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Abstract

Many rare syndromes can be well described and
delineated from other disorders by a combination
of characteristic symptoms. These phenotypic fea-
tures are best documented with terms of the hu-
man phenotype ontology (HPO), which is increas-
ingly used in electronic health records (EHRs), too.
Many algorithms that perform HPO-based gene
prioritization have also been developed, however,
the performance of many such tools suffers from an
overrepresentation of atypical cases in the medical
literature. This is certainly the case if the algo-
rithm cannot handle features that occur with re-
duced frequency in a disorder. With CADA we
built a knowledge-graph that is based on case an-
notations and disorder annotations and show that
CADA exhibits superior performance particularly
for patients that present with the pathognomonic
findings of a disease. Crucial in the design of our
approach is the use of the growing amount of phe-
notypic information that diagnostic labs deposit in
databases such as ClinVar. By this means CADA is
an ideal reference tool for differential diagnostics in
rare disorders that can also be updated regularly.
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1 Introduction

Deep phenotyping of patients with suspected rare
genetic disorders by HPO terminology has become
the de facto standard and is the prerequisite for
several algorithms that prioritize potential disease
genes [1, 2, 3, 4]. Since most of the current ap-
proaches are still heavily based on disease annota-
tions and not case annotations, many of these tools
have become a victim of their own success if they do
not take into consideration how frequently a clini-
cal feature occurs: An entry in OMIM evolves over
time and accumulates also clinical features that oc-
cur rarely: A novel disease-gene-association for a
monogenic disorder usually requires three or more
unrelated patients with a similar phenotype and
mutations in the same gene for a publication in a
peer-reviewed journal. After this initial report, of-
ten a follow-up study is published a few months or
years later that delineates additional clinical fea-
tures of patients with disease-causing mutation in
the same gene. Ideally, such a paper distinguishes
between cardinal symptoms of the disorder and
those that occur less frequently. Additional case
reports are usually just published for patients with
an atypical presentation, while most characteristic
cases will rather be submitted to databases such as
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ClinVar [5].

In early algorithms for semantic similarity
searches, such as the phenomizer, the specificity of
a term is reflected by its information content (IC),
which is defined as the negative natural logarithm
of the frequency a term has been used to annotate a
disease [3]. This approach, however, would result in
comparable similarity scores for a gene, no matter
whether a patient presents with the two pathog-
nomonic findings present in almost all individuals
with this disease, or two rarely occurring features
of similar IC.

From 2019, the HPO project also adds metadata
to disease annotations which includes the frequency
of a clinical feature in a person with a specific dis-
ease, however, this data, especially on the gene an-
notation level is still highly incomplete and incon-
sistent in its methodology. Nevertheless gene pri-
oritization algorithms stand to benefit significantly
from this information and should be ready to in-
clude it, as it is further improved in the future.

Shen et. al. [6] showed that graph embed-
dings of HPO worked well for comparing pheno-
types. We extend this approach to also include
Case Annotations, as well as Disease Annotations
(CADA). With this we obtain a graph which can
be embedded to perform gene prioritization. Com-
pared to previous methods this graph based ap-
proach has the advantage of being weightable with
frequency information.

2 Materials

2.1 Clinical cases

We collected 4,714 clinical cases with varied num-
bers of phenotypic features (terms in Human Phe-
notype Ontology) and a genetic diagnosis on a sin-
gle causal gene from our collaborators and Clinvar.
Only submissions in Clinvar with pathogenic and
likely pathogenic clinical significance were included
in the study and submissions with identical sub-
mitters, HPO terms and disease-causing genes were
considered as a single case.

2.2 Human Phenotype Ontology

The Human Phenotype Ontology (HPO) provides
a standardized and controlled vocabulary of hu-

man phenotypic abnormalities. In HPO, pheno-
typic terms are arranged in a directed acyclic graph
(DAG) and are related to their parent terms by
is_a relationships. In our study, we used the Hu-
man Phenotype Ontology released on 2020-03-27,
containing 14,586 human phenotypic terms and
18,416,0 hierarchical relationships between these
terms.

