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Abstract 1 

Systemic infections, especially in patients with chronic diseases, result in sepsis: an explosive, uncoordinated 2 

immune response that can lead to multisystem organ failure with a high mortality rate. Sepsis survivors and non-3 

survivors oftentimes have similar clinical phenotypes or sepsis biomarker expression upon diagnosis, suggesting 4 

that the dynamics of sepsis in the critical early stage may have an impact on these opposite outcomes. To 5 

investigate this, we designed a within-subject study of patients with systemic gram-negative bacterial sepsis with 6 

surviving and fatal outcomes and performed single-cell transcriptomic analyses of peripheral blood mononuclear 7 

cells (PBMC) collected during the critical period between sepsis recognition and 6 hours. We observed that the 8 

largest sepsis-induced expression changes over time in surviving versus fatal sepsis were in CD14+ monocytes, 9 

including gene signatures previously reported for sepsis outcomes. We further identify changes in the metabolic 10 

pathways of both monocytes and platelets, the emergence of erythroid precursors, and T cell exhaustion signatures, 11 

with the most extreme differences occurring between the non-sepsis control and the sepsis non-survivor. Our 12 

single-cell observations are consistent with trends from public datasets but also reveal specific effects in 13 

individual immune cell populations, which change within hours. In conclusion, this pilot study provides the first 14 

single-cell results with a repeated measures design in sepsis to analyze the temporal changes in the immune cell 15 

population behavior in surviving or fatal sepsis. These findings indicate that tracking temporal expression changes 16 

in specific cell-types could lead to more accurate predictions of sepsis outcomes. We also identify molecular 17 

pathways that could be therapeutically controlled to improve the sepsis trajectory toward better outcomes.18 
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Introduction 1 

Sepsis is an inflammatory syndrome caused by a systemic infection that can lead to multi-system organ 2 

failure and death. Sepsis is responsible for a significant percentage of in-hospital healthcare both in the US and 3 

worldwide and is associated with a high mortality rate 1, 2. Despite many efforts, no targeted therapeutic agents 4 

against sepsis have been developed to assist in the treatment of sepsis. One acknowledged challenge is the 5 

complexity of the disease involving the competing interplay between rampant inflammation (cytokine storm) and 6 

paradoxically, the almost simultaneous shutdown of the immune system (immunoparalysis) 3, 4. Another sepsis 7 

paradox is that some patients with nearly identical clinical phenotypes as quantified by qSOFA and APACHE 8 

scores, die at every stage of the disease while others survive 5. The host response to sepsis has been studied in 9 

several blood and PBMC profiling studies with gene-expression or proteomics methods 6. These identify several 10 

prognostic biomarkers, such as lactate, procalcitonin, C-reactive protein (CRP), ferritin, and erythrocyte 11 

sedimentation rate (ESR), which, along with clinical scores, are standardly utilized to evaluate sepsis patients and 12 

determine their care 5.  13 

However, connecting these high-level observations to accurate clinical outcomes presents an unresolved 14 

challenge, likely due to the complexity and heterogeneity of this disease. To gain molecular insight into this 15 

heterogeneity, many studies have been conducted to identify a potential sepsis molecular signature, which could 16 

aid in diagnosis or treatment 7.  Recently, the first single-cell analysis of the status of immune cells in sepsis was 17 

reported, which identified abnormal monocyte states associated with immune dysregulation 8. Here, we apply the 18 

same approach to focus on the additional question of immune cell trajectory in sepsis survivor and non-survivor 19 

outcomes. We performed single cell transcriptomics analyses in fatal or surviving sepsis using a within-subject 20 

study design of peripheral blood mononuclear cells (PBMC) collected from septic patients in the Intensive Care 21 

Unit (ICU) at 0 and 6 hours from sepsis recognition. Although a limitation in this study is the small sample size 22 

of two sepsis patients, we validated our analyses by comparison with similarly processed PBMC from non-sepsis 23 

volunteers and corroborated our findings with available public domain expression datasets. Our timed analyses 24 

further reveal the emergence of abnormal immune cells, including new types of cells typical of sepsis but not 25 
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present in healthy controls, as well as classical cell types present in both sepsis and healthy conditions but with 26 

an abnormal gene expression profile. Specifically, we observed that fatal sepsis was associated with expansion of 27 

platelets and erythrocyte precursors, and the overall expression of genes related to hypoxic stress and 28 

inflammation that were increased over 6 hours, especially in the monocytes. Additionally, the lymphocyte subsets 29 

in fatal outcomes expressed genes related to exhaustion. On the other hand, sepsis survival over time involved 30 

expression of genes related to recovery from cellular stress, including the regain of cytotoxic effector function for 31 

lymphocyte subsets, and an increase in genes related to monocyte migration and chemotaxis. Last, we observed 32 

a switch in metabolic state at the cellular level, from oxidative phosphorylation to glycolysis in fatal outcomes.  33 

In conclusion, this pilot study, which focused on within-subject analyses of PBMC over time, offers the unique 34 

perspective of dynamic immune cell changes in fatal sepsis. Specifically, we identify abnormal immune cell 35 

subsets, functional pathways and molecular signatures at the single cell resolution that are associated with fatal 36 

or surviving outcomes in sepsis. This study provides foundation data and identifies specific cell subsets and 37 

molecular pathways that can be further explored for better prediction of sepsis outcomes. 38 
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Results 1 

Clinical and immune characteristics of sepsis patients 2 

To gain molecular understanding of the immune state in surviving or non-surviving sepsis outcomes, we 3 

performed retrospective single-cell RNA sequencing on PBMC from two septic shock patients. Both patients 4 

belonged to a cohort of 45 patients admitted with severe sepsis to the RUHS ICU and enrolled in the study based 5 

on Sepsis-3 clinical parameters (manuscript in preparation). Both patients were females, aged between 65 and 70 6 

years old. The first patient expired by 24 hours post-enrollment (NS, non-survivor). The second patient recovered 7 

from infection and was discharged from the hospital after 22 days (S, survivor). Both patients suffered from 8 

Escherichia coli bacteremia and were treated with broad spectrum antibiotics within the first 24 hours. While 9 

clinical parameters (qSOFA and APACHE scores) were similar, both patients exhibited different plasma cytokine 10 

levels, although in both patients these levels were dramatically elevated compared to baseline non-sepsis 11 

volunteers, (Table 1). These results are consistent with the known phenomenon of the sepsis-induced cytokine 12 

storm 4. Interestingly, re-stimulation of PBMC from the same sepsis patients with lipopolysaccharide led to 13 

reduced TNFa secretion as compared to PBMC from non-sepsis controls (Table 1), consistent with monocytic 14 

deactivation seen in sepsis immunoparalysis 9. Additionally, flow cytometric analysis of PBMC revealed different 15 

immune subset distribution with sepsis including reduced monocyte and lymphocyte subsets especially in the 16 

non-survivor (Figure 1). We also observed the emergence of cell subsets that we were unable to define with 17 

common PBMC surface antibodies (Figure 1C). Together, these data reveal similar and distinct clinical and 18 

peripheral immune profiles in sepsis. However, more detailed subsetting of specific immune cells and insights 19 

into how temporal changes in their gene expression relate to sepsis outcome were lacking, which we addressed 20 

by single cell RNA sequencing. 21 

Single-cell transcriptomics reveal distinct immune cell subsets in surviving or fatal sepsis 22 

