMS) [1] algorithm to discard 

high-overlapping bounding boxes. Then, RoI pooling [1] is performed to aggregate the feature of feature_x within the bounding 

box proposals. The aggregated feature is further used to refine the classification and regression results, and produce several 

candidate bounding boxes of pituitary with confidence scores. 

Each MR image has at most one pituitary. Therefore, from all candidate bounding boxes, we select the bounding box which 

has the highest confidence score. In order to reduce the false-positive rate of pituitary detection, we filter out the bounding box 

whose confidence score is smaller than a threshold  (  in our experiments). 

Post-processing 

Among all MR images, the above procedure might fail to locate the pituitary in some images. To handle this problem, we 

refine the pituitary detection result by post-processing. Specifically, we average all the positions and sizes of the detected 

}4,3,2,1{Îx

}4,3,2{Îx

t 9.0=t

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 5, 2021. ; https://doi.org/10.1101/2021.03.02.21252010doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.02.21252010


bounding boxes, which can be considered as a mean bounding box. Because the position and size of pituitary over different 

MR images do not change a lot, we assign the missed detected MR image with the mean bounding box.  

A.2. Experiment 

Dataset 

We collect 666 MRI scan (performed by GE, Philips machines) from the Third Affiliated Hospital of Sun Yat-Sen University. 

2718 MR images with pituitaries from the coronal dynamic enhancement T1WI sequence of MRI are selected. A 

neuroradiologist annotates each image with a bounding box indicating the pituitary region. We randomly split all MRI scan 

into a pituitary detection training set with 532 scans (2167 images) and a pituitary detection validation set with 134 scans (551 

images). 

As the evaluation metrics, we use AP@0.50 and AP@0.75 from the COCO Detection Benchmark [4]. AP@0.50 and AP@0.75 

stand for the Average Precision (AP) with intersection of union (IOU) thresholds of 0.5 and 0.75, respectively. 

Implementation 

The pituitary detection model is implemented with PyTorch, and trained on a computer with an NVIDIA TITAN RTX GPU. 

We use the SGD optimizer with a momentum of 0.9 for training. The initial learning rate is set to 0.005. The warm-up strategy 

is adapted, which linearly increases the learning rate from 0.001 to the initial value over each iteration at the first epoch. Then, 

the learning rate decreases by 0.1 per 3 epochs. The weight decay is set to 0.0005. We resize the input images into 256×256 

and normalize into (0,1) based on the window level (WL) and window width (WW) set by neuroradiologist as preprocessing. 

Other configurations (e.g., loss function, default anchor setting) are the same as [1]. We train the pituitary detection model for 

20 epochs with a batch size of 16. 

Results 

Table 1 shows the pituitary detection performance on MRI achieved by our method. On the training set, our method achieves 

0.9884 and 0.9078 in terms of AP@0.50 and AP@0.75, respectively. The performance of pituitary detection on the validation 

set is close to that of the training set. That is, our model achieves a good generalization capability on unseen data. Moreover, 

our detection model can accurately locate the pituitary region. When 0.5 is used as the IOU threshold to determine the success 

of pituitary detection, our method achieves an average precision of 97.83% over different levels of recall. 

 

Table 1. Pituitary Detection Results on MRI 

    AP@0.50    AP@0.75 

Training set 0.9884 0.9078 

Validation set 0.9783 0.8824 

 

Figure 2 shows the prediction results of our pituitary detection model and the ground-truth labels of several MR images on the 

validation set. The results demonstrate our method can produce accurate prediction bounding boxes with high overlaps with the 

ground-truth. 
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Figure 2. Some examples of pituitary detection on the validation set. Our method can produce accurate prediction bounding 

boxes (represented as green boxes) with high overlaps with the ground-truth (represented as purple boxes). Besides, the 

confidence scores produced by our pituitary detection model are also shown (i.e., the numbers near green boxes). 
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B. Pituitary Microadenoma Diagnosis Model 