2.3 Gene-phenotype annotations

The HPO team also provides an annotation file that
provides links between genes and HpPO terms. This
mapping is based on data mining of resources such
as OMIM and Orphanet. In detail, 4,315 disease-
causing genes and 169, 281 unique gene-HPO term
associations are included in our study.

Phenopackets, each consisting of a patient-
specific list of HPO-terms and a disease gene, were
compiled from electronic patient records of 4714
molecularly confirmed cases [7]. Pathogenic muta-
tions and HPO-terms of an increasing number of
these cases have also been submitted to ClinVar,
which supports phenotype-rich submissions since
2017 [5]. Of these 4714 cases, we obtained 2577
directly from ClinVar and 2137 where contributed
by clinical collaborators.

3 Methods

3.1 Encoding the data

Comparing nominal data is difficult as there is no
mathematical basis to predict similarity. For many
problems in the past, embedding the data into a
vector space has proven as a good way to allow for
statistical computation on nominal data. [8] For
the purpose to measure similarity between pheno-
types and genes, we embedded the nominal data
encoded in HPO and the associated gene for each
phenotype. There are several methods of embed-
ding an ontology into a vector space, however it
is worth noting that HPO only utilises one type
of edge and therefore can also be read as a sim-
ple graph, with edge pairs instead of triples. Shen
et.al. [6] showed that this approach worked well for
embedding HPoO.

As opposed to Shen et.al. we also add in gene
associations and obtain a graph G with two types
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Figure 1: General workflow of encoding the data
into the graphs. The initial network Gg was
constructed from the DAG structure and gene-
phenotype annotations from HPO in (A). It con-
sists of the nodes and grey edges in (C). The net-
work was further extended by red edges in by clin-
ical cases in (B).

of nodes. Vp, the set of phenotypes present in HPO
and Vg, the set of disease-causing genes. There
are two sets of edges in the graph, phenotype to
phenotype edges Epp C {(p1,p2)|p1,p2 € Vp} and
phenotype to gene edges Epc C {(p,9)|p € Vp,g €
Vi}. So the Graph encoding all relationships is
G = (Vp UVeg, Epp U Epg).

With this definition we are now able to read in
a case C, which usually consists of a list of pheno-
types Po C Vp and the diagnosed disease causing
gene go € Vi as a set of edges Ec = {(p,gc)|p €
P¢}. Easily allowing us to extend our graph G by
the information present in the case (see Figure 1).

3.2 Embedding the data into a vec-
tor space

With the data represented as a graph, Go, we used
Node2Vec to create the vector space embedding [9].
For this purpose, Node2Vec first starts (weighted)
random walks on the graph Gy from each of the
nodes. These random walks are interpreted as

words that can be embedded into an FEuclidean
space using a SkipGram neural network, which is
an essential part of the Word2Vec method [8]. More
specifically, we aim to maximize the probability of
a node v’s context R within a contextual window
of length c:

Here r; denotes the i-th word (i.e. node sequence)
generated by a random walk. p(r; | r;) is the out-
put of the SkipGram neural network that is defined
with a softmax function

exp —((vi, vj))
7c§jgceXP_(<Vian>)

p(rj | ri) = 5

where vi, v; are vector representations of words r;
and r; in the hidden layer. Notably, the SkipGram
neural network is trained with one-hot vector en-
coding of word pairs as input. The network aims
for learning the probability of observing word r; in
the context (i.e. in the “neighborhood”) of r; by
maximizing »_, L(v) over all nodes v in the graph
Go. We refer to [8] for more details about Skip-
Gram.

To train the Node2Vec model, we split the 4714
patients into a training, validation and test sets
with the ratios 60%, 20% and 20%. Note, that Gy
does not contain any case data initially and is only
constructed from HPO and the mapping of terms
to genes. Cases from the training set were added
gradually into Gy. We will denote with e.g. G
that p% of the training patients were added into
the graph. The Node2Vec model was trained on
Go, Gas, G75 and G1gg, where hyperparameter op-
timisation was performed for each of them using
the validation set. The Optuna [10] library was
used for a Bayesian hyperparameter optimisation.
A detailed list of tuned hyperparameters can be
found in the Supplemental material.