Single-cell transcriptome analysis was performed on a 10X Genomics platform according to a standard 23 

pipeline (Figure 2A). After quality filtering (see Materials and methods), the transcriptome profiles of 27,685 24 

cells were collected (15,546 cells from two non-sepsis control samples, 5,758 cells from the two sepsis non-25 
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survivor samples, and 6,381 cells from the two sepsis survivor samples). Given that PBMC samples were 26 

processed identically, and equivalent numbers of viable cells from each sample were subjected to single cell 27 

transcriptomics, the ~3-fold decrease in cell number from sepsis patients that passed quality control is likely 28 

caused by the sepsis syndrome and consequent cellular stress and apoptosis. Analysis of the single-cell 29 

transcriptomes of all cells from all subjects (Seurat v3 canonical pipeline 10) followed by the consensus-based 30 

assignment of cell-types to cell clusters (see Materials and Methods section) revealed 10 cell types with the 31 

following overall fractions: CD4+ T cells (21.86%), CD8+ T cells (8.73%), B cells (17.75%), Natural killer (NK) 32 

cells (9.33%), CD14+ monocytes (22.08%), FCGR3A+ monocytes (6.75%), dendritic cells (DC) (0.06%), 33 

erythroid precursor cells (2.45%), platelets (10.66%), and hematopoietic stem and progenitor cells (HSPC) 34 

(0.33%) (Figure 2B-D).  35 

The dominant cell types in the healthy controls (HCs) were CD4 T cells (30.45%), followed by B cells 36 

(25.04%), and then CD14 monocytes (18.80%). In sepsis survivor (S) and non-survivor (NS), we observed an 37 

approximately two-fold decrease in the percentage of CD4 T cells (S, 13.21%; NS, 8.23%) and B cells (S, 10.55%; 38 

NS, 6.06%) as compared to the HCs. CD14+ monocytes showed the opposite trend with the highest percentage 39 

in sepsis survivor (38.44%) as compared to the HC (18.80%) and the non-survivor (12.82%). These population 40 

distributions exhibited similar trends to the flow cytometry analysis (Figure 1), however, we also identified the 41 

expansion of atypical PBMC subsets in sepsis. Specifically, we observed a dramatic increase in erythroid 42 

precursors and platelets in S and NS PBMC. Only traces of these cell types are typically present following PBMC 43 

isolation by gradient centrifugation, therefore their high levels here may suggest abnormal expansion and 44 

activation in sepsis. Specifically, HCs contained 2.88% of platelets and 0.07% of erythroid precursors but both 45 

subsets were elevated in sepsis, especially in the NS samples (37.43% platelets, 10.28% erythroid precursors) and, 46 

to a much lower extent, in the S samples (5.45% platelets, 1.18% erythroid precursors). In general, the populations 47 

of most cell types in the non-survivor were more distant from the healthy controls than the cell populations in the 48 

survivor.  The results obtained with Seurat v3 canonical pipeline were consistent with additional calculations 49 

performed with a slightly different methodology using the MAGIC imputation algorithm 11 and Seurat v4 map to 50 
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reference method 12. The final assignments of cell types were based on the consensus approach (see Materials and 51 

Methods and Supplementary Methods). 52 

We next identified differentially expressed genes (DEGs), and associated pathways (whose down- and 53 

upregulations were evaluated using modules’ scores) by comparisons of sepsis samples and healthy controls 54 

(Sepsis vs. HCs) and sepsis non-survivor versus sepsis survivor samples (NS vs. S) (Table 2). We also performed 55 

temporal comparisons to find DEGs between hour 6 (T6) and hour 0 (T0) (with time counted from sepsis 56 

recognition). This temporal analysis was done separately for sepsis non-survivor (NS T6 vs. T0), and sepsis 57 

survivor (S T6 vs. T0).  Unsurprisingly, the greatest changes were observed between HCs and sepsis patients. 58 

CD14+ and FCGR3A+ monocytes exhibited the highest numbers of DEGs (with comparable numbers of down- 59 

and upregulated genes) and functional pathway changes in all temporal comparisons. Platelets exhibited the 60 

second highest number of DEGs in temporal comparisons, likely related to the striking expansion of this subset 61 

in sepsis, especially in non-survivors. In platelets, almost two times more genes were downregulated in sepsis 62 

compared to controls than upregulated, suggesting transcription shutdown in sepsis. This trend was also observed 63 

when comparing non-survivor to survivor, suggesting that aberrant gene expression and likely transcription 64 

shutdown in platelets was indicative of sepsis severity. When comparing gene expression changes within 6 hours 65 

within the same patient, there were less DEGs. However, we observed a stark contrast in DEGs for lymphocyte 66 

subsets (B cells, T cells, and NK cells); NS exhibited low DEG numbers while S had almost 10-fold more DEGs. 67 

This suggests that lymphocyte subsets undergo more transcriptional changes in surviving outcomes, while in fatal 68 

sepsis, these cells may be exhausted. The opposite trend was observed in platelets, with more dynamic changes 69 

(up and down) occurring in the non-survivor after 6 hours, while there were almost no changes in platelet gene 70 

expression in survivors. Taken together, analysis of major changes in gene expression with regards to immune 71 

subsets identifies that sepsis leads to a loss in lymphocyte subsets and the expansion of platelets and erythroid 72 

precursors, which is more dramatic in fatal sepsis. Additionally, investigation of gene expression over time within 73 

the same sepsis patient suggests that fatal sepsis is associated with transcriptional shutdown especially in T 74 

lymphocytes, while transcriptional recovery of these immune subsets is observed in surviving sepsis. 75 
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MHC class II-related and translation initiation-related genes exhibit distinct sepsis-specific expression 76 

patterns 77 

Studies previously reported the decrease of expression of MHC class II-related genes in immune cells in 78 

sepsis 13-16. We further explored these genes’ expression changes in sepsis, with specific focus on individual cell 79 

types, temporal changes within subjects, and association with survival outcomes. We confirmed that MHC class 80 

II-related genes including CD74, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, 81 

HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, and HLA-DRB5 were down-82 

regulated in sepsis as compared to the HCs, especially in the NS samples. While MHC class II-related gene 83 

expression pattern in both S and NS samples appear to move closer to the HCs in the period from T0 to T6, the 84 

expression of this gene set in S T0 and T6 samples is overall closer to HC's gene expression (Figure 3A) than the 85 