Automatic diagnosis of PM with deep learning is highly challenging due to three main reasons: (1) Low inter-class 
variance. Microadenoma occupies a very small part of the pituitary, the difference between microadenoma and normal 

tissues mainly lies in fine-grained textures. Actually, normal pituitaries and pituitaries with microadenoma are very similar 

in most parts, it is therefore very hard to identify microadenoma even by radiologist. Consequently, the proposed model 

should be powerful enough to distinguish these minor differences. (2) High intra-class variance. PM vary significantly in 

terms of location, size, and shape. Consequently, the proposed model should be sufficiently representative to adapt to these 

variations. (3) Limited training data. Deep learning techniques usually require a large amount of training data to avoid 

overfitting. However, the insufficiency of PM MRI scan poses new challenges to the design of architecture and training 

skills of neural networks. 

To handle these challenges, we propose a novel CNN (namely, PM-CAD) for PM diagnosis. In PM-CAD, we modify the 

ResNet architecture to preserve fine-grained features during forward propagation. Furthermore, an attention module is used 

to further improve the discriminativeness of feature representation. To handle the overfitting problem, histogram matching 

normalization, intensity shift data augmentation and label-smoothing loss are used. 

B.1. Architecture 

 

Figure 3. The pipeline of our microadenoma diagnosis model (PM-CAD). The model consists of three prats: Pre-

processing, an improved Backbone, and an Attention Module. (conv: convolutional layer, relu: activation function, GAP: 

global average pooling, FC: fully connected layer.) 

 

Given several consecutive MR images at the same anatomical position of the brain from the coronal dynamic enhancement 

T1WI sequence of MRI scan, our microadenoma diagnosis model aims at classifying them into normal or microadenoma. 

In particular, all MR images are processed using intensity shift as data augmentation and histogram matching 

normalization, then patches which only contain the pituitary are cropped from each MR image based on the detection 

results from the pituitary detection model. Then, all patches are resized and stacked as an image with multi-channels. 

Finally, our proposed CNN-based model processes these stacked pituitary patches and classifies them into normal or 

microadenoma. 

In the following, we will first describe our CNN-based model with the improved backbone and an attention module, then 

highlight the intensity shift data augmentation and histogram matching normalization in pre-processing. Finally, we 

introduce the loss function used to train our CNN-based model. 

Backbone 

Most modern CNN models have two drawbacks when employing microadenoma diagnosis. (1) Aggressive downsampling. 

They use several max-pooling layers or strided convolutions to downsample the feature maps. For example, the ResNet 

series use a large kernel convolution with a stride of 2 followed by a max-pooling layer at the beginning, and 4 strided 

convolutional layers in the following. This strategy can efficiently reduce the computational cost and save the memory. 

However, fine-grained features which are important in PM classification might be lost in aggressive downsampling. (2) 

Large amount of trainable parameters. Modern CNN models tend to contain a large amount of trainable parameters. 

Therefore, a large training dataset is required to achieve a sufficient performance. However, the limited data of 

microadenoma MRI scan impose the over-fitting problem. A lightweight model with fewer parameters might be more 

suitable for microadenoma diagnosis. 

Therefore, we extend ResNet-18 from two aspects. First, we replace the large kernel convolution with 3×3 convolution at 

the beginning of the network. Second, we remove the max-pooling layer at the beginning and the last stages of convolution 

to preserve fine-grained features. Therefore, conv4_2  feature map is obtained with a 8× strided resolution. Then a global 

average pooling (GAP) and a multi-layer perceptron (MLP) with softmax are used to produce the probability of PM. 

Experimental results show that this simple modification of ResNet-18 can efficiently improve the performance of PM 

diagnosis. 

Attention Module 

The vector at each position of conv4_2 feature map is considered as the feature of a small patch from the input. Since the 

number of normal patches is larger than that of microadenoma, the global average pooling (GAP) which directly performs 

on this feature map might make the microadenoma feature overwhelming from the normal feature. Therefore, we introduce 
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an attention module to augment the microadenoma feature before GAP. 

Given a feature map  of conv4_2, we employ a learnable convolution layer to produce a soft mask: 

 

where  and  represent the 1×1 convolutional layers with 256 and 1 channels, respectively. This soft mask is 

further used to automatically select the prominent spatial areas of feature map  by pixel-wise multiplication as follows: 

 

During training, this mask can learn to highlight the areas which have the discriminative features of microadenoma and 

suppress the irrelevant areas. Therefore, the augmented feature map contains the areas which is helpful for distinguishing 

the microadenoma and normal tissue. 

