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Abstract 24 

Saliency methods, which “explain” deep neural networks by producing heat maps that 25 

highlight the areas of the medical image that influence model prediction, are often 26 

presented to clinicians as an aid in diagnostic decision-making. Although many saliency 27 

methods have been proposed for medical imaging interpretation, rigorous investigation 28 

of the accuracy and reliability of these strategies is necessary before they are integrated 29 

into the clinical setting. In this work, we quantitatively evaluate three saliency methods 30 

(Grad-CAM, Grad-CAM++, and Integrated Gradients) across multiple neural network 31 

architectures using two evaluation metrics. We establish the first human benchmark for 32 

chest X-ray interpretation in a multilabel classification set up, and examine under what 33 

clinical conditions saliency maps might be more prone to failure in localizing important 34 

pathologies compared to a human expert benchmark. We find that (i) while Grad-CAM 35 

generally localized pathologies better than the two other saliency methods, all three 36 

performed significantly worse compared with the human benchmark; (ii) the gap in 37 

localization performance between Grad-CAM and the human benchmark was largest for 38 

pathologies that had multiple instances, were smaller in size, and had shapes that were 39 

more complex; (iii) model confidence was positively correlated with Grad-CAM 40 

localization performance. Our work demonstrates that several important limitations of 41 

saliency methods must be addressed before we can rely on them for deep learning 42 

explainability in medical imaging. 43 

 44 

Introduction 45 
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Deep learning has enabled automated medical imaging interpretation at the level of 46 

practicing experts in some settings1–3. While the potential benefits of automated 47 

diagnostic models are numerous, lack of model interpretability in the use of “black-box” 48 

deep neural networks (DNNs) represents a major barrier to clinical trust and adoption4–6. 49 

In fact, it has been argued that the European Union’s recently adopted General Data 50 

Protection Regulation (GDPR) affirms an individual’s right to an explanation in the context 51 

of automated decision-making7. Although the importance of DNN interpretability is widely 52 

acknowledged and many techniques have been proposed, little emphasis has been 53 

placed on how best to quantitatively evaluate these explainability methods8. 54 

 55 

One type of DNN interpretation strategy widely used in the context of medical imaging is 56 

based on saliency (or pixel-attribution) methods9–12. Saliency methods produce heat 57 

maps highlighting the areas of the medical image that most influenced the DNN’s 58 

prediction. The heat maps help to visualize whether a DNN is concentrating on the same 59 

regions of a medical image that a human expert would focus on, rather than concentrating 60 

on a clinically irrelevant part of the medical image or even on confounders in the image13–61 

15. Saliency methods have been widely used for a variety of medical imaging tasks and 62 

modalities including, but not limited to, visualizing the performance of a convolutional 63 

neural network (CNN) in predicting (1) myocardial infarction16 and hypoglycemia17 from 64 

electrocardiograms, (2) visual impairment18, refractive error19, and anaemia20 from retinal 65 

photographs, (3) long-term mortality21 and tuberculosis22 from chest X-ray (CXR) images, 66 

and (4) appendicitis23 and pulmonary embolism24 on computed tomography scans. 67 

However, recent work has shown that saliency methods used to validate model 68 
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predictions can be misleading in some cases and may lead to increased bias and loss of 69 

user trust in high-stakes contexts such as healthcare25–27. Therefore, a rigorous 70 

investigation of the accuracy and reliability of these strategies is necessary before they 71 

are integrated into the clinical setting28. 72 

 73 

In this work, we perform a systematic evaluation of the three most common saliency 74 

methods in medical imaging (Grad-CAM29, Grad-CAM++30, and Integrated Gradients31) 75 

using three common CNN architectures (DenseNet12132, ResNet15233, Inception-v434). 76 

In doing so, we establish the first human benchmark in CXR localization by collecting 77 

radiologist segmentations for 10 pathologies using CheXpert, a large publicly available 78 