NS samples. Additionally, the temporal trend towards healthy control levels was more apparent in S. For the 86 

analysis of differences in MHC class II gene expression in specific cell types, we used the overall MHC Class II 87 

module score (Supplementary Figure 2A), which provided a more robust measure than individual DEGs and, thus, 88 

more suitable for the smaller number of datapoints. Across most cell types, the MHC class II module score was 89 

decreased in sepsis in comparison with HCs, especially in the non-survivor. 90 

Average expression of genes related to translation initiation (i.e., genes encoding ribosomal proteins) 91 

exhibited a distinctive pattern in sepsis and control samples. In the sepsis survivor (S), these genes, including 92 

those encoding L ribosomal, S ribosomal, and mitochondrial ribosomal proteins 17, were expressed at a higher 93 

level, than in healthy controls and their expression also increased with time (Supplementary Figure 3). The NS 94 

samples had the lowest expression score of the module representing these genes across almost all cell types and, 95 

consequently, the deviation of this module score from healthy controls was also most noticeable in NS samples 96 

(Bonferroni adjusted p-values below 0.01) (Supplementary Figure 2B). The biggest decreases in this module in 97 

NS were observed in platelets, CD14+ monocytes, and FCGR3A+ monocytes. These cell types had over 60 98 

ribosomal proteins encoding genes downregulated in NS as compared to S; other cell types had fewer than 15 99 

significantly downregulated genes in the same comparison, ribosome proteins are listed in Supplementary Table 100 
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1. Interestingly in monocytes, B cells and CD4+ T cells, the ribosomal genes module score was higher in S 101 

samples than in HC, suggesting a mechanism for re-establishment of immune homeostasis in recovery from sepsis. 102 

In contrast, the score was lower in platelets, CD8+ T cells, NK cells, and erythroid precursors. These results are 103 

consistent with previous studies which have demonstrated that sepsis halts protein translation and hypothesized 104 

that this would potentially lead to organ failure 18, 19. Our analysis additionally highlights platelets and monocytes 105 

as the main cell subsets affected in fatal sepsis outcomes, where they exhibit translation shutdown within hours. 106 

Aberrant platelet gene expression is observed in fatal sepsis 107 

The role of platelets in the development of sepsis pathophysiology is not well established. Still, increasing 108 

number of studies are beginning to recognize that platelets are altered in sepsis, and that transcriptional and 109 

translational changes in platelets are related to mortality 20. Out of all the cell types analyzed, platelets contained 110 

the highest number of DEGs in our comparisons of sepsis samples vs. HCs and in comparisons of NS vs. S 111 

samples. Specifically, the number of DEGs in platelets from both comparisons was more than two-fold higher 112 

than in FCGR3A+ monocytes, which ranked second in the number of DEGs in these comparisons (Table 2). 113 

While most DEGs in platelets were down-regulated in sepsis, genes contributing to microvascular coagulation 114 

were up-regulated (64% in Sepsis vs. HC, and 79% in NS vs. S, see Supplementary Table 1 for the list of genes 115 

included in coagulation module). Sepsis non-survivor samples had higher coagulation module scores than HC 116 

and S samples in most cell types, but this trend was most pronounced in platelets (Supplementary Figure 2C). In 117 

contrast, in survivor samples, only platelets exhibited higher coagulation module scores than HC. 118 

In platelets, significant gene expression changes were observed for the Rho GTPases RAC1 and RHOA, 119 

which regulate cell adhesion 21. RAC1, the main GTPase required for cell barrier maintenance and stabilization 120 

was downregulated in NS vs. S comparison (logFC of 0.31 and adjusted p-value < 0.001). RHOA, the GTPase 121 

that negatively regulates barrier properties under both resting and inflammatory conditions was up-regulated in 122 

Sepsis vs. HC (logFC of 0.6 and adjusted p-value < 0.001) (Figure 3B).  In NS, the expression changes in platelets 123 

suggest both increased microvascular permeability and microvascular coagulation. These phenomena may 124 

contribute to the rapid development of multi-organ failure.  125 
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The genes overexpressed in platelets in Sepsis vs. HC and NS vs. S comparisons included MHC class I-126 

related genes such as HLA-A, HLA-B, HLA-C, HLA-E, and HLA-F (Supplementary Figure 2D). In Sepsis vs. 127 

HC comparisons these genes have logFC values between 0.3 and 1.1, while in NS vs. S comparisons the logFC 128 

values were 0.3-0.8, all with adjusted p-values < 0.001. In the NS the score for MHC Class I expression module 129 

also reached the highest values (Supplementary Figure 2D). Platelets are reported to express MHC class I, which 130 

is significantly increased during infection both on their plasma membrane and intracellularly 22, 23, a phenomenon 131 

that may affect CD8+ T cell responses by platelet MHC class I antigen cross-presentation. 132 

The expression modules related to responses to type I IFN, IFN-gamma, and IFN-beta also had the highest 133 

scores in platelets in comparison of NS with other samples (Supplementary Figure 2E-G). Overall, these dramatic 134 

changes in platelet gene expression related to coagulation, CD8 T cell modulation and inflammation suggest that 135 

aberrant platelet function may be predictive of sepsis disease severity and fatality through effects on the 136 

vasculature and immune cells. 137 

Monocyte gene changes are associated with sepsis disease severity 138 

The published studies reporting biomarker genes in sepsis were mostly based on bulk data from all 139 

immune cells from the peripheral blood. The extensive study by Sweeney et al. 7 used a community-based 140 

approach to establish optimized lists of genes whose expressions have the strongest prognostic value for sepsis 141 

mortality and survival. We tested if these lists could be used in single-cell transcriptomic data to provide insights 142 

into cell types crucial for sepsis outcomes. Interestingly, genes linked to sepsis survival were mostly expressed in 143 

monocytes from HC and S T6 samples (Figure 3C). On the other hand, the genes linked to sepsis mortality were 144 

more represented in monocytes from NS and S T0 samples (Figure 3D). 145 

Next, we evaluated monocyte-specific cytokine expression. Compared to HCs, CD14+ monocytes from 146 

sepsis patients were characterized by upregulation of chemokines (CCL3 and CCL4) (Figure 4A). Pro-147 

inflammatory cytokines, chemokines and adipokines including IL6, CCL2, CCL3, CCL4, CCL7, HMGB1, and 148 

NAMPT were overexpressed in NS as compared to S samples (Figure 4B). Amphiregulin (AREG) was also 149 

overexpressed in NS, where it may have a pro-inflammatory role through promoting production of pro-150 
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inflammatory cytokine IL8 (CXCL8) 24. CXCL8 itself was upregulated in NS as compared to S in FCGR3A+ 151 

monocytes (Figure 4D). Another up-regulated gene - EBI3, is also reported to promote pro-inflammatory IL6 152 

functions by mediating trans-signaling 25. Of note, PPBP (CXCL7), a potent neutrophil chemoattractant also 153 

expressed by platelets 26, was one of the top genes upregulated in both monocyte subsets and in both comparisons 154 

(Sepsis vs HC, and NS vs S). These results suggest that monocytes in sepsis are in hyperinflammatory state, which 155 

is more severe in patients with fatal outcomes.  156 

Sepsis survival is associated with increased IFN response and reduced exhaustion in cytotoxic lymphocytes.   157 