The augmented feature map is further performed by GAP to aggregate spatial features. Then, the fully connected layers (FC) 

with softmax is used to produce the presence probability of microadenoma. 

Pre-processing 

Given several consecutive MR images with pituitary detection results, we first normalize them into (0,1) based on the 

window level (WL) and window width (WW). Then, data augmentation techniques such as Gaussian noise, translation, 

scaling, and the proposed intensity shift are performed during training. Furthermore, the proposed histogram matching 

normalization is used to align the histograms of all MR images. Finally, the patches only contain the pituitary are cropped 

from the MR images based on the detection result, and stacked as an image with mutli-channels. In the following, we will 

detail in our intensity shift data augmentation and histogram matching normalization. 

Intensity shift data augmentation (IS). To facilitate the domain knowledge from neuroradiologists, we normalize each 

MR image using WL and WW. This domain knowledge can help the network to focus on discriminative regions by 

assigning irrelevant pixels as background, and make the model converge faster. However, the normalization process 

decreases the generalization capacity on different hospitals. Different machines usually have different default values for 

WL and WW. Since WL and WW are adjusted by neuroradiologists based on their personal experience, the MR images 

normalized by different neuroradiologists from different machines in different hospitals have different distributions. 

Therefore, the model trained with the data from one hospital is difficult to generalize to other hospitals. To handle this 

limitation, we propose an intensity shift data augmentation approach to make the model insensitive to different WL and 

WW settings. In particular, we randomly shift the intensity of non-background pixels in MR images by adding a value 

within (0,0.1).   

Histogram matching normalization (HM). The MR images are acquired from the same anatomical section of brain. 

Therefore, the histograms between MR images are similar. In order to make the features between microadenoma and 

normal tissue more discriminative, we align the histograms using the histogram matching algorithm. Specifically, we select 

the histogram from one of the MR images as reference. Then, the histogram matching is performed to other MR image 

histograms to match the reference. In our experiments, we select the histogram from 3rd MR images among five 

consecutive MR images as the reference.  

Loss 

The cross-entropy loss is commonly used in classification. Specifically, the cross-entropy loss in binary classification can 

be formulated as: 

 

where  and  are the ground-truth label and the probability produced by the model. Usually, the 

probability is obtained by normalizing (e.g., softmax) the logits from the last layer of the model. The cross-entropy loss 

forces the logit to become an infinite value. That is, it pushes the distance of the learned feature between microadenoma and 

normal to be large, which potentially leads to over-fitting on the training data. 

 Motivated by [6], we use the label-smoothing loss as follows: 

 

where  is a small number and we set  in our experiments. The label-smoothing loss can achieve the optimal 

performance when the logit is a finite value, this encourages the learned feature between microadenoma and normal more 

compact.  

B.2. Application on MRI Scan 

In this subsection, we will describe the approach for adapting our method to MRI scan.  

Usually, a coronal dynamic enhancement T1WI sequence of MRI scan (DICOM) is used to diagnose PM. These images in 

a sequence can be divided into groups, and different groups focus on different anatomical sections of the pituitary. Each 

group contains several MR images, which are acquired at different enhancement times. 2 neuroradiologistes and 1 

neurosurgeon examines all MR images of each pituitary section, and diagnoses whether microadenomas present in this 
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section. The MRI scan is considered as normal if the microadenoma cannot be found in any pituitary sections. 

Following the same idea, we adapt our PM-CAD to the MR images as to achieve end-to-end diagnosing without any human 

intervention. Specifically, the proposed method first inspects each section of the pituitary gland based on the learned 

feature, and then performs ‘OR’ operation based on the classification result of all sections. Similarly, the MR image is 

considered normal if and only if all sections of the pituitary are diagnosed as normal by our PM-CAD. Among MR images 

of each section, we select several consecutive images in the medium term of enhancement scan as the input for PM-CAD.  