CXR dataset35. To compare saliency method segmentations with expert segmentations, 79 

we use two metrics to capture localization accuracy: (1) mean Intersection over Union, a 80 

stricter metric that measures the overlap between the saliency method segmentation and 81 

the expert segmentation, and (2) hit rate, a less strict metric that does not require the 82 

saliency method to locate the full extent of a pathology. We find that (1) while Grad-CAM 83 

generally localizes pathologies more accurately than the two other saliency methods, all 84 

three perform significantly worse compared with a human radiologist benchmark; (2) the 85 

gap in localization performance between Grad-CAM and the human benchmark is largest 86 

for pathologies that have multiple instances on the same CXR, are smaller in size, and 87 

have shapes that are more complex; (3) model confidence is positively correlated with 88 

Grad-CAM localization performance. We publicly release a development dataset of expert 89 

segmentations, which we call CheXplanation, to facilitate further research in DNN 90 

explainability for medical imaging. 91 
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 92 

Results 93 

Framework for evaluating saliency methods on multi-label classification models 94 

Three methods were evaluated—Grad-CAM, Grad-CAM++, and Integrated Gradients—95 

in a multi-label classification setup on the CheXpert dataset (Fig. 1a). For each of the 96 

three saliency methods, we ran experiments using three CNN architectures previously 97 

used on CheXpert: DenseNet121, ResNet152, and Inception-v4. For each combination 98 

of saliency method and model architecture, we trained and evaluated an ensemble of 30 99 

CNNs (see Methods for ensembling details). We then passed each of the CXRs in the 100 

dataset’s holdout test set into the trained ensemble model to obtain image-level 101 

predictions for the following 10 pathologies: Atelectasis, Cardiomegaly, Consolidation, 102 

Edema, Enlarged Cardiomediastinum, Lung Lesion, Lung Opacity, Pleural Effusion, 103 

Pneumothorax, and Support Devices. For each CXR, we used the saliency method to 104 

generate heat maps, one for each of the 10 pathologies, and then applied a threshold to 105 

each heat map to produce binary segmentations (top row, Fig. 1a). Thresholding is 106 

determined per pathology using Otsu’s method36, which iteratively searches for a 107 

threshold value that maximizes inter-class pixel intensity variance. We also conducted a 108 

sensitivity analysis of localization performance using different thresholds. The result 109 

shows that our evaluation of localization performance is robust to different saliency map 110 

thresholding values (see Supplementary Fig. 15). Additionally, to calculate the hit rate 111 

evaluation metric (described below), we extracted the pixel in the saliency method heat 112 

map with the largest value as the single most representative point on the CXR for that 113 

pathology. 114 
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 115 

We obtained two independent sets of pixel-level CXR segmentations on the holdout test 116 

set: ground-truth segmentations drawn by two board-certified radiologists (middle row, 117 

Fig. 1a) and human benchmark segmentations drawn by a separate group of three board-118 

certified radiologists (bottom row, Fig. 1a). The human benchmark segmentations and the 119 

saliency method segmentations were compared with the ground-truth segmentations to 120 

establish the human benchmark localization performance and the saliency method 121 

localization performance, respectively. Additionally, for the hit rate evaluation metric, the 122 

radiologists who drew the benchmark segmentations were also asked to locate a single 123 

point on the CXR that was most representative of the pathology at hand (see 124 

Supplementary Figs. 1 through 11 for detailed instructions given to the radiologists). 125 

 126 

We used two evaluation metrics to compare segmentations (Fig. 1b). First, we used mean 127 

Intersection over Union (mIoU), a stricter metric that measures how much, on average, 128 

either the saliency method or benchmark segmentations overlapped with the ground-truth 129 

segmentations. Second, we used hit rate, a less strict metric that does not require the 130 

saliency method or benchmark annotators to locate the full extent of a pathology. Hit rate 131 

is based on the pointing game setup37, in which credit is given if the most representative 132 

point identified by the saliency method or the benchmark annotators lies within the 133 

ground-truth segmentation. A “hit” indicates that the correct region of the CXR was 134 

located regardless of the exact bounds of the binary segmentations. Localization 135 

performance is then calculated as the hit rate across the dataset38. 136 
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 137 