The comparison of CD8+ T and NK cells in samples across the three conditions showed that, in cytotoxic 158 

cells, the sepsis survivor (S) had the highest IFN response score, including type I IFN, IFN-γ, IFN-β responses 159 

(Supplementary Figures 2E-G). Conversely, in the same cell types, the sepsis non-survivor (NS) had the lowest 160 

module score of response to IFN-gamma (Supplementary Figure 2F), suggesting that hyporesponsiveness and 161 

lymphocyte exhaustion is associated with fatal outcomes. Independently from that, we assessed lymphocyte 162 

exhaustion level using the exhaustion module comprised of co-inhibitory receptors such as PDCD1, HAVCR2, 163 

LAG3, CD244, ENTPD1, CD38, CD101, TIGIT, and CTLA4 27, and regulators downstream of TCR signaling 164 

pathway such as TOX, NR4A1, and IRF4 28.  The results indicated exhaustion of NK and CD8+ T cells in sepsis 165 

patients as compared to HC (Supplementary Figure 4A). Notably, in NK cells the NS samples had a much higher 166 

exhaustion score than S samples (Supplementary Figure 4B). 167 

We investigated T cell-mediated cytotoxicity using a list of genes associated with GO term “T cell 168 

mediated cytotoxicity” (GO:0001913). Compared to the HCs, sepsis patients had higher expression of genes 169 

associated with T-cell cytotoxicity in CD8+ T cells (Supplementary Figure 4C). However, when comparing NS 170 

and S samples, we observed that CD8+ T and NK cells from NS had significantly lower expression of 171 

cytotoxicity-related genes than S (Supplementary Figure 4D), confirming the exhaustion and immunosuppressed 172 

state of lymphocytes in NS. 173 

Taken together, these transcriptomic findings indicate that NK and T lymphocytes in the sepsis survivor 174 

had a more robust response to IFNs. Although all CD8+ T and NK cells in the sepsis samples exhibited gene 175 
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expression signatures associated with exhaustion, the sepsis survivor had adaptive cytotoxic lymphocytes 176 

activated, while the non-survivor exhibited reduced cytotoxic activity in both innate and adaptive lymphocyte 177 

subsets. These findings support the predictive potential of lymphocyte exhaustion for detrimental outcomes in 178 

sepsis. Consistent with other studies, our findings also support the therapeutic potential of inhibiting lymphocyte 179 

apoptosis and restoring lymphocyte function for new treatments to restore immune homeostasis after sepsis 180 

episodes 29-34. 181 

Sepsis drives metabolic shift and hypoxic stress which is exacerbated in fatal outcomes 182 

The metabolic state of specific immune cells profoundly determines their function. In the steady-state, 183 

immune cells rely on oxidative phosphorylation (OXPHOS) for ATP production as the energy source, maintaining 184 

homeostasis. In sepsis, immune cells such as monocytes undergo the process known as Warburg effect, in which 185 

the metabolism mechanism shifts from OXPHOS to glycolysis by using lactic acid fermentation as the 186 

predominant energy source 35. The transcription factor hypoxia-inducible factor (HIF1A) is a main driver for this 187 

metabolic switch, of relevance to the hypoxemia in severe sepsis 36. We examined HIF1A expression among cell 188 

types across the three conditions (HC, NS, and S). CD14+ monocytes expressed the highest HIF1A levels, 189 

followed by FCGR3A+ monocytes. Most monocytes from the sepsis non-survivor expressed higher levels of 190 

HIF1A than monocytes in the sepsis survivor, where expression of HIF1A was comparable to healthy controls 191 

(Supplementary Figure 5A).   192 

We next evaluated scores of OXPHOS and glycolysis modules in different cell-types using gene lists 193 

reported by Frederick et al. 37. In CD14+ monocytes, FCGR3A+ monocytes, B cells, CD8+ T cells, and NK cells 194 

from sepsis survivor, the scores of OXPHOS module exceeded the corresponding scores in the NS and HC 195 

samples. At the same time in CD4+ T cells, CD8+ T cells, and NK cells from sepsis non-survivor, OXPHOS 196 

module scores were below the corresponding scores in S and HC samples (Figure 5A, Bonferroni adjusted p-197 

value < 0.001). This reduction in OXPHOS in the lymphocytes of sepsis non-survivors is consistent with the 198 

previous observation of lymphocyte exhaustion in fatal sepsis 38. At the same time, the glycolysis module score 199 

was observed in multiple cell types from the sepsis non-survivor to significantly exceed values in NS and HC 200 
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samples (CD14+ monocytes, FCGR3A+ monocytes, and platelets, Bonferroni adjusted p-value < 0.0001). None 201 

of the cell types from the sepsis survivor appeared in the highest module score in glycolysis across three conditions 202 

(Figure 5B). These results indicate that in severe sepsis, monocytes and platelets shift their metabolic function 203 

from OXPHOS to glycolysis, and this shift is more extreme in fatal outcomes. Interestingly, in sepsis platelets 204 

showed increased module scores for both OXPHOS and glycolysis, suggesting metabolic dysfunction and 205 

competition for energy sources. In healthy controls, monocytes and platelets had OXPHOS and glycolysis module 206 

scores significantly below levels observed in both sepsis samples (Bonferroni adjusted p-value < 0.001) (Figure 207 

5A, B), confirming that monocytes and platelets have dysregulated metabolic activity in sepsis patients.  208 

To investigate if HIF1A was the main driver of the observed metabolic changes, and to evaluate which 209 

cell types were responsive to HIF1A, we evaluated correlations between HIF1A expression and 210 

OXPHOS/glycolysis module scores. Cells with no detected HIF1A expression were filtered out, resulting in 211 

14,077 cells suitable for the analysis. Across the three conditions (HC, S and NS), where significant correlation 212 

between HIF1A and OXPHOS was observed (correlation p-value < 0.05), the correlation was negative in CD14+ 213 

Mono, FCGR3A+ Monocytes, and platelets, which had the absolute correlation coefficient |R| above 0.25 and p-214 

value < 0.05 (Supplementary Figure 5B). The similar analysis of correlation between HIF1A expression and 215 

glycolysis showed the opposite effect where CD14+ Mono, FCGR3A+ Monocytes, and platelets across the three 216 

conditions with significant correlation (p-value < 0.05) had a positive correlation coefficient. The highest 217 

correlation coefficients, exceeding 0.25, were observed CD14+ and FCGR3A+ monocytes from the sepsis non-218 

survivor (Supplementary Figure 5C).  219 

 The erythroid precursor expansion observed in the non-survivor sepsis patient was also indicative of 220 

severe hypoxemia in fatal sepsis 39. We compared pathway changes in sepsis vs. HC and NS vs. S. Erythroid 221 

precursors in sepsis expressed genes related to hypoxic stress (oxygen transport, erythrocyte differentiation, 222 

response to oxidative stress, cofactor catabolic process and cellular oxidant detoxification) (Figure 5C). The 223 

pathways that were down-regulated in sepsis vs. HC and NS vs. S (Figure 5C-D), included translational initiation, 224 
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RNA splicing, protein nitrosylation and regulation of sequence-specific DNA binding transcription factor activity, 225 

suggesting that erythroid precursors in sepsis exhibited a halt in protein translation.  226 