B.3. Experiment 

Dataset 

1228 participants with MRI scan were selected from retrospective cohorts of three hospitals from January 2014 to 

December 2019. The coronal dynamic enhancement T1WI sequence of MRI scan were used to diagnose PM in our 

experiments. All participants were split into 5 parts, that is: 

 

The Training Dataset: It is used to train the deep learning models.  

The Validation Dataset: It is used to tune the hyper-parameters (e.g., learning rate, number of training epochs) of the 

models and select the best model during training. 

Test A: It is used to compare the performances between radiologists and our PM-CAD system in PM diagnosis.  

Test B: It is used to test the diagnosis performances of our PM-CAD system on radilologists misdiagnosed cases.  

Test C: It is used to evaluate the generalization ability of our proposed PM-CAD system on MRI scan from different 

hospitals. 

Evaluation metric 

To compare the performance of PM diagnosis between different models, we use the area under receiver operating 

characteristic curve (AUC) score (which is independent of probability threshold). In addition, F1-score, accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), error, positive likelihood ratio 

(PLR) and negative likelihood ratio (NLR) are used as metrics for performane evaluation. 

The 95% confidence interval (CI) is also calculated for each metric. In particular, CI for AUC is calculated using bootstrap 

confidence intervals [10] (resample 50,000 times with replacement). CIs for F1-score, accuracy, sensitivity, specificity, PPV 

and NPV are calculated using the Clopper-Pearson interval [11] because it is common for calculating binomial confidence 

intervals. CIs for PLR and NLR are calculated using the “Log method” [7].  

Implementation 

We implement the microadenomas diagnosis model with PyTorch, and train our PM-CAD on NVIDIA TITAN RTX GPUs. 

We use the SGD optimizer with a momentum of 0.9. The initial learning rate is set to 0.02 and decreases by 0.99 per epoch. 

The weight decay is set to 0.0005. We train our PM-CAD for 500 epochs with a batch size of 16. We set the MLP in 

backbone to have two layers with 256 and 1 channels, respectively.  The  in our label-smoothing loss is set to 0.1. We 

fine-tune our PM-CAD model from the weights pre-trained on ImageNet [8]. 

The probability threshold of the model is selected based on the Youden Index [5] of the Receiver Operating Curve (ROC). 

Specifically, given the probabilities produced by the model and their corresponding ground-truth labels, we can first 

calculate the True Positive Rates (TPR) and the False Positive Rates (FPR) under different levels of threshold t. Then, the 

Youden Index at threshold t is defined as: 

 

Finally, the threshold producing the largest Youden Index is considered as the optimal probability threshold : 

 

Comparison to existing methods 

We compare our PM-CAD with several 2D and 3D baselines in PM diagnosis. In particular, five 2D CNNs-based models 

(i.e., GoogLeNet, VGG-16, ResNet-50， DenseNet-169 and ResNeXt-50 32×4d) are selected with the following 

considerations: these models achieve state-of-the-art performance on the largest image classification benchmark (i.e., 

ImageNet [8]), and their superiority has been demonstrated in many other medical image analysis tasks. All these models are 

implemented in PyTorch. Since 5 MR images are stacked to form an image with multi-channels, the numbers of input 

channels and output categories are set to 5 and 2, respectively. To leverage the advantage of transfer learning, we also fine-

tune these models from the weights pre-trained on ImageNet. We train these models with the same configuration as PM-

CAD using the cross-entropy loss. 

On the other hand, five consecutive MR images can be considered as a 3D volume. We employ a 3D CNN to diagnose PM 

from this volume. We choose 3D CNN from the Model Genesis [9], which is the first work serving as a primary source of 
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transfer learning for 3D medical imaging applications. We fine-tune the 3D CNN model from the weights pre-trained on a 

large number of unlabeled medical images. We train it with the same configuration as PM-CAD using the cross-entropy 

loss.  

We train the model using the training dataset, and select the best one which has the highest AUC score on the validation 

dataset during training. In manuscript, Table 1, Fig S1 and Fig S2 shows the results of our PM-CAD and existing models on 

the validation dataset.  

