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 2 

Abstract 24 

Saliency methods, which “explain” deep neural networks by producing heat maps that 25 

highlight the areas of the medical image that influence model prediction, are often 26 

presented to clinicians as an aid in diagnostic decision-making. Although many saliency 27 

methods have been proposed for medical imaging interpretation, rigorous investigation 28 

of the accuracy and reliability of these strategies is necessary before they are integrated 29 

into the clinical setting. In this work, we quantitatively evaluate seven saliency methods—30 

including Grad-CAM, Grad-CAM++, and Integrated Gradients—across multiple neural 31 

network architectures using two evaluation metrics. We establish the first human 32 

benchmark for chest X-ray segmentation in a multilabel classification set up, and examine 33 

under what clinical conditions saliency maps might be more prone to failure in localizing 34 

important pathologies compared to a human expert benchmark. We find that (i) while 35 

Grad-CAM generally localized pathologies better than the other evaluated saliency 36 

methods, all seven performed significantly worse compared with the human benchmark; 37 

(ii) the gap in localization performance between Grad-CAM and the human benchmark 38 

was largest for pathologies that had multiple instances, were smaller in size, and had 39 

shapes that were more complex; (iii) model confidence was positively correlated with 40 

Grad-CAM localization performance. While it is difficult to know whether poor localization 41 

performance is attributable to the model or to the saliency method, our work demonstrates 42 

that several important limitations of saliency methods must be addressed before we can 43 

rely on them for deep learning explainability in medical imaging. 44 

 45 

Introduction 46 
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Deep learning has enabled automated medical imaging interpretation at the level of 47 

practicing experts in some settings1–3. While the potential benefits of automated 48 

diagnostic models are numerous, lack of model interpretability in the use of “black-box” 49 

deep neural networks (DNNs) represents a major barrier to clinical trust and adoption4–6. 50 

In fact, it has been argued that the European Union’s recently adopted General Data 51 

Protection Regulation (GDPR) affirms an individual’s right to an explanation in the context 52 

of automated decision-making7. Although the importance of DNN interpretability is widely 53 

acknowledged and many techniques have been proposed, little emphasis has been 54 

placed on how best to quantitatively evaluate these explainability methods8. 55 

 56 

One type of DNN interpretation strategy widely used in the context of medical imaging is 57 

based on saliency (or pixel-attribution) methods9–12. Saliency methods produce heat 58 

maps highlighting the areas of the medical image that most influenced the DNN’s 59 

prediction. Since saliency methods provide post-hoc interpretability of models that are 60 

never exposed to bounding box annotations or pixel-level segmentations during training, 61 

they are particularly useful in the context of medical imaging where ground-truth 62 

segmentations can be especially time-consuming and expensive to obtain. The heat 63 

maps help to visualize whether a DNN is concentrating on the same regions of a medical 64 

image that a human expert would focus on, rather than concentrating on a clinically 65 

irrelevant part of the medical image or even on confounders in the image13–15. Saliency 66 

methods have been widely used for a variety of medical imaging tasks and modalities 67 

including, but not limited to, visualizing the performance of a convolutional neural network 68 

(CNN) in predicting (1) myocardial infarction16 and hypoglycemia17 from 69 
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electrocardiograms, (2) visual impairment18, refractive error19, and anaemia20 from retinal 70 

photographs, (3) long-term mortality21 and tuberculosis22 from chest X-ray (CXR) images, 71 

and (4) appendicitis23 and pulmonary embolism24 on computed tomography scans. 72 

However, recent work has shown that saliency methods used to validate model 73 

predictions can be misleading in some cases and may lead to increased bias and loss of 74 

user trust in high-stakes contexts such as healthcare25–28. Therefore, a rigorous 75 

investigation of the accuracy and reliability of these strategies is necessary before they 76 

are integrated into the clinical setting29. 77 

 78 

In this work, we perform a systematic evaluation of seven common saliency methods in 79 

medical imaging (Grad-CAM30, Grad-CAM++31, Integrated Gradients32, Eigen-CAM41, 80 

DeepLIFT42, Layer-Wise Relevance Propagation43, and Occlusion44) using three common 81 

CNN architectures (DenseNet12133, ResNet15234, Inception-v435). In doing so, we 82 

establish the first human benchmark in CXR segmentation by collecting radiologist 83 

segmentations for 10 pathologies using CheXpert, a large publicly available CXR 84 

dataset36. To compare saliency method segmentations with expert segmentations, we 85 

use two metrics to capture localization accuracy: (1) mean Intersection over Union, a 86 

metric that measures the overlap between the saliency method segmentation and the 87 

expert segmentation, and (2) hit rate, a less strict metric than mIoU that does not require 88 

the saliency method to locate the full extent of a pathology. We find that (1) while Grad-89 

CAM generally localizes pathologies more accurately than the other evaluated saliency 90 

methods, all seven perform significantly worse compared with a human radiologist 91 

benchmark (although it is difficult to know whether poor localization performance is 92 
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attributable to the model or to the saliency method); (2) the gap in localization 93 

performance between Grad-CAM and the human benchmark is largest for pathologies 94 

that have multiple instances on the same CXR, are smaller in size, and have shapes that 95 

are more complex; (3) model confidence is positively correlated with Grad-CAM 96 

localization performance. We publicly release a development dataset of expert 97 

segmentations, which we call CheXlocalize, to facilitate further research in DNN 98 

explainability for medical imaging. 99 

 100 

Results 101 

Framework for evaluating saliency methods 102 

Seven methods were evaluated—Grad-CAM, Grad-CAM++, Integrated Gradients, Eigen-103 

CAM, DeepLIFT, Layer-Wise Relevance Propagation (LRP), and Occlusion—in a multi-104 

label classification setup on the CheXpert dataset (Fig. 1a). We ran experiments using 105 

three CNN architectures previously used on CheXpert: DenseNet121, ResNet152, and 106 