Together, these data suggest that the peripheral immune cells in sepsis are responsive to the hypoxic 227 

environment that leads to HIF1A-mediated shifts in metabolic function towards glycolysis, with fatal outcomes 228 

exhibiting more extreme hypoxic stress leading to protein shutdown especially in erythrocyte precursors. These 229 

results support the possibility of therapeutically targeting HIF1A to restore metabolic homeostasis in the sepsis 230 

immune response. 231 

Temporal changes in the transcriptome profile elucidate differences between the survivor and the non-232 

survivor in the first hours of sepsis recognition 233 

To reveal trends associated with recovery and fatal outcomes we analyzed temporal changes of gene 234 

expression in immune cell subsets during the first 6 hours from sepsis recognition. When comparing hour 6 and 235 

hour 0 in sepsis non-survivor (NS T6 vs. T0), the cell type that had the most differentially expressed genes (DEGs) 236 

and pathway changes were the CD14+ monocytes. For the sepsis survivor (S T6 vs. T0 comparison), the cell type 237 

with the highest number of DEGs were the CD4+ T cells, and the cell type with the highest number of pathway 238 

changes were the CD14+ monocytes (Table 2). To examine how CD14+ monocytes contribute to the fatal sepsis 239 

outcome, we investigated functional pathways for which expression was increased in non-survivor (NS T6 vs. 240 

T0) but decreased in survivor (S T6 vs. T0) (Figure 6A). One of the GO pathways associated with fatal outcomes 241 

appeared unrelated to sepsis (‘female pregnancy’). However, the genes in this pathway were involved in tissue 242 

remodeling and fibrosis (eg. CALR/TIMP1/ADM), which are also related to the “inflammatory response to 243 

wounding pathway) potentially suggesting vessel disruption and remodeling in fatal sepsis. Additionally, 244 

pathways related to metabolic dysfunction, and inflammatory and oxidative stress were also increased over time 245 

in fatal sepsis. To examine the role of CD14+ monocytes in sepsis recovery we tested which pathways’ expression 246 

was decreasing in sepsis non-survivor (NS T6 vs. T0) but increasing in sepsis survivor (S T6 vs. T0). Those 247 

functional pathways, likely associated with recovery, included cell migration, and regulation of inflammatory 248 

response (Figure 6E). The above results suggest that within 6 hours of sepsis progression the CD14+ monocytes 249 
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in the non-survivor undergo increasing response to cellular stress and inflammation and trigger tissue remodeling 250 

processes, while exhibiting waning functions of neutrophils, cell migration, and reduced immune cell proliferation. 251 

FCGR3A+ monocytes also exhibited multiple pathways with opposite temporal expression trends in non-survivor 252 

and survivor (NS T6 vs. T0 and S T6 vs. T0, Figure 6B). The only significant pathway which increased over time 253 

in fatal sepsis was regulation of chemokine (genes up in NS T6 are PYCARD/GSTP1/CSF1R, and genes down 254 

in S T6 are HIF1A/CLEC7A/DDX3X), which may suggest that this regulatory monocyte subset in non-survivors 255 

was more immunosuppressed and/or refractory to outside chemotactic signals. In the FCGR3A+ monocytes from 256 

the sepsis survivor, there was an increase of genes over time related to monocyte migration, cell-cell interaction 257 

and metabolic activity, as well as regulation of apoptosis. These suggest a return to homeostasis and normal 258 

monocyte function and increased cell survival.  259 

Among lymphocytes, CD4+ T was the cell type that had the highest number of pathways showing opposite 260 

temporal trends in survivor and non-survivor (NS T6 vs. T0 and S T6 vs. T0, Figure 6C). Interestingly, all these 261 

pathways were decreasing in the CD4+ T cells from non-survivor and increasing in the survivor (Figure 6G).  The 262 

functions of these pathways, possibly associated with recovery, are related to T cell cytotoxic function including 263 

and response to pathogens. This suggests that the rapid recovery of T cells (in particular, their reversal from 264 

exhaustion) may be crucial for positive outcomes in sepsis. 265 

Other cell types where pathways showed opposite temporal trends in non-survivor and survivor (NS T6 266 

vs. T0 and S T6 vs. T0) were the CD8+ T cells, NK cells, and platelets (Supplementary Figures 6A- C). CD8+ T 267 

cells and NK exhibited trends similar to CD4+ T cells, where all pathways with opposite trends were decreasing 268 

in non-survivor (NS T6 vs. T0) but increasing in survivor (S T6 vs. T0). The functions of these pathways were 269 

mainly related to protein synthesis (Supplementary Figures 6D, E). In platelets, the pathways increasing non-270 

survivor (NS T6 vs. T0) but decreasing in survivor (S T6 vs. T0) involved apoptotic, metabolic, and protein 271 

folding processes (Supplementary Figure 6F). 272 

In summary, the analysis of single-cell transcriptomics in sepsis with different outcomes revealed distinct 273 

dynamic trends in expression in immune cell subsets, highlighting the benefits of tracking temporal changes by 274 
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single cell analysis, which could be specifically targeted to improve outcomes. In monocytes, the fatal outcome 275 

appears to be associated with increasing expression of pro-inflammatory pathways but, at the same time, with the 276 

inability to respond to external stimuli. Similarly, in CD4+T cells, increasing exhaustion and hyporesponsiveness 277 

were associated a fatal outcome. For the other PBMC subsets, pathways correlated with a fatal outcome were not 278 

immune-specific, but rather associated with protein production shutdown, that is reflective of dysfunction and 279 

exhaustion, as observed in the monocytes and T cells, respectively. 280 
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Discussion 1 

Sepsis is a dysregulated systemic inflammatory response, which alters the innate and adaptive immune 2 

responses to microbial invasion and results in organ injury with mortality rates of 15–25% 40, 41. Given significant 3 

sepsis disease heterogeneity, single cell transcriptomics offers an valuable approach to provide a better 4 

understanding of the molecular mechanisms of sepsis, however, from over 1000 single-cell transcriptomics 5 

studies have been published to date42, only two studied sepsis 8, 43. In those two studies, the authors focused on 6 

monocytes and myeloid-derived suppressor cells by sorting on specific surface markers. In comparison, our study 7 

used the centrifuge gradient-based approach before performing the single-cell RNA-seq, which expanded the cell 8 

subsets investigated in the study. We additionally collected samples at different time points from a survivor and 9 

non-survivor of sepsis, which provided temporal details of the immune response in severe sepsis. Limitations of 10 

this study include the small sample size, therefore, we focused on two dramatically different clinical outcomes 11 