 

Ablation Study 

We provide the ablation study on the intensity shift data augmentation and the histogram matching normalization. We train 

our PM-CAD with or without intensity shift data augmentation and histogram matching normalization using training dataset, 

and evaluate it on Test C. Table 2 shows the accuracy has improved by 4% and 2% in hospital 3 and hospital 2, when 

equipped with HM and IS. And HM and IS do not improve the performance on the data from hospital 1. That is because, the 

training dataset and test data from hospital 1 have the same source which is the Third Affiliated Hospital of Sun Yat-Sen 

University, resulting in consistent normalization set by WL and WW. The result shows that the proposed HM and IS can 

eliminate the effect of inconsistent normalization from different hospitals. With HM and IS, our PM-CAD demonstrate a good 

generalization capacity, achieving above 88% accuracy of different hospitals. 

  

Table 2. Accuracy of our PM-CAD (w/ or w/o HM, IS) on Test C (from 3 different hospitals). 

 

 

 

 

 

 

 hospital 1 hospital 2 hospital 3 

w/o HM, IS 47/50 44/50 42/50 

w/ HM, IS 47/50 45/50 44/50 
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Supplementary Table 1. The patient clinical data in Fig 1 and Fig 3. 
 

Characteristics 
 

 
Fig1a, Patient 

 
Fig1b, Patient 1 

 
Fig1b, Patient 2 

 
Fig1b, Patient 3 

 
Fig6, Patient 1 

 
Fig6, Patient 2 

 
Fig6, Patient 3 

 
Fig6, Patient 4 

 
Fig6, Patient 5 

 
Fig6, Patient 6 

 
Diagnosis 

 
Cushing's disease 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Cushing's disease 

 
Acromegaly 

 
Prolactinoma 

 
Cushing's disease 

 
Cushing's disease 

 
Pituitary TSH 

adenoma 

 
Gender 

 
Female 

 
Female 

 
Male 

 
Female 

 
Female 

 
Female 

 
Female 

 
Female 

 
Female 

 
Male 

 
Age, years 

 
40’s 

 
30’s 

 
30’s 

 
40’s 

 
30’s 

 
30’s 

 
20’s 

 
30’s 

 
20’s 

 
40’s 

 

Clinical feature 

 
Diabetes, 

osteoporosis, 
menstrual 

irregularity 

 

No special 
clinical feature 

 

Headache 

 

No special 
clinical feature 

 
Diabetes, 

hypertension, 
menstrual 

irregularity 

 
Face changes, 

fingers and toes 
become coarsen 

 
Headache, 
menstrual 

irregularity, 

galactorrhea 

 
  Weight 
increase, 
menstrual 

disorder 

 
Menstrual 
disorder, 
polyphagia 

 
Dizzy, 

palpitation, 
sweating, 

irritability 
 

Clinical signs 

 
Truncal obesity, thin 

skin, striae, 
ecchymosis 

 

No special signs 

 

No special signs 

 

No special signs 

 
Truncal obesity, 

acne, thin skin, 
striae 

 
Face broad, nose 

thickened, fingers 
stubby 

 
No diplopia or 

visual field 
defect. 

Truncal obesity, 
facial acne,  

abdominal purple 
striae 

Truncal obesity,  
full moon face, 

buffalo back, lap 
striae 

 
Heart rate 100 

beats per minute, 
degree I goiter 

 
BMI, kg/m2 

 
19.60 

 
20.83 

 
24.60 

 
25.81 

 
23.45 

 
22.64 

 
25.85 

 
23.23 

 
22.43 

 
20.74 

 
Baseline SBP, mmHg 

 
168 

 
112 

 
135 

 
133 

 
150 

 
106 

 
134 

 
124 

 
106 

 
124 

 
Baseline DBP, mmHg 

 
109 

 
76 

 
93 

 
97 

 
100 

 
71 

 
79 

 
78 

 
76 

 
82 

Blood biochemical indices           

 
HbA1c% 

 
14.20 

 
5.50 

 
5.30 

 
4.90 

 
9.30 

 
5.50 

 
5.80 

 
5.30 

 
5.50 

 
4.80 

 
FT3, pmol/L. (range 3.5-6.5) 