Fig. 1 | Framework for evaluating saliency methods on multi-label classification models. a, 138 
Top row left: a CXR image from the holdout test set is passed into an ensemble CNN trained 139 
only on CXR images and their corresponding pathology task labels. Saliency method is used to 140 
generate 10 heat maps for the example CXR, one for each task. The pixel in the heat map with 141 
the largest value is determined to be the single most representative point on the CXR for that 142 
pathology. Top row middle: there are three pathologies present in this CXR (Airspace Opacity, 143 
Pleural Effusion, and Support Devices). Top row right: a threshold is applied to the heat maps to 144 
produce binary segmentations for each present pathology. Middle row: Two board-certified 145 
radiologists were asked to segment the pathologies that were present in the CXR as determined 146 
by the dataset’s ground-truth labels. Saliency method annotations are compared to these 147 
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ground-truth annotations to evaluate how well saliency method identifies clinically-relevant areas 148 
of the input CXR (“saliency method localization performance”). Bottom row: Two board-certified 149 
radiologists (separate from those in middle row) were also asked to segment the pathologies that 150 
were present in the CXR as determined by the dataset’s ground-truth labels. In addition, these 151 
radiologists were asked to locate the single point on the CXR that was most representative of 152 
each present pathology. These benchmark annotations are compared to the ground-truth 153 
annotations to determine a human benchmark (“human benchmark localization performance”). 154 
b, Left: CXR with ground-truth and saliency method annotations for Pleural Effusion. The 155 
segmentations have a low overlap (IoU is 0.078), but pointing game is a “hit” since the saliency 156 
method’s most representative point is inside of the ground-truth segmentation. Right, CXR with 157 
ground-truth and human benchmark annotations for Enlarged Cardiomediastinum. The 158 
segmentations have a high overlap (IoU is 0.682), but pointing game is a “miss” since saliency 159 
method’s most representative point is outside of the ground-truth segmentation. 160 
 161 

Evaluating localization performance of the saliency methods against the human 162 

benchmark 163 

In order to compare the localization performance of the saliency methods with the human 164 

benchmark, we ran eighteen experiments, one for each combination of saliency method 165 

(Grad-CAM, Grad-CAM++, or Integrated Gradients) and CNN architecture 166 

(DenseNet121, ResNet152, or Inception-v4) using one of the two evaluation metrics 167 

(mIoU or hit rate). For each evaluation metric, we chose the combination of saliency 168 

method and architecture that demonstrated the best localization performance (Fig. 2a). 169 

We found that Grad-CAM with DenseNet121 had the highest mIoU performance and the 170 

highest hit rate performance. Accordingly, we compared Grad-CAM with DenseNet121 171 

(“saliency method pipeline”) with the human benchmark using both mIoU and hit rate. The 172 

localization performance for each pathology is reported on the true positive slice of the 173 

dataset (CXRs that contain both saliency method and human benchmark segmentations 174 

when the ground-truth label of the pathology is positive). Localization performance was 175 

calculated this way so that saliency methods were not penalized by DNN classification 176 

error: while the benchmark radiologists were provided with ground-truth labels when 177 
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annotating the dataset, saliency method segmentations were created based on labels 178 

predicted by the model. (See Supplementary Fig. 16 for localization performance results 179 

on the full dataset.)  180 

 181 

We found that the saliency method pipeline demonstrated significantly worse localization 182 

performance when compared with the human benchmark using both mIoU (Fig. 2b) and 183 

hit rate (Fig. 2c) as an evaluation metric, regardless of model classification AUROC. For 184 

each metric, we report the 95% confidence intervals using the bootstrap method with 185 

1,000 bootstrap samples39. For five of the 10 pathologies, the saliency method pipeline 186 

had a significantly lower mIoU than the human benchmark. For example, the saliency 187 

method pipeline had one of the highest AUROC scores of the 10 pathologies for Support 188 