(fatal versus recovery), while using a within-subject study design where patients had similar clinical syndrome 12 

and sepsis etiology. In these focused analyses were able to identify specific immune cell subsets and gene 13 

expression patterns over time that correlated with beneficial or fatal outcomes. 14 

Our results are consistent with the previous studies both in single-cell and bulk sepsis transcriptomic 15 

studies. The peripheral blood cell composition of non-survivors is much more “distant” from healthy controls 16 

than the blood cells of survivors (Figure 2B-D). In addition, we identify cell types that were not studied by the 17 

previous single-cell studies, which include platelets and erythroid precursors. These were found to be expanded 18 

in sepsis patients, especially in the sepsis non-survivor. Examination of platelets from the non-survivor sepsis 19 

patient revealed increased expression of genes related to microvascular permeability and microvascular 20 

coagulation, which in the literature were reported to lead to the development of organ failure 21. The erythroid 21 

precursors, that were dramatically expanded in non-survivors, showed upregulation of genes related to hypoxic 22 

stress and apoptosis, reflective of the hypoxic environment in severe sepsis that leads to emergency erythropoiesis. 23 

Interestingly, according to a longitudinal COVID-19 study 44, erythroid cells were identified as the hallmark of 24 

severe disease and had defined molecular signatures linked to a fatal COVID-19 disease outcome. Here we also 25 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.21252411doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.01.21252411


observed that erythrocyte expansion and expression of genes related to hypoxic stress was a major predictor of 26 

fatal outcomes. 27 

Consistent with previous studies showing that CD14+ monocytes play a significant role in the sepsis 28 

pathogenesis 45, 46 , we observed aberrant gene expression and pathway changes in the monocytes of sepsis patients, 29 

suggesting they were in a hyperinflammatory state (Table 2, Figure 3C-D). However, in a novel observation, 30 

monocytes from sepsis patients, especially the non-survivor, exhibited signs of being refractory to the external 31 

environment, with reduced expression of interferon responsive genes and the inability to produce TNFa in 32 

response to LPS treatment (Table 1) (Supplementary Figure 2E, F, G). The lymphocytes in the sepsis patients 33 

also showed reduced lymphocyte-mediated functions, with the sepsis survivor showing less lymphocyte 34 

exhaustion performance but maintaining their cytotoxic function (Supplementary Figure 4C-D). When we 35 

focused on the metabolic pathway changes, we found that monocytes and platelets from the sepsis non-survivor 36 

exhibited a switch in their energy utilization, from the OXPHOS to partial OXPHOS and glycolysis (Figure 5A-37 

B). At the same time, the HIF1A expression and metabolic function pathway correlation analyses suggested that 38 

HIF1A was the main driver of changing the metabolic pathways (Supplementary Figure 5B-C).  39 

By exploring the temporal changes in the transcriptome profile from the sepsis non-survivor and the 40 

survivor, we found dramatic differences predominantly involving CD14+ monocytes (Figure 6A). 6 hours 41 

following sepsis recognition, the non-survivor’s CD14+ monocytes demonstrated an intense response to 42 

stimulation, stress, and inflammatory behaviors. In contrast, these pathways were downregulated in the sepsis 43 

survivor during this time (Figure 6D). Further, the survivor’s CD14+ monocytes expressed pathways related to 44 

cell migration, neutrophil function, lymphocyte proliferation, while these were downregulated in the non-survivor 45 

(Figure 6E). Overall, our study suggests that not only the initial status of the sepsis patient but also the dynamic 46 

changes in cell behavior during the critical period following diagnosis significantly effect sepsis outcome. Future 47 

focus on these changes, specifically addressing immune cell metabolic dysfunction and identifying mechanisms 48 

to promote their recovery from exhaustion may provide therapeutic and prognostic insight into sepsis. 49 

 50 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.03.01.21252411doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.01.21252411


Materials and methods 1 

Human blood collection and harvest of PBMCs. 2 

Enrollment: Human peripheral blood was collected from non-sepsis donors from the Riverside Free Clinic and 3 

septic patients with signed informed consent and approval of the University of California, Riverside (UCR, #HS-4 

17-707), and Riverside University Health System (RUHS, #1024190-3) Institutional Review Board. Sepsis 5 

patient enrollment was performed according to the following inclusion criteria: 1/Admission to Intensive Care 6 

Unit; 2/Age greater than or equal to 18 years old; 3/Suspected or confirmed infection; 4/qSOFA score � 2 7 

(qSOFA variables: altered mentation [GCS � 13], systolic blood pressure < 100 mmHg and respiratory rate > 8 

22 breaths/minute) and/or; 5/Lactate greater than or equal to 2.0 mmol/L and on vasopressor therapy to maintain 9 

MAP > 65 mmHg after 30 mL/kg intravenous fluid bolus. 10 

Peripheral blood mononuclear cells (PBMC) analysis: Blood was recovered in Vacutainer glass collection tubes 11 

with heparin (BD Biosciences). PBMC were isolated by gradient centrifugation with Histopaque-1077. Plasma 12 

was recovered for cytokine quantification by cytokine bead array (BD Biosciences), and resistin ELISA, 13 

(Peprotech). Cell aliquots were frozen in liquid nitrogen. Following blood draw, PBMC isolation was performed 14 

within 24 hours through density gradient centrifugation and cells were stored immediately in liquid nitrogen. 15 

Flow cytometry characterization of PBMC involved incubation with Human TruStain FcX™(Biolegend), and 16 

staining with primary antibodies: CD14(HCD14, Biolegend), CD16(3G8, Biolegend), CD66b(G10F5, 17 

eBioscience), CD3(OKT3, eBioScience). Samples were acquired on a BD LSRII and analyzed on FlowJo (v10). 18 

10X genomics: For single cell sequencing, thawed PBMC live cells were recovered by centrifugation-based dead 19 

cell removal kit (Miltenyi) and viable cells confirmed by hemocytometer counting (>85% viable). 15,000 cells 20 

per sample were loaded onto the 10x genomics platform, and cDNA libraries prepared according to 21 

manufacturer’s instructions (Chromium Next GEM Single Cell V3.1). Samples were sequenced at UCSD 22 

Genomics center on the NovaSeq platform at 250M reads/sample. 23 

Process and quality control of the single-cell RNA-seq data. The Cell Ranger Software Suite (v.3.1.0) was 24 

used to perform sample de-multiplexing, barcode processing, and single-cell 5� unique molecular identifier 25 
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(UMI) counting. Specifically, splicing-aware aligner STAR was used in FASTQs alignment. Cell barcodes were 26 

then determined based on the distribution of UMI counts automatically. The following criteria were applied to 27 

each cell of four sepsis samples and two healthy controls: gene number between 200 and 6,000, UMI count > 28 