Inception-v4. For each combination of saliency method and model architecture, we 107 

trained and evaluated an ensemble of 30 CNNs (see Methods for ensembling details). 108 

We then passed each of the CXRs in the dataset’s holdout test set into the trained 109 

ensemble model to obtain image-level predictions for the following 10 pathologies: 110 

Atelectasis, Cardiomegaly, Consolidation, Edema, Enlarged Cardiomediastinum, Lung 111 

Lesion, Lung Opacity, Pleural Effusion, Pneumothorax, and Support Devices. Of the 14 112 

observations labeled in the CheXpert dataset: Fracture and Pleural Other were not 113 

included in our analysis because they had low prevalence in our test set (fewer than 10 114 

examples); Pneumonia was not included because it is a clinical (as opposed to a 115 
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radiological) diagnosis; and No Finding was not included because it is not applicable to 116 

evaluating localization performance. For each CXR, we used the saliency method to 117 

generate heat maps, one for each of the 10 pathologies, and then applied a threshold to 118 

each heat map to produce binary segmentations (top row, Fig. 1a). Thresholding is 119 

determined per pathology using Otsu’s method37, which iteratively searches for a 120 

threshold value that maximizes inter-class pixel intensity variance. We also conducted a 121 

second thresholding scheme in which we iteratively search for a threshold value that 122 

maximizes per pathology mIoU on the validation set. Both thresholding schemes reported 123 

similar findings (see Extended Data Fig. 1). The result shows that our evaluation of 124 

localization performance is robust to different saliency map thresholding schemes. 125 

Additionally, to calculate the hit rate evaluation metric (described below), we extracted 126 

the pixel in the saliency method heat map with the largest value as the single most 127 

representative point on the CXR for that pathology. 128 

 129 

We obtained two independent sets of pixel-level CXR segmentations on the holdout test 130 

set: ground-truth segmentations drawn by two board-certified radiologists (middle row, 131 

Fig. 1a) and human benchmark segmentations drawn by a separate group of three board-132 

certified radiologists (bottom row, Fig. 1a). The human benchmark segmentations and the 133 

saliency method segmentations were compared with the ground-truth segmentations to 134 

establish the human benchmark localization performance and the saliency method 135 

localization performance, respectively. Additionally, for the hit rate evaluation metric, the 136 

radiologists who drew the benchmark segmentations were also asked to locate a single 137 

point on the CXR that was most representative of the pathology at hand (see 138 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2022. ; https://doi.org/10.1101/2021.02.28.21252634doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

Supplementary Figs. S1 through S11 for detailed instructions given to the radiologists). 139 

Note that the human benchmark localization performance demonstrates interrater 140 

variability, and we use it as a reference when evaluating saliency method pipelines. 141 

 142 

We used two evaluation metrics to compare segmentations (Fig. 1b). First, we used mean 143 

Intersection over Union (mIoU), a metric that measures how much, on average, either the 144 

saliency method or benchmark segmentations overlapped with the ground-truth 145 

segmentations. Second, we used hit rate, a less strict metric that does not require the 146 

saliency method or benchmark annotators to locate the full extent of a pathology. Hit rate 147 

is based on the pointing game setup38, in which credit is given if the most representative 148 

point identified by the saliency method or the benchmark annotators lies within the 149 

ground-truth segmentation. A “hit” indicates that the correct region of the CXR was 150 

located regardless of the exact bounds of the binary segmentations. Localization 151 

performance is then calculated as the hit rate across the dataset39. In addition, we report 152 

the sensitivity and specificity values of the saliency method pipeline and the human 153 

benchmark in Extended Data Fig. 2. 154 
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 155 

Fig. 1 | Framework for evaluating saliency methods. a, Top row left: a CXR image 156 
from the holdout test set is passed into an ensemble CNN trained only on CXR images 157 
and their corresponding pathology task labels. Saliency method is used to generate 10 158 
heat maps for the example CXR, one for each task. The pixel in the heat map with the 159 
largest value is determined to be the single most representative point on the CXR for 160 
that pathology. Top row middle: there are three pathologies present in this CXR (Airspace 161 
Opacity, Pleural Effusion, and Support Devices). Top row right: a threshold is applied to 162 
the heat maps to produce binary segmentations for each present pathology. Middle row: 163 
Two board-certified radiologists were asked to segment the pathologies that were 164 
present in the CXR as determined by the dataset’s ground-truth labels. Saliency method 165 
annotations are compared to these ground-truth annotations to determine “saliency 166 
method localization performance”. Bottom row: Two board-certified radiologists 167 
(separate from those in middle row) were also asked to segment the pathologies that 168 
were present in the CXR as determined by the dataset’s ground-truth labels. In addition, 169 
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these radiologists were asked to locate the single point on the CXR that was most 170 
representative of each present pathology. These benchmark annotations are compared 171 
to the ground-truth annotations to determine “human benchmark localization 172 
performance”. b, Left: CXR with ground-truth and saliency method annotations for 173 
Pleural Effusion. The segmentations have a low overlap (IoU is 0.078), but pointing game 174 
is a “hit” since the saliency method’s most representative point is inside of the ground-175 
truth segmentation. Right, CXR with ground-truth and human benchmark annotations 176 
for Enlarged Cardiomediastinum. The segmentations have a high overlap (IoU is 0.682), 177 
but pointing game is a “miss” since saliency method’s most representative point is 178 
outside of the ground-truth segmentation. 179 
 180 

Evaluating localization performance 181 

In order to compare the localization performance of the saliency methods with the human 182 

benchmark, we first used Grad-CAM, Grad-CAM++, and Integrated Gradients to run 183 

eighteen experiments, one for each combination of saliency method (Grad-CAM, Grad-184 

CAM++, or Integrated Gradients) and CNN architecture (DenseNet121, ResNet152, or 185 

Inception-v4) using one of the two evaluation metrics (mIoU or hit rate) (see Extended 186 