3.3 Using Edge Confidences

In principle each gene to phenotype association
should be weighted by clinical case frequency. That
means there is a weighting function h : Epg —
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[0,1]. Accordingly, for a given node v the probabil-
ity to reach any direct neighbor ¢ during a one-step
random walk is then

Wyq

ZreN(v) Wyr

where N (v) denotes the neigborhood of node v and
Wyq the weight of the edge v — ¢.

Unfortunately, frequencies of gene to phenotype
associations are not known on the population level.
However, in order to test the principle concept we
optionally tested an approach, in which we simply
incremented for every gene to phenotype associa-
tion reported in patients in our training data the
weight of an edge by 1.

3.4 Link prediction

Node2Vec learns a function f : V — R? that em-
beds nodes into a vector space. The problem of
disease gene prioritization can be interpreted as as
a link prediction task between phenotype and gene
nodes. This can be achieved by measuring the sim-
ilarity of putative disease genes to phenotypes in
the vector space via the dot product. Hence, for
any new case C' with a set of phenotypes Po C Vp,
a ranking of genes g can be achieved via:

Vg e Vg SC

DI

PGPC

Therefore we can rank genes for each case and
compute a top-N accuracy for the test set.

4 Results

4.1 Robustness of the randomized
aspects

As the embedding method is based on a random
walk the edge embeddings obtained from Node2Vec
will be slightly different each time they are cre-
ated. Therefore each experiment was repeated with
10 different embeddings obtained from the same
graph. Results comparing top-IV accuracies are av-
erage results of these 10 embeddings and have error
margins (signified by error bars in figures) associ-
ated with them. However the error margins for this
method were vanishingly small and around 1% for
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Figure 2: Validation accuracy with standard errors
during the graph extension.

each top-N accuracy. This shows that the method,
despite its randomization, is highly robust.

4.2 Effects of adding case data

Even without using our weighting scheme, adding
the case data into our graph Gy before the em-
bedding improves top-N accuracy significantly for
validation cases (Figure 2). The model from un-
weighted G1gg achieves the best validation results.

Similarly, the weighted graph models were also
validated through a same approach, among which
the weighted G199 model achieves the best valida-
tion results. To test the performance of unweighted
and weighted models, we evaluated the Gy, un-
weighted G1gg and weighted G199 models with the
testing set of 943 patients. Figure 3 shows that
all top-N accuracy scores improve around 7-10%
by introducing new associations from cases annota-
tions. Moreover, by adding the very simple weight-
ing scheme we propose, the results further improve
3-4%.

4.3 Comparison to other methods

Since the weighting scheme is purely heuristic, we
used the unweighted G199 as the final model to
compare with other gene prioritization tools on our
test data. However, the restrictions some of the
other tools have make a direct comparison difficult.
Gado, for instance, can only handle a subset of the
phenotypes present in HPO. Thus, it was unable to
recognise phenotypic features for around 200 of our
test cases. AMELIE requires a pre-selected list of
at most 1,000 genes to prioritise, which represents
less than one fourth of the 4,315 known disease-
causing genes we collected. Only Phen2Gene had
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Figure 3: Performance comparison of unweighted
and weighted models. The performance of un-
weighted G, G190 and weighted G199 models was
assessed on 943 testing patients by topN accuracy
metrics.

directly comparable capabilities to CADA. There-
fore, we compared our model to Phen2Gene with
the complete list of genes (Figure 4 A) and per-
formed an additional test where 1000 randomly se-
lected genes, including the target gene, where prior-
itized by CADA, Phen2Gene and AMELIE (Figure
4 B). The comparison tests show that CADA out-
performs the other tools even with the unweighted
setup.