1,000, and mitochondrial gene percentage < 0.2. After filtering, a total of 27,685 cells were left for the following 29 

analysis. Finally, all samples' filtered gene-barcode matrix was integrated with Seurat v.3 10 to remove batch 30 

effects across different samples.  31 

Dimensionality reduction, clustering and consensus-based cell type annotation. The filtered gene barcode 32 

matrix was normalized using ‘LogNormalize’ method from Seurat package v.3 with default parameters. In the 33 

next step, the vst method implemented in the FindVariableFeatures function of the Seurat package was applied to 34 

find the top 2,000 most variable genes. It was followed by the principal component analysis (PCA) and the 35 

application of the uniform manifold approximation and projection (UMAP) algorithm for cell data visualization 36 

performed based on the top 50 principal components . Then the graph-based clustering was performed by applying 37 

the FindClusters function of the Seurat package on the PCA-reduced data. With  the resolution set to 1, 27,685 38 

cells were grouped into 21 clusters. The first method of assignment of cell types to cell clusters was based on 39 

their canonical markers: B cells (MS4A1 marker), CD14+ monocytes (CD14 and LYZ), CD4+ T cells (IL7R, 40 

CCR7, and CD27), CD8+ T cells (CD8A), DCs (FCER1A, CST3, CD123, and GZMB), erythroid precursors 41 

(GYPB and AHSP), FCGR3A+ monocytes (FCGR3A and MS4A7), Neutrophils (JAML and SERPINB), NK 42 

cells (GNLY and NKG7), and Platelets (PPBP). Independently from this initial marker-based cell type assignment 43 

we applied cell-type annotation tools SingleR 47 and scCATCH 48. The SingleR program first identifies genes 44 

with big variation between cell types in the reference data set, then compares each cell’s scRNA-seq data with 45 

each sample from the reference data set and, lastly, performs iterative fine-tuning to select the most likely cell 46 

type of each cell. The microarray dataset from Human Primary Cell Atlas Data with assigned labels was used as 47 

the reference. Finally, each cluster was assigned a cell type with the highest percentage of cells assigned to that 48 

type by SingleR. The third applied method of cell type assignment was scCATCH, where cell types are assigned 49 

using the tissue-specific cellular taxonomy reference databases 49-51 and the evidence-based scoring protocol. Our 50 

final assignment of cell types to clusters was based on the consensus of the three aforementioned methods as 51 
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follows: First, each cluster was assigned a cell type selected by most methods if possible.  If each method gave a 52 

different result, then the priority was given to the assignment based on canonical markers. If the markers-based 53 

assignment was inconclusive, the consensus assignment was based on the results from SingleR method. 54 

Independently from the main computational pipeline described above, we applied two alternative pipelines: 55 

1) Single-cell RNA-seq data imputation with the MAGIC algorithm with the default settings 11. 2) The Seurat v.4 56 

package which allows skipping the steps of cell clustering and cell annotation, by mapping scRNA-seq 57 

sctransformed normalized data directly to the CITE-seq reference of 162,000 PBMCs (FindTransferAnchors and 58 

MapQuery functions of Seurat v.4) 12. As described in the Results section, the results from these three pipelines 59 

were mostly consistent. 60 

Differential gene expression analysis and functional annotation of genes. The MAST method 52 from the 61 

Seurat v.3 package (implemented in FindAllMarkers function) was used with default parameters to perform 62 

differential gene expression analysis. Differentially expressed genes (DEGs) were found by performing the 63 

following comparisons: sepsis samples to HC (healthy controls), sepsis NS (non-survivor) samples to S (survivor) 64 

samples, NS samples from T6 (hour 6) to NS samples from T0 (hour 0 i.e., sepsis recognition), and S samples at 65 

T6 to S T0. A difference in gene’s expression was considered significant if an adjusted p-value  was below 0.05. 66 

The false discovery rate (FDR) adjustment was performed by MAST. Only genes with FDR-adjusted p-values < 67 

0.05 were considered in the second step of DEG analysis where we analyzed differences between the results of 68 

the comparisons listed earlier. Pathway enrichment analysis was performed by clusterProfiler 53 using database 69 

Gene Ontology biological process terms (GO-BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 70 

pathways. The clusterProfiler program was used for statistical analysis and visualization of functional profiles for 71 

DEGs with FDR-adjusted p-value < 0.05. The results of differential gene expression and functional enrichment 72 

are summarized in Table 2.  73 

Comparison of module scores. We used cell’s module scores as a measure of the degree at which individual 74 

cells expressed certain predefined expression gene sets. The AddModuleScore function from the Seurat v.3 75 

package with default settings was used to perform all calculations and comparisons of module scores. We 76 
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compared expression of modules such as MHC class II, Ribosomal proteins, Coagulation, MHC class I, Response 77 

to type I IFN, Response to interferon-gamma, Response to interferon-beta, Exhaustion, Cytotoxicity, OXPHOS, 78 

and Glycolysis. The lists of genes defining these modules were prepared based on Gene Ontology and literature. 79 

Genes without detectable expression in our data were ignored. The sets of genes defining the modules used in our 80 

analysis are listed in the Supplemental table N. 81 

Statistics. The statistical tools, methods and significance thresholds for each analysis are described in the Results 82 

or Methods section or in the figure legends. 83 

Data availability. The raw data have been deposited with the Gene Expression Omnibus 84 

(www.ncbi.nlm.nih.gov/geo) and the GEO accession, currently underway, will be provided in the final version of 85 

the manuscript. Other supporting raw data are available from the corresponding author upon request. Source data 86 

are provided with this paper. 87 

Code availability. Experimental protocols and the data analysis pipeline used in our work follow the 10X 88 

Genomics and Seurat official websites. The analysis steps, functions and parameters used are described in detail 89 

in the Methods section. Custom scripts for analyzing data are available upon reasonable request. Source data are 90 

provided with this paper. 91 
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Figure Legends 

Figure 1. PBMC flow cytometry analysis. 

Flow cytometric analysis of PBMC from healthy controls (HCs), non-survivor (NS), and survivor (S) sepsis 

patients at first blood collection (T0). A) Gating strategy. B) Fractions of immune cell subsets. C) Fractions of 

immune cell types in PBMC. 

Figure 2. An overview of single-cell transcriptional profiling of PBMC from healthy controls, (HC), 

survivor (S) and non-survivor (NS) of gram-negative sepsis. 

A) The bioinformatics workflow of the single-cell profiling of PBMC (see Methods section for the detailed 

description of methods A,B, and C). B) Fractions of cell-types in each condition. C) The UMAP projection of 

PBMC from HC, S and NS at 0 hour (T0) and 6 hour (T6) post sepsis recognition. The points representing 27,685 

cells are colored according to their types assigned using consensus of three methods (see Methods section). The 

clusters of cells with the largest changes in sepsis are enclosed in colored shapes: erythroid precursors (red circle), 

platelets (orange diamond), B cells (purple hexagon) and CD4+ T cells (blue rectangle). D) Comparison of cell-

type fractions between different conditions (green, red and blue indicate HC, NS and S samples, respectively). 

Each bar shows an average percentage of a given cell-type across all samples from that condition (only cell types 

with fractions over 1% across all samples in a condition are shown). Error bars represent ± SEM for 2 HCs and 2 

samples from each patient (T0 and T6). HC (n = 2), NS (n = 2) and S (n = 2). The significance was evaluated using 

two-sample t-tests. The differences with p-values below 0.05 are indicated as *, “ns” – not significant. 