Data Fig. 3). We also ran experiments to evaluate the localization performances of 187 

DenseNet121 with Eigen-CAM, DeepLIFT, LRP, and Occlusion. We found that Grad-188 

CAM with DenseNet121 generally demonstrated better localization performance across 189 

pathologies and evaluation metrics than the other combinations of saliency method and 190 

architecture (see Table 1 for localization performance on the test set of all seven saliency 191 

methods using DenseNet121). Accordingly, we compared Grad-CAM with DenseNet121 192 

(“saliency method pipeline”) with the human benchmark using both mIoU and hit rate. The 193 

localization performance for each pathology is reported on the true positive slice of the 194 

dataset (CXRs that contain saliency method, human benchmark, and ground-truth 195 

segmentations). Localization performance was calculated this way so that saliency 196 

methods were not penalized by DNN classification error: while the benchmark radiologists 197 
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were provided with ground-truth labels when annotating the dataset, saliency method 198 

segmentations were created based on labels predicted by the model. (See Extended Data 199 

Fig. 4 for saliency method pipeline localization performance on the full dataset using 200 

mIoU.) 201 

 202 

We found that the saliency method pipeline demonstrated significantly worse localization 203 

performance when compared with the human benchmark using both mIoU (Fig. 2a) and 204 

hit rate (Fig. 2b) as an evaluation metric, regardless of model classification AUROC. For 205 

each metric, we report the 95% confidence intervals using the bootstrap method with 206 

1,000 bootstrap samples40. For five of the 10 pathologies, the saliency method pipeline 207 
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had a significantly lower mIoU than the human benchmark. For example, the saliency 208 

method pipeline had one of the highest AUROC scores of the 10 pathologies for Support 209 

Devices (0.969), but had among the worst localization performance for Support Devices 210 

when using both mIoU (0.163 [95% CI 0.154, 0.172]) and hit rate (0.357 [95% CI 0.303, 211 

0.408]) as evaluation metrics. On two pathologies (Atelectasis and Consolidation) the 212 

saliency method pipeline significantly outperformed the human benchmark. On average, 213 

across all 10 pathologies, mIoU saliency method pipeline performance was 26.6% [95% 214 

CI 18.1%, 35.0%] worse than the human benchmark, with Lung Lesion displaying the 215 

largest gap in performance (76.2% [95% CI 59.1%, 87.5%] worse than the human 216 

benchmark) (Extended Data Fig. 5). Consolidation was the pathology on which the mIoU 217 

saliency method pipeline performance exceeded the human benchmark the most, by 218 

56.1% [95% CI 42.7%, 69.4%]. For seven of the 10 pathologies, the saliency method 219 

pipeline had a significantly lower hit rate than the human benchmark. On average, hit rate 220 

saliency method pipeline performance was 29.4% [95% CI 15.0%, 43.2%] worse than the 221 

human benchmark (Extended Data Fig. 6), with Lung Lesion again displaying the largest 222 

gap in performance (65.9% [95% CI 35.3%, 91.7%] worse than the human benchmark). 223 

The hit rate saliency method pipeline did not significantly outperform the human 224 

benchmark on any of the 10 pathologies; for the remaining three of the 10 pathologies, 225 

the hit rate performance differences between the saliency method pipeline and the human 226 

benchmark were not statistically significant. Therefore, while the saliency method pipeline 227 

significantly underperformed the human benchmark regardless of evaluation metric used, 228 

the average performance gap was larger when using hit rate as an evaluation metric than 229 

when using mIoU as an evaluation metric. 230 
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 231 

We compared saliency method pipeline localization performance using an ensemble 232 

model to localization performance using the top performing single checkpoint for each 233 

pathology. We found that the single model has worse localization performance than the 234 

ensemble model for all pathologies when using mIoU and for six of the 10 pathologies 235 

when using hit rate (see Extended Data Fig. 7). 236 

 237 
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Fig. 2 | Evaluating localization performance. a, Comparing saliency method pipeline 238 
and human benchmark localization performances under the overlap evaluation scheme 239 
(mIoU). b, Comparing saliency method pipeline and human benchmark localization 240 
performances under the hit rate evaluation scheme. For both a and b, pathologies, along 241 
with their DenseNet121 AUROCs, are sorted on the x-axis first by statistical significance 242 
of percentage decrease from human benchmark mIoU/hit rate to saliency method 243 
pipeline mIoU/hit rate (high to low), and then by percentage decrease from human 244 
benchmark mIoU/hit rate to saliency method pipeline mIoU/hit rate (high to low). 245 
 246 

Characterizing underperformance of saliency method pipeline 247 

In order to better understand the underperformance of the saliency method pipeline 248 

localization, we first conducted a qualitative analysis with a radiologist by visually 249 

inspecting both the segmentations produced by the saliency method pipeline (Grad-CAM 250 

with DenseNet121) and the human benchmark segmentations. We found that, in general, 251 

saliency method segmentations fail to capture the geometric nuances of a given 252 

pathology, and instead produce coarse, low-resolution heat maps. Specifically, our 253 

qualitative analysis found that the performance of the saliency method depended on three 254 

pathological characteristics (Fig. 3a): (1) number of instances: when a pathology had 255 

multiple instances on a CXR, the saliency method segmentation often highlighted one 256 

large confluent area, instead of highlighting each distinct instance of the pathology 257 

separately; (2) size: saliency method segmentations tended to be significantly larger than 258 

human expert segmentations, often failing to respect clear anatomical boundaries; (3) 259 

shape complexity: the saliency method segmentations for pathologies with complex 260 

shapes frequently included significant portions of the CXR where the pathology is not 261 

present. 262 

 263 
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Informed by our qualitative analysis and previous work in histology45, we defined four 264 

geometric features for our quantitative analysis (Fig. 3b): (1) number of instances (for 265 

example, bilateral Pleural Effusion would have two instances, whereas there is only one 266 

instance for Cardiomegaly), (2) size (pathology area with respect to the area of the whole 267 