Devices (0.969), but had among the worst localization performance for Support Devices 189 

when using both mIoU (0.163 [95% CI 0.154, 0.172]) and hit rate (0.357 [95% CI 0.303, 190 

0.408]) as evaluation metrics. On two pathologies (Atelectasis and Consolidation) the 191 

saliency method pipeline significantly outperformed the human benchmark. On average, 192 

across all 10 pathologies, mIoU saliency method pipeline performance was 26.6% [95% 193 

CI 18.1%, 35.0%] worse than the human benchmark, with Lung Lesion displaying the 194 

largest gap in performance (76.2% [95% CI 59.1%, 87.5%] worse than the human 195 

benchmark) (Supplementary Table 4). Consolidation was the pathology on which the 196 

mIoU saliency method pipeline performance exceeded the human benchmark the most, 197 

by 56.1% [95% CI 42.7%, 69.4%]. For seven of the 10 pathologies, the saliency method 198 

pipeline had a significantly lower hit rate than the human benchmark. On average, hit rate 199 

saliency method pipeline performance was 29.4% [95% CI 15.0%, 43.2%] worse than the 200 
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human benchmark (Supplementary Table 5), with Lung Lesion again displaying the 201 

largest gap in performance (65.9% [95% CI 35.3%, 91.7%] worse than the human 202 

benchmark). The hit rate saliency method pipeline did not significantly outperform the 203 

human benchmark on any of the 10 pathologies; for the remaining three of the 10 204 

pathologies, the hit rate performance differences between the saliency method pipeline 205 

and the human benchmark were not statistically significant. Therefore, while the saliency 206 

method pipeline significantly underperformed the human benchmark regardless of 207 

evaluation metric used, the average performance gap was larger when using hit rate as 208 

an evaluation metric than when using mIoU as an evaluation metric. 209 
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Fig. 2 | Evaluating the localization performance of the saliency methods against the human 211 
benchmark. a, The selection strategy for the mIoU saliency method pipeline and the hit rate 212 
saliency method pipeline. For each saliency method, the best model architecture is selected 213 
(highlighted in purple). Then, the best saliency method + model architecture pair, of the three, is 214 
selected. The selection strategy was performed twice, once using mIoU as the evaluation metric 215 
and once using hit rate as the evaluation metric. The best saliency method + model architecture 216 
pair was the same for both mIoU and hit rate: Grad-CAM + DenseNet121. b, Comparing saliency 217 
method and human benchmark localization performances under the overlap evaluation scheme 218 
(mIoU). Pathologies, along with their DenseNet121 AUROCs, are sorted on the x-axis in 219 
descending order of percentage decrease from human benchmark mIoU to saliency method 220 
pipeline mIoU for each pathology. c, Comparing saliency method and human benchmark 221 
localization performances under the hit rate evaluation scheme. Pathologies, along with their 222 
DenseNet121 AUROCs, are sorted on the x-axis in descending order of percentage decrease 223 
from human benchmark hit rate to saliency method pipeline hit rate for each pathology. 224 
 225 

Characterizing the underperformance of the saliency method pipeline localization 226 

In order to better understand the underperformance of the saliency method pipeline 227 

localization, we first conducted a qualitative analysis with a radiologist by visually 228 

inspecting both the segmentations produced by the saliency method pipeline (Grad-CAM 229 

with DenseNet121) and the human benchmark segmentations. We found that, in general, 230 

saliency method segmentations fail to capture the geometric nuances of a given 231 

pathology, and instead produce coarse, low-resolution heat maps. Specifically, our 232 

qualitative analysis found that the performance of the saliency method depended on three 233 

pathological characteristics (Fig. 3a): (1) number of instances: when a pathology had 234 

multiple instances on a CXR, the saliency method segmentation often highlighted one 235 

large confluent area, instead of highlighting each distinct instance of the pathology 236 

separately; (2) size: saliency method segmentations tended to be significantly larger than 237 

human expert segmentations, often failing to respect clear anatomical boundaries; (3) 238 

shape complexity: the saliency method segmentations for pathologies with complex 239 

shapes frequently included significant portions of the CXR where the pathology is not 240 

present. 241 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.02.28.21252634doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252634
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