The comparison tests show that CADA outper-
forms the other tools even with the unweighted
setup under both tasks on our test cases. With
further improvements when adding in our experi-
mental weighting scheme, the advantage of CADA
will be more noticeable. However, Phen2Gene also
has further capabilities of identifying potential new
disease causing genes. Whilst this wouldn’t affect
performance in the experimental setup where a list
of 1000 genes was given, it will make the prioriti-
zation task naturally harder for Phen2Gene in the
general setup.

4.4 Performance comparison for

gene prevalence groups

To further study how the prevalence of a gene af-
fects its performance by our model, disease-causing
genes in case annotations were classified into three
prevalence groups based on their frequencies in
our case data: common (frequency>= 20), rare
(5 <=frequency<= 19), ultra rare (frequency<=

EE Common genes
= Rare genes
Ultra-rare genes

. B [ |

100

% of Cases with Causal Gene in List

topl tops tops0 tp100

top10
Ranked Gene Lists

Figure 6: Performance improvement of
prevalence groups during the graph exten-
sion. The bars show the accuracy of the Gigg
model with white markers indicating the accuracy
of the Gy model.

4). The number of genes in three prevalence groups
and their corresponding patient numbers among
training cases are shown in Table 1.

For the graph extension process, Figure 5A
presents the overall distribution of introduced as-
sociations among three prevalence groups. Divided
by the number of cases and genes in Table 1, the
overall distribution was converted to the average
distribution of a case (Figure 5 B) and a gene (Fig-
ure 5 C) within three prevalence groups.

The performance of test patients was also eval-
uated accordingly within above-mentioned groups
before and after the graph extension. As illustrated
in Figure 6, the bars show the accuracy of the G1gg
model with white markers indicating the one from
the Gy model. The significant improvement for
common genes might result from the forming of
abundant new edges on them during the process,
as showed in Figure 5 C.

5 Discussion

CADA’s underlying graph structure and embed-
ding strategy will enable improvements in the fu-
ture, also due to its modular design.

Whilst already obtaining comparable results to
current tools without weighting the graph, the po-
tential of weighting edges with frequency informa-
tion is another big advantage of this graph-based
approach. Even with a very simple heuristic we
were able to improve results significantly. With
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Table 1: The sum of genes and cases within three prevalence groups.

Gene prevalence groups

Number of genes

Number of training cases

Common 30
Rare 193
Ultra rare 810

HPO currently working on adding frequency infor-
mation to their database and resources like Or-
phanet conducting research into frequencies there
is high potential for improving this method with a
more sophisticated weighting scheme.

Another promising avenue is the rapidly devel-
oping field of graph embeddings. Node2Vec was
the current most suitable embedding tool we used,
however this is a rapidly evolving field, as it has
many applications even far beyond medical re-
search. With the current setup for CADA the
graph embedding tool can easily be replaced in the
future if more promising tools are published.

Robinson, et al. recently introduced a frame-
work for estimating posttest probabilities based on
likelihood ratios for genotype-phenotype data [11].
By this means, the contribution of each phenotypic
feature to a suggested diagnosis can be computed,
which is particularly helpful for the clinical inter-
pretation of the results. While LIRICAL is working
by default with disease prevalences as pretest prob-
ability, it hast also been suggested that other priors
e.g. the output of CADA, could be used to refine
the output.

In future research we would like to extend the un-
derlying Graph used by CADA with Gene to Gene

725
988
1115

links to allow for discovery capabilities similarly to
Phen2Gene.

The code for CADA, can be found here:
https://github.com/Chengyao-Peng/CADA.
This code can be used to process a single case
in seconds on a regular laptop via commandline,
allowing for large scale reprocessing of cases.

Furthermore we're making this tool avail-
able to anyone via a web interface at
https://cada.gene-talk.de/webservice/.
This version will be updated with new ClinVar
cases on a regular basis, and is therefore expected
to improve over time.

6 Data Availability

The Data used in this paper can be found at
https://github.com/Chengyao-Peng/CADA.

7 Conflict of interest state-
ment.
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