CXR), (3) elongation and (4) irrectangularity (the last two features measure the complexity 268 

of the pathology shape and were calculated by fitting a rectangle of minimum area 269 

enclosing the binary mask). See Extended Data Fig. 8 for the distribution of the four 270 

pathological characteristics across all 10 pathologies. 271 

 272 

For each evaluation metric, we ran 8 simple linear regressions: four with the evaluation 273 

metric (IoU or hit rate) of the saliency method pipeline (Grad-CAM with DenseNet121) as 274 

the dependent variable (to understand the relationship between the geometric features of 275 

a pathology and saliency method localization performance), and four with the difference 276 

between the evaluation metrics of the saliency method pipeline and the human 277 

benchmark as the dependent variable (to understand the relationship between the 278 

geometric features of a pathology and the gap in localization performance between the 279 

saliency method pipeline and the human benchmark). Each regression used one of the 280 

four geometric features as a single independent variable, and only the true positive slice 281 

was included in each regression. Each feature was normalized using z-score 282 

normalization and the regression coefficient can be interpreted as the effect of that 283 

geometric feature on the evaluation metric at hand. See Table 2 for coefficients from the 284 

regressions using both evaluation metrics, where we also report the 95% confidence 285 
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interval and the Bonferroni corrected p-values. For confidence intervals and p-values, we 286 

used the standard calculation for linear models.  287 

 288 

Fig. 3 | Characterizing underperformance of saliency method pipeline. a, Example 289 
CXRs that highlight the three pathological characteristics identified by our qualitative 290 
analysis: (1) Left, number of instances; (2) Middle, size; and (3) Right, shape complexity. 291 
b, Example CXRs with the four geometric features used in our quantitative analysis: (1) 292 
Top row left, number of instances; (2) Top row right, size = area of segmentation/area of 293 
CXR; (3) Bottom row left, elongation; and (4) Bottom row right, irrectangularity. 294 
Elongation and irrectangularity were calculated by fitting a rectangle of minimum area 295 
enclosing the binary mask (as indicated by the yellow rectangles). Elongation = 296 
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maxAxis/minAxis. Irrectangularity =  1 - (area of segmentation/area of enclosing 297 
rectangle). 298 
 299 

Our statistical analysis showed that as the area ratio of a pathology increased, mIoU 300 

saliency method localization performance improved (0.566 [95% CI 0.526, 0.606]). We 301 

also found that as elongation and irrectangularity increased, mIoU saliency method 302 

localization performance worsened (elongation: -0.425 [95% CI -0.497, -0.354], 303 

irrectangularity: -0.256 [95% CI -0.292, -0.219]). We observed that the effects of these 304 

three geometric features were similar for hit rate saliency method localization 305 

performance in terms of levels of statistical significance and direction of the effects. 306 

However, there was no evidence that the number of instances of a pathology had a 307 

significant effect on either mIoU (-0.115 [95% CI -0.220, -0.009]) or hit rate (-0.051 [95% 308 

CI -0.364, 0.244]) saliency method localization. Therefore, regardless of evaluation 309 

metric, saliency method localization performance suffered in the presence of pathologies 310 

that were small in size and complex in shape. 311 

 312 

We found that these same three pathological characteristics—larger size, and higher 313 

elongation and irrectangularity—characterized the gap in mIoU localization performance 314 

between saliency method and human benchmark. We observed that the gap in hit rate 315 

localization performance was significantly characterized by all four geometric features 316 

(number of instances, size, elongation, and irrectangularity). As the number of instances 317 

increased, despite no significant change in hit rate localization performance itself, the gap 318 

in hit rate localization performance between saliency method and the human benchmark 319 
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increased (0.470 [95% CI 0.114, 0.825]). This suggests that the saliency method performs 320 

especially poorly in the face of a multi-instance diagnosis. 321 

 322 

Effect of model confidence on localization performance 323 

We also conducted statistical analyses to determine whether there was any correlation 324 

between the model’s confidence in its prediction and saliency method pipeline 325 

performance (Table 3). We first ran a simple regression for each pathology using the 326 

model’s probability output as the single independent variable and using the saliency 327 

method IoU as the dependent variable. We then performed a simple regression that uses 328 

the same approach as above, but that includes all 10 pathologies. For each of the 11 329 

regressions, we used the full dataset since the analysis of false positives and false 330 

negatives was also of interest. In addition to the linear regression coefficients, we also 331 
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computed the Spearman correlation coefficients to capture any potential non-linear 332 

associations. 333 

 334 

We found that for all pathologies, model confidence was positively correlated with mIoU 335 

saliency method pipeline performance. The p-values for all coefficients were below 0.001 336 

except for the coefficients for Pneumothorax (n=11) and Lung Lesion (n=50), the two 337 

pathologies for which we had the fewest positive examples. Of all the pathologies, model 338 

confidence for positive predictions of Enlarged Cardiomediastinum had the largest linear 339 

regression coefficient with mIoU saliency method pipeline performance (1.974, p-340 

value<0.001). Model confidence for positive predictions of Pneumothorax had the largest 341 

Spearman correlation coefficient with mIoU saliency method pipeline performance (0.734, 342 

p-value<0.01), followed by Pleural Effusion (0.690, p-value<0.001). Combining all 343 

pathologies (n=2365), the linear regression coefficient was 0.109 (95% CI [0.083, 0.135]), 344 

and the Spearman correlation coefficient was 0.285 (95% CI [0.239, 0.331]). We also 345 

performed analogous experiments using hit rate as the dependent variable and found 346 

comparable results (Extended Data Fig. 9).  347 
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 348 

Discussion 349 

The purpose of this work was to evaluate the performance of some of the most used 350 

saliency methods for deep learning explainability using a variety of model architectures. 351 