13 

 242 

Informed by our qualitative analysis and previous work in histology40, we defined four 243 

geometric features for our quantitative analysis (Fig. 3b): (1) number of instances (for 244 

example, bilateral Pleural Effusion would have two instances, whereas there is only one 245 

instance for Cardiomegaly), (2) size (pathology area with respect to the area of the whole 246 

CXR), (3) elongation and (4) irrectangularity (the last two features measure the complexity 247 

of the pathology shape and were calculated by fitting a rectangle of minimum area 248 

enclosing the binary mask). See Supplementary Fig. 17 for the distribution of the four 249 

pathological characteristics across all 10 pathologies. 250 

 251 

For each evaluation metric, we ran 8 simple linear regressions: four with the evaluation 252 

metric (IoU or hit rate) of the saliency method pipeline (Grad-CAM with DenseNet121) as 253 

the dependent variable (to understand the relationship between the geometric features of 254 

a pathology and saliency method localization performance), and four with the difference 255 

between the evaluation metrics of the saliency method pipeline and the human 256 

benchmark as the dependent variable (to understand the relationship between the 257 

geometric features of a pathology and the gap in localization performance between the 258 

saliency method pipeline and the human benchmark). Each regression used one of the 259 

four geometric features as a single independent variable, and only the true positive slice 260 

was included in each regression. Each feature was normalized using z-score 261 

normalization and the regression coefficient can be interpreted as the effect of that 262 

geometric feature on the evaluation metric at hand. See Table 1 for coefficients from the 263 

regressions using both evaluation metrics, where we also report the 95% confidence 264 
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interval and the Bonferroni corrected p-values. For confidence intervals and p-values, we 265 

used the standard calculation for linear models. 266 

 267 

Fig. 3 | Characterizing the underperformance of saliency method localization. a, Example 268 
CXRs that highlight the three pathological characteristics identified by our qualitative analysis: 269 
(1) Left, number of instances; (2) Middle, size; and (3) Right, shape complexity. b, Example CXRs 270 
with the four geometric features used in our quantitative analysis: (1) Top row left, number of 271 
instances; (2) Top row right, size = area of segmentation/area of CXR; (3) Bottom row left, 272 
elongation; and (4) Bottom row right, irrectangularity. Elongation and irrectangularity were 273 
calculated by fitting a rectangle of minimum area enclosing the binary mask (as indicated by the 274 
yellow rectangles). Elongation = maxAxis/minAxis. Irrectangularity =  1 - (area of 275 
segmentation/area of enclosing rectangle). 276 
 277 
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Our statistical analysis showed that as the area ratio of a pathology increased, mIoU 278 

saliency method localization performance improved (0.566 [95% CI 0.526, 0.606]). We 279 

also found that as elongation and irrectangularity increased, mIoU saliency method 280 

localization performance worsened (elongation: -0.425 [95% CI -0.497, -0.354], 281 

irrectangularity: -0.256 [95% CI -0.292, -0.219]). We observed that the effects of these 282 

three geometric features were similar for hit rate saliency method localization 283 

performance in terms of levels of statistical significance and direction of the effects. 284 

However, there was no evidence that the number of instances of a pathology had a 285 

significant effect on either mIoU (-0.115 [95% CI -0.220, -0.009]) or hit rate (-0.051 [95% 286 

CI -0.364, 0.244]) saliency method localization. Therefore, regardless of evaluation 287 

metric, saliency method localization performance suffered in the presence of pathologies 288 

that were small in size and complex in shape. 289 

 290 

We found that these same three pathological characteristics—larger size, and higher 291 

elongation and irrectangularity—characterized the gap in mIoU localization performance 292 

between saliency method and human benchmark. We observed that the gap in hit rate 293 

localization performance was significantly characterized by all four geometric features 294 