 
3.75 

 
4.32 

 
4.66 

 
5.92 

 
2.28 

 
4.64 

 
4.65 

 
3.77 

 
3.53 

 
10.23 

 
FT4, pmol/L.  (range 11.5-22.7) 

 
19.60 

 
20.34 

 
13.56 

 
15.32 

 
13.14 

 
20.28 

 
12.20 

 
16.34 

 
14.32 

 
35.26 

 
TSH, uIU/mL (range 0.55-4.78) 

 
5.31 

 
2.12 

 
3.77 

 
1.93 

 
0.31 

 
0.17 

 
2.26 

 
0.67 

 
0.74 

 
11.42 

TSTO, nmol/L (range female 
0.5-2.6, male <50year 4.94-

32.01) 

 
2.82 

 
1.84 

 
17.60 

 
1.23 

 
0.99 

 
1.22 

 
1.90 

 
2.78 

 
1.61 

 
7.47 

 
FSH, mIU/mL (range female 
2.5- 10.2, male 0.95-11.95) 

 

3.49 

 

3.98 

 

3.20 

 

4.92 

 

2.36 

 

1.20 

 

5.77 

 

3.93 

 

2.52 

 

2.97 

PRL, uIU/mL (range female  
59- 619, male 72.66-407.4) 

 
93.82 

 
329.47 

 
197.87 

 
274.65 

 
124.87 

 
163.25 

 
﹥4240 

 
186.83 

 
248.04 

 
315.78 

 
PRGE, nmol/L (range female 
0.5-4.5, male 0.2-1.040) 

 
2.94 

 
3.28 

 
<0.10 

 
1.93 

 
3.79 

 
2.07 

 
1.01 

 
2.02 

 
6.06 

 
0.60 

LH, mIU/mL (range female 

 1.9- 12.5, male 0.57-12.07) 

 
5.27 

 
6.32 

 
2.91 

 
3.74 

 
1.48 

 
0.14 

 
7.27 

 
5.55 

 
0.60 

 
1.68 

 
E2, pmol/L (range female  

71.6- 529.2, male 40.4-161.5) 

 
451.65 

 
234.75 

 
73.00 

 
156.32 

 
328.48 

 
189.93 

 
616.00 

 
192.88 

 
226.60 

 
86.00 

 
GH, ng/mL (range <8) 

 
- 

 
0.25 

 
0.07 

 
- 

 
0.71 

 
25.00 

 
<0.05 

 
- 

 
- 

 
1.99 

 
IGF-1, ng/mL (range 116-358) 

 
- 

 
- 

 
121.00 

 
- 

 
- 

 
802.00 

 
144.00 

 
- 

 
- 

 
160.00 
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COR,8Am, nmol/L. 

 (range 118.6- 618) 

 
1500.74 

 
356.98 

 
418.95 

 
467.35 

 
939.71 

 
334.76 

 
800.00 

 
757.99 

 
844.25 

 
837.63 

 
COR,4Pm, nmol/L. 

 (range 85.3-459.6) 

 
919.63 

 
176.23 

 
199.53 

 
234.19 

 
666.60 

 
369.51 

 
262.19 

 
737.58 

 
769.63 

 
217.71 

COR,0Am, nmol/L 918.02 75.41 47.18 62.56 424.71 230.00 29.96 661.26 715.14  

 
ACTH,8Am, pmol/L. 
 (range <10) 

 
21.80 

 
3.96 

 
2.93 

 
4.67 

 
25.80 

 
3.11 

 
6.99 

 
10.30 

 
11.80 

 
4.48 

PZC24, nmol/ 24-hour. 