We establish the first human benchmark for CXR segmentation in a multilabel 352 

classification setup and demonstrate that saliency maps are consistently worse than 353 

expert radiologists regardless of model classification AUROC. We use qualitative and 354 

quantitative analyses to establish that saliency method localization performance is most 355 

inferior to expert localization performance when a pathology has multiple instances, is 356 

smaller in size, or has shapes that are more complex, suggesting that deep learning 357 

explainability as a clinical interface may be less reliable and less useful when used for 358 

pathologies with those characteristics. We also show that model assurance is positively 359 

correlated with saliency method localization performance, which could indicate that 360 
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saliency methods are safer to use as a decision aid to clinicians when the model has 361 

made a positive prediction with high confidence. 362 

 363 

Because ground-truth segmentations for medical imaging are time-consuming and 364 

expensive to obtain, the current norm in medical imaging—both in research and in 365 

industry—is to use classification models on which saliency methods are applied post-hoc 366 

for localization, highlighting the need for investigations into the reliability of these methods 367 

in clinical settings46,47. There are public CXR datasets containing image-level labels 368 

annotated by expert radiologists (e.g., the CheXpert validation set), multilabel bounding 369 

box annotations (e.g., ChestX-ray848 and VinDr-CXR49), and segmentations for a single 370 

pathology (e.g., SIIM-ACR Pneumothorax Segmentation50). To our knowledge, however, 371 

there are no other publicly available CXR datasets with multilabel pixel-level expert 372 

segmentations. By publicly releasing a development dataset, CheXlocalize, of 234 373 

images with 885 expert segmentations, and a competition with a test set of 668 images, 374 

we hope to encourage the further development of saliency methods and other 375 

explainability techniques for medical imaging. 376 

 377 

Our work has several potential implications for human-AI collaboration in the context of 378 

medical decision-making. Heat maps generated using saliency methods are advocated 379 

as clinical decision support in the hope that they not only improve clinical decision-380 

making, but also encourage clinicians to trust model predictions51-53. Many of the large 381 

CXR vendors54–56 use localization methods to provide pathology visualization in their 382 

computer-aided detection (CAD) products. In addition to being used for clinical 383 
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interpretation, saliency method heat maps are also used for the evaluation of CXR 384 

interpretation models, for quality improvement (QI) and quality assurance (QA) in clinical 385 

practices, and for dataset annotation57. Explainable AI is critical in high-stakes contexts 386 

such as health care, and saliency methods have been used successfully to develop and 387 

understand models generally. Indeed, we found that the saliency method pipeline 388 

significantly outperformed the human benchmark on two pathologies when using mIoU 389 

as an evaluation metric. However, our work also suggests that saliency methods are not 390 

yet reliable enough to validate individual clinical decisions made by a model. We found 391 

that saliency method localization performance, on balance, performed worse than expert 392 

localization across multiple analyses and across many important pathologies (our findings 393 

are consistent with recent work focused on localizing a single pathology, Pneumothorax, 394 

in CXRs58). We hypothesize that this could be an algorithmic artifact of saliency methods, 395 

whose relatively small heat maps (14x14 for Grad-CAM) are interpolated to the original 396 

image dimensions (usually 2000x2000), resulting in coarse resolutions. If used in clinical 397 

practice, heat maps that incorrectly highlight medical images may exacerbate well 398 

documented biases (chiefly, automation bias) and erode trust in model predictions (even 399 

when model output is correct), limiting clinical translation22.  400 

 401 

Since IoU computes the overlap of two segmentations but pointing game hit rate better 402 

captures diagnostic attention, we suggest using both metrics when evaluating localization 403 

performance in the context of medical imaging. While IoU is a commonly used metric for 404 

evaluating semantic segmentation outputs, there are inherent limitations to the metric in 405 

the pathological context. This is indicated by our finding that even the human benchmark 406 
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segmentations had low overlap with the ground truth segmentations (the highest expert 407 

mIoU was 0.720 for Cardiomegaly). One potential explanation for this consistent 408 

underperformance is that pathologies can be hard to distinguish, especially without 409 

clinical context. Furthermore, whereas many people might agree on how to segment, say, 410 

a cat or a stop sign in traditional computer vision tasks, radiologists use a certain amount 411 

of clinical discretion when defining the boundaries of a pathology on a CXR. There can 412 

also be institutional and geographic differences in how radiologists are taught to 413 

recognize pathologies, and studies have shown that there can be high interobserver 414 

variability in the interpretation of CXRs59–61. We sought to address this with the hit rate 415 

evaluation metric, which highlights when two radiologists share the same diagnostic 416 

intention, even if it is less exact than IoU in comparing segmentations directly. The human 417 

benchmark localization using hit rate was above 0.9 for four pathologies (Pneumothorax, 418 

Cardiomegaly, Support Devices, and Enlarged Cardiomediastinum); these are 419 

pathologies for which there is often little disagreement between radiologists about where 420 

the pathologies are located, even if the expert segmentations are noisy. Further work is 421 

needed to demonstrate which segmentation evaluation metrics, even beyond overlap and 422 

hit rate, are more appropriate for certain pathologies and downstream tasks when 423 

evaluating saliency methods for the clinical setting. 424 

 425 

Our work builds upon several studies investigating the validity of saliency maps for 426 

localization62,63,64 and upon some early work on the trustworthiness of saliency methods 427 

to explain DNNs in medical imaging47. However, as recent work has shown32, evaluating 428 

saliency methods is inherently difficult given that they are post-hoc techniques. To 429 
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illustrate this, consider the following models and saliency methods as described by some 430 

oracle: (1) a model M_bad that has perfect AUROC for a given image classification task, 431 

but that we know does not localize well (i.e. because the model picks up on confounders 432 

in the image); (2) a model M_good that also has perfect AUROC, but that we know does 433 

localize well (i.e. is looking at relevant regions of the image); (3) a saliency method S_bad 434 

that does not properly reflect the model’s attention; and (4) a saliency method S_good 435 

that does properly reflect the model’s attention. Let us say that we are evaluating the 436 

following pipeline: we first classify an image and we then apply a saliency method post 437 

hoc. Imagine that our evaluation reveals poor localization performance as measured by 438 

mIoU or hit rate (as was the case in our findings). There are three possible pipelines 439 