(number of instances, size, elongation, and irrectangularity). As the number of instances 295 

increased, despite no significant change in hit rate localization performance itself, the gap 296 

in hit rate localization performance between saliency method and the human benchmark 297 

increased (0.470 [95% CI 0.114, 0.825]). This suggests that the saliency method performs 298 

especially poorly in the face of a multi-instance diagnosis.  299 
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 300 

 301 

Effect of model confidence on saliency method localization performance 302 

We also conducted statistical analyses to determine whether there was any correlation 303 

between the model’s confidence in its prediction and saliency method pipeline 304 

performance (Table 2). We first ran a simple regression for each pathology using the 305 

model’s probability output as the single independent variable and using the saliency 306 

method IoU as the dependent variable. We then performed a simple regression that uses 307 

the same approach as above, but that includes all 10 pathologies. For each of the 11 308 

regressions, we used the full dataset since the analysis of false positives and false 309 

negatives was also of interest. In addition to the linear regression coefficients, we also 310 

computed the Spearman correlation coefficients to capture any potential non-linear 311 

associations. 312 
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 313 

We found that for all pathologies, model confidence was positively correlated with mIoU 314 

saliency method pipeline performance. The p-values for all coefficients were below 0.001 315 

except for the coefficients for Pneumothorax (n=11) and Lung Lesion (n=50), the two 316 

pathologies for which we had the fewest positive examples. Of all the pathologies, model 317 

confidence for positive predictions of Enlarged Cardiomediastinum had the largest linear 318 

regression coefficient with mIoU saliency method pipeline performance (1.974, p-319 

value<0.001). Model confidence for positive predictions of Pneumothorax had the largest 320 

Spearman correlation coefficient with mIoU saliency method pipeline performance (0.734, 321 

p-value<0.01), followed by Pleural Effusion (0.690, p-value<0.001). Combining all 322 

pathologies (n=2365), the linear regression coefficient was 0.109 (95% CI [0.083, 0.135]), 323 

and the Spearman correlation coefficient was 0.285 (95% CI [0.239, 0.331]). We also 324 

performed analogous experiments using hit rate as the dependent variable and found 325 

comparable results (Supplementary Table 1). 326 

 327 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.02.28.21252634doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252634
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

18 

 328 

Discussion 329 

The purpose of this work was to evaluate the performance of some of the most used 330 

saliency methods (Grad-CAM, Grad-CAM++, Integrated Gradients) for deep learning 331 

explainability using a variety of model architectures. We establish the first human 332 

benchmark for CXR localization in a multilabel classification setup and demonstrate that 333 

saliency maps are consistently worse than expert radiologists regardless of model 334 

classification AUROC. We use qualitative and quantitative analyses to establish that 335 

saliency method localization performance is most inferior to expert localization 336 

performance when a pathology has multiple instances, is smaller in size, or has shapes 337 

that are more complex, suggesting that deep learning explainability as a clinical interface 338 

may be less reliable and less useful when used for pathologies with those characteristics. 339 

We also show that model assurance is positively correlated with saliency method 340 

localization performance, which could indicate that saliency methods are safer to use as 341 

a decision aid to clinicians when the model has made a positive prediction with high 342 

confidence. 343 

 344 

While there are several public CXR datasets with image-level labels annotated by expert 345 

radiologists, including MIMIC-CXR41 and ChestX-ray842, and several datasets containing 346 

segmentations for a single pathology, including SIIM-ACR Pneumothorax Segmentation43 347 

and RSNA Pneumonia Detection44, to our knowledge there are no other publicly available 348 

CXR datasets with multilabel expert segmentations. By publicly releasing a development 349 

dataset, CheXplanation, of 234 images with 885 expert segmentations, and a competition 350 
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with a test set of 668 images, we hope to encourage the further development of saliency 351 

methods and other explainability techniques for medical imaging. 352 

 353 

Our work has several potential implications for human-AI collaboration in the context of 354 

medical decision-making. Heat maps generated using saliency methods are advocated 355 

as clinical decision support in the hope that they not only improve clinical decision-356 

making, but also encourage clinicians to trust model predictions45–47. Many of the large 357 