 (range 153.2-789.4) 

 
19607.00 

 
- 

 
- 

 
- 

 
2744.32 

 
- 

 
- 

 
2507.02 

 
1977.92 

 
449.68 

 
1-mg dexamethasone suppression test 
 
COR,8Am, nmol/L 

 
1386.93 

 
- 

 
- 

 
- 

 
812.98 

 
- 

 
- 

 
573.04 

 
692.44 

 
- 

 
PZC24, nmol/ 24-hour 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
8-mg dexamethasone suppression test 
 
PZC24, nmol/ 24-hour 

 
3179.65 

 
- 

 
- 

 
- 

 
99.96 

 
- 

 
- 

 
224.67 

 
141.04 

 
- 

 
MRI scans 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 

 
Pituitary 

microadenomas 
 
ACTH, IPSS 

 
﹥278.00 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
130.40 

 
- 

Transsphenoidal resection  

of the microadenoma 

 
Yes 

 
No 

 
No 

 
No 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Yes 

 
Immunohistochemistry 

 
ACTH (+) 

 
- 

 
- 

 
- 

 
ACTH (+) 

 
GH (+) 

 
PRL (+) 

 
ACTH (+) 

 
ACTH (+) 

 
TSH (+) 

 
TSH, postoperation 

 
1.70 

 
- 

 
- 

 
- 

 
2.10 

 
2.40 

 
1.30 

 
3.20 

 
1.80 

 
2.50 

 
PRL, postoperation 

 
234.56 

 
- 

 
- 

 
- 

 
172.48 

 
198.27 

 
212.47 

 
258.23 

 
317.48 

 
102.39 

 
GH, postoperation 

 
- 

 
- 

 
- 

 
- 

 
- 

 
2.42 

 
- 

 
- 

 
- 

 
- 

 
IGF-1, postoperation 

 
- 

 
- 

 
- 

 
- 

 
- 

 
247.00 

 
- 

 
- 

 
- 

 
- 

 
ACTH, postoperation 

 
6.20 

 
- 

 
- 

 
- 

 
7.30 

 
2.39 

 
4.82 

 
2.53 

 
1.69 

 
9.23 

 
COR, 8Am, postoperation 

 
313.41 

 
- 

 
- 

 
- 

 
219.45 

 
349.32 

 
298.17 

 
122.98 

 
296.92 

 
389.18 

BMI: Body Mass Index. SBP: Systolic Blood Pressure. DBP: Diastolic Blood Pressure. HR: Heart Rate. TSH: Serum Thyroid-stimulating Hormone. FT4: Free T4. FT3: Free T3. TSTO: Testosterone. PRL: Prolactin. PRGE: Progesterone. LH: Luteinizing Hormone. 
E2: Estradiol. GH: Growth hormone. IGF-1: Insulin-like Growth factor-1. COR: cortisol. ACTH: adrenocorticotrophic hormone. PZC24:24-hour urine free cortisol. IPSS: inferior petrosal sinus sampling. MRI: Magnetic Resonance Imaging. ‘-‘ means the item was 
not measured for the patient. 
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Supplementary Table 2. The diagnostic performance was comparable in our PM-CAD system versus radiologists (Test set A, n=100) 

Finding PM-CAD Radiologist 1 Radiologist 2 Radiologist 3 Radiologist 4 Radiologist 5 Radiologist 6 

F1 score 0.9388 (92/98) 
 

[0.8715~0.9772] 

0.7551 (74/98) 
 

[0.6579~0.8364] 

0.7879 (78/99) 
 

[0.6942~0.8636] 

0.8571 (84/98) 
 

[0.7719~0.9196] 

0.8824 (90/102) 
 

[0.8035~0.9377] 

0.9091 (90/99) 
 

[0.8344~0.9576] 

 0.9495(94/99) 
 

 [0.8861~0.9834] 

Accuracy 0.9400 (94/100) 
 

[0.8740~0.9777] 

0.7600 (76/100) 
 

[0.6643~0.8398] 

0.7900 (79/100) 
 

[0.6971~0.8651] 

0.8600 (86/100) 
 

[0.7763~0.9213] 

0.8800 (88/100) 
 

[0.7998~0.9364] 

0.9100 (91/100) 
 

[0.8360~0.9580]  

 0.9500(95/100) 
 
 [0.8872~0.9836] 

Sensitivity 0.9200 (46/50) 
 

[0.8077~0.9778] 

0.7400 (37/50) 
 

[0.5965~0.8537] 

0.7800 (39/50) 
 

[0.6400~0.8847] 

0.8400 (42/50) 
 

[0.7089~0.9283] 