(combinations of model and saliency method) that would lead to this scenario: (1) M_bad 440 

+ S_good; (2) M_good + S_bad; and (3) M_bad + S_bad. The first scenario (M_bad + 441 

S_good) is the one for which saliency methods were originally intended: we have a 442 

working saliency method that properly alerts us to models picking up on confounders. The 443 

second scenario (M_good + S_bad) is our nightmare scenario: we have a working model 444 

whose attention is appropriately directed, but we reject it based on a poorly localizing 445 

saliency method. Because all three scenarios result in poor localization performance, it is 446 

difficult—if not impossible—to know whether poor localization performance is attributable 447 

to the model or to the saliency method (or to both). While we cannot say whether models 448 

or saliency methods are failing in the context of medical imaging, we can say that we 449 

should not rely on saliency methods to evaluate model localization. Future work should 450 

explore potential techniques for localization performance attribution. 451 

 452 
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There are several limitations of our work. First, we did not investigate the impact of 453 

pathology prevalence in the training data on saliency method localization performance. 454 

Second, some pathologies, such as effusions and cardiomegaly, are in similar locations 455 

across frontal view CXRs, while others, such as lesions and opacities, can vary in 456 

locations across CXRs. Future work could investigate how the location of pathologies on 457 

a CXR in the training/test data distribution, and the consistency of those locations, affect 458 

saliency method localization performance. Third, while we compared saliency method-459 

generated pixel-level segmentations to human expert pixel-level segmentations, future 460 

work might explore how saliency method localization performance changes when 461 

comparing bounding-box annotations, instead of pixel-level segmentations. Fourth, we 462 

explored post-hoc interpretability methods given their prevalence in the context of medical 463 

imaging, but we hope that by publicly releasing our development dataset of pixel-level 464 

expert segmentations we can facilitate the development of models that make use of 465 

ground-truth segmentations during training57. Fifth, the lack of a given finding can in 466 

certain cases inform clinical diagnoses. A common example of this is the lack of normal 467 

lung tissue pattern towards the edges of the thoracic cage, which is used to detect 468 

pneumothorax. For any characteristic pattern, both the absence and the presence provide 469 

diagnostic information to the radiologist. For example, the absence of a pleural effusion 470 

pattern is also used to rule out pleural effusion. For any characteristic radiological pattern, 471 

both the presence as well as the absence contributes to the final radiology report. Future 472 

work can explore counterfactual visual explanations that are similar to the counterfactual 473 

diagnostic process of a radiologist. Sixth, future work should further explore the potentially 474 

confounding effect of model calibration on the evaluation of saliency methods, especially 475 
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when using segmentation, as opposed to classification, models. Finally, the impact of 476 

saliency methods on the trust and efficacy of users is underexplored. 477 

 478 

In conclusion, we present a rigorous evaluation of a range of saliency methods and a 479 

human benchmark dataset, which can serve as a foundation for future work exploring 480 

deep learning explainability techniques. This work is a reminder that care should be taken 481 

when leveraging common saliency methods to validate individual clinical decisions in 482 

deep learning-based workflows for medical imaging. 483 

 484 

Methods 485 

Ethical and information governance approvals. 486 

A formal Stanford IRB review was conducted for the original collection of the CheXpert 487 

dataset. The IRB waived the requirement to obtain informed consent as the data were 488 

retrospectively collected and fully anonymized. 489 

 490 

Dataset and clinical taxonomy. Dataset description. The localization experiments were 491 

performed using CheXpert, a large public dataset for chest X-ray interpretation. The 492 

CheXpert dataset contains 224,316 chest X-rays for 65,240 patients labeled for the 493 

presence of 14 observations (13 pathologies and an observation of “No Finding”) as 494 

positive, negative, or uncertain. The CheXpert validation set consists of 234 chest X-rays 495 

from 200 patients randomly sampled from the full dataset and was labeled according to 496 

the consensus of three board-certified radiologists. The test set consists of 668 chest X-497 

rays from 500 patients not included in the training or validation sets and was labeled 498 
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according to the consensus of five board-certified radiologists. See Extended Data Fig. 499 

10 for test set summary statistics. 500 

 501 

Ground-truth segmentation. The chest X-rays in our validation set and test set were 502 

manually segmented by two board-certified radiologists with 18 and 27 years of 503 

experience, using the annotation software tool MD.ai65 (see Supplementary Figs. S12 504 

through S14). The radiologists were asked to contour the region of interest for all 505 

observations in the chest X-rays for which there was a positive ground truth label in the 506 

CheXpert dataset. For a pathology with multiple instances, all the instances were 507 

contoured. For Support Devices, radiologists were asked to contour any implanted or 508 

invasive devices including pacemakers, PICC/central catheters, chest tubes, 509 

endotracheal tubes, feeding tubes and stents and ignore ECG lead wires or external 510 

stickers visible in the chest X-ray. 511 

 512 

Evaluating the expert performance using benchmark segmentation. To evaluate the 513 

expert performance on the test set using the IoU evaluation method, three radiologists, 514 

certified in Vietnam with 9, 10, and 18 years of experience, were asked to segment the 515 

regions of interest for all observations in the chest X-rays for which there was a positive 516 

ground truth label in the CheXpert dataset. These radiologists were also provided the 517 

same instructions for contouring as were provided to the radiologists drawing the 518 

reference segmentations. To extract the “maximally activated” point from the benchmark 519 

segmentations, we asked the same radiologists to locate each pathology present on each 520 