Figure 3. Gene expression modules and survival and mortality signatures across three analyzed conditions 

(healthy, sepsis survivor and non-sepsis survivor). 

A) The comparison of expression of MHC Class II - related genes in the analyzed samples. Heatmap coloring 

represents z-scored, log-normalized mean gene expression counts averaged across all cells from a given sample. 

B) The percent of cells with non-zero expression of RHOA and RAC1 genes and average expression of these 

genes in platelets across three conditions. The color saturation indicates the average expression level, and the 

circle’s size indicates the percentage of cells expressing a given gene. C), D) Expression of genes from C) survival 
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and D) mortality signatures proposed by Sweeney et.al. 7shown in UMAP-based projections of cells distribution 

in all analyzed samples. Coloring intensity indicates expression levels of each signature. 

Figure 4. Expression changes of genes encoding cytokines in specific cell-types illustrated by volcano plots. 

A) Expression in CD14+ monocytes from sepsis versus HC; B) CD14+ monocytes from NS vs. S; C) FCGR3A+ 

monocytes from sepsis vs. HC;  D) FCGR3A+ monocytes from NS vs. S; Each dot represents one gene, red color 

indicates significantly overexpressed genes (LogFC > 0.5, and FDR adjusted p-value < 0.05); blue indicates 

significantly under expressed genes (0 < LogFC < 0.5, and FDR adjusted p-value < 0.05); green indicates genes 

with LogFC > 0.5, but FDR adjusted p-value > 0.05; gray indicates genes without significant expression 

differences. Cytokines (i.e. genes included in Gene Ontology term “cytokine activity” - GO:0005125) are labeled. 

Volcano plots were prepared with R package EnhancedVolcano 54. 

Figure 5. Comparisons of immune cells from healthy controls versus sepsis non-survivor and survivor. 

A) Oxidative phosphorylation (OXPHOS) module and glycolysis module B) scores of different cell types from 

each sample. The differences with Bonferroni adjusted p-values below 0.01, 0.001, and 0.0001 are indicated as *, 

**, and ***, respectively. The significance analysis was performed using two-sample t-tests. 

C), D) Pathway enrichment when comparing erythroid precursors C) sepsis vs. HC, D) NS vs. S. All the GO 

terms were reduced to representative ones by Revigo 55with similarity at 0.4, then the top 10 -log10 adjust P-value 

were selected shown in the heatmap. 

Figure 6. Opposite temporal changes in pathway expression between sepsis non-survivor and survivor. 

Venn diagrams describing temporal changes in pathways from each sepsis patient. Set labeled ‘NS T0’ contains 

pathways decreasing in NS between T0 and T6, set labeled ‘NS T6’ contains pathways increasing between T0 

and T6 in NS, etc. A) CD14+ monocytes, B) FCGR3A+ monocytes, C) CD4+ T cells. Sets of pathways increasing 

in NS (up-regulated in NS T6 as compared to NS T0) and decreasing in S (down-regulated in S T6 as compared 

to S T0) is colored in orange. Set of pathways decreasing from NS T0 to T6 and increasing from S T0 to T6 re 

colored in green. D) Heatmap illustration of temporal changes of pathways which are changing in opposite 
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direction in NS and in S D),E) in CD14+ monocytes, F),G) in FCGR3A+ monocytes, H) in CD4+ T cells. The 

sets of overlapping GO terms were reduced to representative ones using Revigo 55 (the cutoffs were, more than 

10 overlapping GO terms and similarity > 0.4). 
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  Non-sepsis 
Control1 (HC1) 

Non-sepsis 
Control2 (HC2) 

Sepsis Non-
survivor (NS) Sepsis Survivor (S) 

 
Gender Male Female Female Female  

Age range, 5 year range 35-40 45-50 65-70 65-70  

Sepsis etiology N/A N/A E.coli bacteremia E.coli bacteremia  

APACHE II N/A N/A 38 41  

SOFA N/A N/A 16 15  

Time of Death (days 
post admission) 

N/A N/A 1 N/A  

Plasma (ng/mL)          

Resistin 22.5 36.7 135.9 281  

IL-6 N.D. 0.002 142.3 2.48  

IL-8 0.03 0.026 27.2 0.61  

IL-10 N.D. N.D. 9.71 0.15  

PCT N/A N/A 10.77 94.76  

LPS-induced TNFa 
(ng/mL) 

0.656 0.979 0.0046 0.047  

Lactate (mmol/L) N/A N/A 4.9 14.41  

 
 
 
Table 1. Characteristics of enrolled non-sepsis volunteers and sepsis patients at sepsis recognition (T0). Clinical 
parameters, cytokine levels in the plasma, and supernatant following LPS stimulation (10 ng/mL) of PBMCs. 
APACHE II: Acute physiology and chronic health evaluation II, SOFA: Sequential organ failure assessment, N.D.: 
not detected. 
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 DEGs (FDR < 0.05) 

Cell Type 
Sepsis vs. HC 

(Up/Down 
regulated) 

NS vs. S (Up/Down 
regulated) 

NS T6 vs. T0 
(Up/Down 
regulated) 

S T6 vs. T0 
(Up/Down 
regulated) 

B 274(142/132) 357(153/204) 15(5/10) 101(43/58) 

CD14+ Mono 935(496/439) 582(335/247) 298(149/149) 200(91/109) 

CD4+ T 383(182/201) 386(171/215) 16(0/16) 208(92/116) 

CD8+ T 686(414/272) 577(266/311) 5(0/5) 78(63/15) 

Erythroid 
Precursor 

501(33/468) 23(11/12) 1(1/0) #N/A 

FCGR3A+ 
Mono 

938(551/387) 698(343/355) 110(56/54) 139(80/59) 

NK 587(269/318) 611(255/356) 13(4/9) 187(132/55) 

Platelet 1907(690/1217) 1621(337/1284) 249(136/113) 4(1/3) 

  GO-BP & KEGG pathways (FDR < 0.05) 

B 364(229/135) 282(92/190) 256(209/47) 85(65/20) 

CD14+ Mono 1354(718/636) 565(338/227) 652(259/393) 584(220/364) 

CD4+ T 340(152/188) 505(190/315) 95(0/95) 260(215/45) 

CD8+ T 519(293/226) 422(104/318) 17(0/17) 113(113/0) 

Erythroid 
Precursor 

445(66/379) 153(78/75) 73(73/0) #N/A 

FCGR3A+ 
Mono 

1123(753/370) 907(475/432) 361(120/241) 416(357/59) 

NK 668(275/393) 674(359/315) 35(4/31) 226(181/45) 

Platelet 1516(585/931) 1488(331/1157) 114(63/51) 168(7/161) 

 
Table 2. Numbers of differentially expressed genes (DEGs) and enriched or depleted pathways in all analyzed 
expression comparisons. 
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