0.9000 (45/50) 
 

[0.7819~0.9667] 

0.9000 (45/50) 
 

[0.7819~0.9667] 

  0.9400(47/50) 
 
 [0.8345~0.9874] 

PPV 0.9583 (46/48) 
 

[0.8575~0.9949] 

0.7708 (37/48) 
 

[0.6269~0.8797] 

0.7959 (39/49) 
 

[0.6566~0.8976] 

0.8750 (42/48) 
 

[0.7475~0.9527] 
 

0.8654 (45/52) 
 

[0.7421~0.9441] 

0.9184 (45/49) 
 

[0.8040~0.9773] 

 0.9592(47/49) 
 

 [0.8602~0.9950] 

Specificity  0.9600 (48/50) 
 

[0.8629~0.9951] 

0.7800 (39/50) 
 

[0.6404~0.8847] 

0.8000 (40/50) 
 

[0.6628~0.8997] 

0.8800 (44/50) 
 

[0.7569~0.9547] 

0.8600 (43/50) 
 

[0.7326~0.9418] 

0.9200 (46/50) 
 

[0.8077~0.9778] 

 0.9600(48/50) 
 

 [0.8629~0.9951] 

NPV 0.9231 (48/52) 
 

[0.8146~0.9786] 

0.7500 (39/52) 
 

[0.6105~0.8597] 

0.7843 (40/51) 
 

[0.6468~0.8871] 

0.8462 (44/52) 
 

[0.7192~0.9312] 

0.8958 (43/48) 
 

[0.7734~0.9653] 

0.9020 (46/51) 
 

[0.7859~0.9674] 

 0.9412(48/51) 
 
 [0.8376~0.9877] 

Note.—Unless otherwise specified, data are shown in percentages, with numbers of images in parentheses and 95% confidence intervals in brackets. F1 score: the harmonic mean of PPV and 
sensitivity. NPV: negative predictive value. PPV: positive predictive value. Radiologist 1 & 2: < 5 years professional experience; Radiologist 3 & 4: 5 - 10 years professional experience; Radiologist 5 
& 6: > 10 years professional experience. 
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Supplementary Table 3. Confusion Matrices achieved by the  PM-CAD  system and radiologists on Test Set A (n=100) 

 
Prediction 

 
PM-CAD (Truth) 

 
Adenoma           Normal 

 
Radiologist 1 (Truth) 

 
  Adenoma      Normal 

 
Radiologist 2 (Truth) 

 
  Adenoma       Normal 

 
Radiologist 3 (Truth) 

 
    Adenoma         Normal 

 
Radiologist 4 (Truth) 

 
   Adenoma      Normal 

 
Radiologist 5 (Truth) 

 
   Adenoma      Normal 

 
Radiologist 6 (Truth) 

 
    Adenoma       Normal 

 
Adenoma 

 
46 (a) 

 
2 (b) 

 
  37 

 
11 

 
  39 

 
10 

 
 42 

 
6 

 
     45 

 
7 

 
   45 

 
4 

 
    47 

 
2 

 
Normal 

 
4 (c) 

 
48 (d) 

 
  13 

 
39 

 
  11 

 
40 

 
 8 

 
44 

 
    5 

 
43 

 
   5 

 
46 

 
    3 

 
48 

Note.—Data are numbers of images. a: true-positive, b: false-positive, c: false-negative, d: true-negative. 
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Legend for Supplementary figures 
 
Supplementary Fig 1. The ROC curves of different PM diagnosis models. Receiver operating 
characteristics (ROC) curves plot the true positive rate (sensitivity) versus the false positive rate (1 
- specificity). The highest area under ROC curve (AUC) value is 0.9813 for PM-CAD. The AUC 
values for other 6 CNN models are also shown. CNN: convolutional neural network.  
 
Supplementary Fig 2. Calibration curves of different PM diagnosis models. Calibration 
curves for predicted versus observed risk in the overall validation cohort, PM-CAD shows 
optimal diagnostic performance.  
 
Supplementary Fig 3. Data distribution diagram. The distribution of functional and 
nonfunctional pituitary microadenomas in the training, validation and test dataset. 
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