CXR using only a single most representative point for that pathology on the CXR (see 521 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2022. ; https://doi.org/10.1101/2021.02.28.21252634doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252634
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

Supplementary Figs. S1 through S11 for the detailed instructions given to the 522 

radiologists). There was no overlap between these three radiologists and the two who 523 

drew the reference segmentations. 524 

 525 

Classification network architecture and training protocol. Multi-label classification 526 

model. The model takes as input a single-view chest X-ray and outputs the probability for 527 

each of the 14 observations. In case of availability of more than one view, the models 528 

output the maximum probability of the observations across the views. Each chest X-ray 529 

was resized to 320×320 pixels and normalized before it was fed into the network. We 530 

used the same image resolutions as CheXpert36 and CheXnet2, which demonstrated 531 

radiologist-level performance on external test sets with 320x320 images. There are 532 

models that are commercially deployed and have similar dimensions. For example, the 533 

architecture used by a medical AI software vendor Annalise.ai66 is based on 534 

EfficientNet67, which takes input of 224x224. Chest X-rays were normalized prior to being 535 

fed into the network by subtracting the mean of all images in the CheXpert training set 536 

and then dividing by the standard deviation of all images in the CheXpert training set. The 537 

model architectures (DenseNet121, ResNet152, and Inception-v4) were used. Cross-538 

entropy loss was used to train the model. The Adam optimizer68 was used with default β-539 

parameters of β1 = 0.9 and β2 = 0.999. The learning rate was hyperparameter tuned for 540 

the different model architectures. Grid search was used to tune the learning rates. We 541 

searched over learning rates of 1e-3, 1e-4, and 1e-5. The best learning rate for each 542 

architecture was: 1×10−4 for DenseNet121, 1×10−5 for ResNet152, 1×10−5 for 543 

Inceptionv4. Batches were sampled using a fixed batch size of 16 images. 544 
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 545 

Ensembling. We use an ensemble of checkpoints to create both predictions and saliency 546 

maps to maximize model performance. In order to capture uncertainties inherent in 547 

radiograph interpretation, we train our models using four uncertainty handling strategies 548 

outlined in CheXpert: Ignoring, Zeroes, Ones, and 3-Class Classification. For each of the 549 

four uncertainty handling strategies, we train our model three separate times, each time 550 

saving the 10 checkpoints across the three epochs with the highest average AUC across 551 

5 observations selected for their clinical importance and prevalence in the validation set: 552 

Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion. In total, after 553 

training, we have saved 4 x 30 = 120 checkpoints for a given model. Then, from the 120 554 

saved checkpoints for that model, we select the top 10 performing checkpoints for each 555 

pathology. For each CXR and each task, we compute the predictions and saliency maps 556 

using the relevant checkpoints. We then take the mean both of the predictions and of the 557 

saliency maps to create the final set of predictions and saliency maps for the ensemble 558 

model. See Supplementary Table S1 for the performance of each model architecture 559 

(DenseNet121, ResNet152, and Inception-v4) on each of the pathologies. 560 

 561 

CNN interpretation strategy. Saliency methods were used to visualize the decision 562 

made by the classification network. The saliency map was resized to the original image 563 

dimension using bilinear interpolation. It was then normalized using max-min 564 

normalization and then converted into a binary segmentation using binary thresholding 565 

(Otsu’s method). We also reported mIoU localization performance using different saliency 566 

map thresholding values. We first applied max-min normalizations to the saliency maps 567 
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so that each value gets transformed into a decimal between 0 and 1. We then passed in 568 

a range of threshold values from 0.2 to 0.8 to create binary segmentations and calculated 569 

the mIoU score per pathology under each threshold on the validation set. Then for the 570 

analysis on the full dataset (see Extended Data Fig. 4), we further ensure that the final 571 

binary segmentation is consistent with model probability output by applying another layer 572 

of thresholding such that the segmentation mask produced all zeros if the predicted 573 

probability was below a chosen level. The probability threshold is searched on the interval 574 

of [0,0.8] with steps of 0.1. The exact value is determined per pathology by maximizing 575 

the mIoU on validation set. 576 

 577 

For Occlusion, we used a window size of 40 and a stride of 40 for each CXR. 578 

 579 

Segmentation evaluation metrics. Localization performance of each segmentation was 580 

evaluated using Intersection over Union (IoU) score. The IoU is the ratio between the 581 

area of overlap and the area of union between the ground truth and the predicted areas, 582 

ranging from 0 to 1 with 0 signifying no overlap and 1 signifying perfectly overlapping 583 

segmentation. Confidence intervals are calculated using bootstrapping with 1000 584 

bootstrap samples. The variance in the width of CI across pathologies can be explained 585 

by difference in sample sizes. For the percentage decrease from expert mIoU to AI mIoU, 586 

we bootstrapped the difference between human benchmark and saliency method 587 

localization and created the 95% confidence intervals. The confidence intervals for hit 588 

rates were calculated in the same fashion. For the evaluation of Integrated Gradients 589 

using IoU, we applied box filtering of kernel size 100 to smooth the pixelated map. For 590 
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DeepLIFT, we applied box filtering of kernel size 50. For LRP, we used a kernel size of 591 

80. The kernel sizes are tuned on the validation set. The noisy map is not a concern for 592 

hit rate because a single max pixel is extracted for the entire image. 593 

 594 

Statistical analysis. 595 

Pathology Characteristics. We used four features to characterize the pathologies. (1) 596 

Number of instances is defined as the number of disjoint components in the 597 

segmentation. (2) Size is the area of the pathology divided by the total image area. (3) 598 

and (4) Elongation and irrectangularity are geometric features that measure shape 599 

complexities. They were designed to quantify what radiologists qualitatively described as 600 

focal or diffused. To calculate the metrics, a rectangle of minimum area enclosing the 601 

contour is fitted to each pathology. Elongation is defined as the ratio of the rectangle’s 602 

longer side to short side. Irrectangularity =  1 - (area of segmentation/area of enclosing 603 

rectangle), with values ranging from 0 to 1 with 1 being very irrectangular. When there 604 

are multiple instances within one pathology, we used the characteristics of the dominant 605 

instance (largest in perimeter).  606 

 607 

Model Confidence. We used the probability output of the DNN architecture for model 608 

confidence. The probabilities were normalized using max-min normalization per 609 

pathology before aggregation. 610 

 611 

Linear Regression. For each evaluation scheme (overlap and hit rate), we ran two groups 612 

of simple linear regressions, with AI evaluation metrics and their differences as the 613 
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response variables. Each group has four regressions using the above four pathological 614 

characteristics as the regressions’ single attribute, respectively, and only the true positive 615 

slice was included in each regression. All features are normalized using min-max 616 

normalization so that they are comparable on scales of magnitudes. We report the 95% 617 

confidence interval and Bonferroni adjusted p-value of the regression coefficients. 618 

 619 

Data Availability  620 

The CheXlocalize dataset is available here: 621 

https://stanfordaimi.azurewebsites.net/datasets/abfb76e5-70d5-4315-badc-622 

c94dd82e3d6d. The CheXpert dataset is available here 623 

https://stanfordmlgroup.github.io/competitions/chexpert/. 624 

 625 

Code Availability 626 

The code used to generate segmentations from saliency method heat maps, fine-tune 627 

segmentation thresholds, generate segmentations from human annotations, and evaluate 628 

localization performance is available in the following public repository under the MIT 629 

License: https://github.com/rajpurkarlab/cheXlocalize. The version used for this 630 

publication is available at https://doi.org/10.5281/zenodo.681628869. 631 
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Extended Data 830 
 831 

 832 
Extended Data Fig. 1 | mIoU localization performance of the saliency method 833 
pipeline using threshold values tuned on the validation set. a, We first applied max-834 
min normalizations to the Grad-CAM saliency maps so that each value gets transformed 835 
into a decimal between 0 and 1. We then passed in a range of threshold values from 0.2 836 
to 0.8 to create binary segmentations and plotted the mIoU score per pathology under 837 
each threshold on the validation set. The threshold that gives the max mIoU for each 838 
pathology is marked with an “X”. Pathologies are sorted alphabetically and shown in two 839 
plots for readability. b, Comparing mIoU localization performances of the saliency 840 
method pipeline (using the best thresholds tuned on the validation set) and the human 841 
benchmark. We found that the saliency method pipeline outperformed the human 842 
benchmark on two pathologies and underperformed the human benchmark on five 843 
pathologies. For the remaining three pathologies, the performance differences were not 844 
statistically significant. This finding is consistent with what we report in the manuscript 845 
using Otsu's method. 846 
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 847 

 848 
Extended Data Fig. 2 | Specificity and sensitivity values of the saliency method 849 
pipeline and human benchmark. For each pathology, we highlight the higher of the 850 
two metrics (saliency method pipeline or human benchmark) in bold. 851 
 852 
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 853 
Extended Data Fig. 3 | Test set localization performance for each combination of 854 
saliency method and CNN architecture. For each pathology and saliency method, we 855 
highlight the highest performing CNN architecture in bold. 856 
 857 
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 858 
Extended Data Fig. 4 | Saliency method pipeline localization performance on the 859 
full dataset using mIoU. True negatives (CXRs whose ground-truth label is negative 860 
for a given pathology and for which there were neither human benchmark nor saliency 861 
method pipeline segmentations for that pathology) were excluded from the metric 862 
calculation. To control for false positives, we ensure that the final binary segmentation is 863 
consistent with model probability output by applying another layer of thresholding such 864 
that the segmentation mask produced all zeros if the predicted probability was below a 865 
chosen level. The probability threshold is searched on the interval of [0,0.8] with steps 866 
of 0.1. The exact value is determined per pathology by maximizing the mIoU on the 867 
validation set. We found that on the full dataset, for seven of the 10 pathologies, the 868 
saliency method pipeline had a significantly lower mIoU than the human benchmark. 869 
 870 
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 871 
Extended Data Fig. 5 | Percentage decrease from human benchmark mIoU to 872 
saliency method pipeline mIoU. Pathologies are sorted first by statistical significance 873 
of percentage decrease from human benchmark mIoU to saliency method pipeline 874 
mIoU (high to low), and then by percentage decrease from human benchmark mIoU to 875 
saliency method pipeline mIoU (high to low). We use 95% bootstrap confidence interval. 876 
 877 
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 878 
Extended Data Fig. 6 | Percentage decrease from human benchmark hit rate to 879 
saliency method pipeline hit rate. Pathologies are sorted first by statistical 880 
significance of percentage decrease from human benchmark hit rate to saliency method 881 
pipeline hit rate (high to low), and then by percentage decrease from human benchmark 882 
hit rate to saliency method pipeline hit rate (high to low). We use 95% bootstrap 883 
confidence interval. 884 
 885 
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 886 
Extended Data Fig. 7 | Saliency method pipeline localization performance using 887 
an ensemble model vs. using the top performing single checkpoint for each 888 
pathology. For each pathology, we highlight in bold the model (ensemble or single 889 
checkpoint) that has the higher metric, and we underline it if the difference is statistically 890 
significant (using 95% bootstrap confidence interval). 891 
 892 
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 893 
Extended Data Fig. 8 | Distribution of four geometric features across all 10 894 
pathologies. The black horizontal line in each box indicates the median feature value 895 
for that pathology, and each successive level outward contains half of the remaining 896 
data. The height of the box indicates the range of feature values in the quantile. 897 
 898 
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 899 
Extended Data Fig. 9 | Hit rate: Coefficients from regressions on model 900 
assurance. 901 
 902 
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 903 
Extended Data Fig. 10 | Test set summary statistics. 904 
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