CXR vendors48–50 use localization methods to provide pathology visualization in their 358 

computer-aided detection (CAD) products. In addition to being used for clinical 359 

interpretation, saliency method heat maps are also used for the evaluation of CXR 360 

interpretation models, for quality improvement (QI) and quality assurance (QA) in clinical 361 

practices, and for dataset annotation51. However, we found that saliency method 362 

localization performance, on balance, performed worse than expert localization across 363 

multiple analyses and across many important pathologies (our findings are consistent 364 

with recent work focused on localizing a single pathology, Pneumothorax, in CXRs52). If 365 

used in clinical practice, heat maps that incorrectly highlight medical images may 366 

exacerbate well documented biases (chiefly, automation bias) and erode trust in model 367 

predictions (even when model output is correct), limiting clinical translation22.  368 

 369 

Since IoU computes the overlap of two segmentations but pointing game hit rate better 370 

captures diagnostic attention, we suggest using both metrics when evaluating localization 371 

performance in the context of medical imaging. While IoU is a commonly used metric for 372 

evaluating semantic segmentation outputs, there are inherent limitations to the metric in 373 
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the pathological context. This is indicated by our finding that even the human benchmark 374 

segmentations had low overlap with the ground truth segmentations (the highest expert 375 

mIoU was 0.720 for Cardiomegaly). One potential explanation for this consistent 376 

underperformance is that pathologies can be hard to distinguish, especially without 377 

clinical context. Furthermore, whereas many people might agree on how to segment, say, 378 

a cat or a stop sign in traditional computer vision tasks, radiologists use a certain amount 379 

of clinical discretion when defining the boundaries of a pathology on a CXR. There can 380 

also be institutional and geographic differences in how radiologists are taught to 381 

recognize pathologies, and studies have shown that there can be high interobserver 382 

variability in the interpretation of CXRs53–55. We sought to address this with the hit rate 383 

evaluation metric, which highlights when two radiologists share the same diagnostic 384 

intention, even if it is less exact than IoU in comparing segmentations directly. The human 385 

benchmark localization using hit rate was above 0.9 for four pathologies (Pneumothorax, 386 

Cardiomegaly, Support Devices, and Enlarged Cardiomediastinum); these are 387 

pathologies for which there is often little disagreement between radiologists about where 388 

the pathologies are located, even if the expert segmentations are noisy. Further work is 389 

needed to demonstrate which segmentation evaluation metrics, even beyond overlap and 390 

hit rate, are more appropriate for which pathologies when evaluating saliency methods 391 

for the clinical setting. 392 

 393 

Our work builds upon several studies investigating the validity of saliency maps for 394 

localization56,57 and upon some early work on the trustworthiness of saliency methods to 395 

explain DNNs in medical imaging58. However, as recent work has shown31, evaluating 396 
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saliency methods is inherently difficult given that they are post-hoc techniques. To 397 

illustrate this, consider the following models and saliency methods as described by some 398 

oracle: (1) a model M_bad that has perfect AUROC for a given image classification task, 399 

but that we know does not localize well (i.e. because the model picks up on confounders 400 

in the image); (2) a model M_good that also has perfect AUROC, but that we know does 401 

localize well (i.e. is looking at relevant regions of the image); (3) a saliency method S_bad 402 

that does not properly reflect the model’s attention; and (4) a saliency method S_good 403 

that does properly reflect the model’s attention. Let us say that we are evaluating the 404 

following pipeline: we first classify an image and we then apply a saliency method post 405 

hoc. Imagine that our evaluation reveals poor localization performance as measured by 406 

mIoU or hit rate (as was the case in our findings). There are three possible pipelines 407 

(combinations of model and saliency method) that would lead to this scenario: (1) M_bad 408 

+ S_good; (2) M_good + S_bad; and (3) M_bad + S_bad. The first scenario (M_bad + 409 

S_good) is the one for which saliency methods were originally intended: we have a 410 

working saliency method that properly alerts us to models picking up on confounders. The 411 

second scenario (M_good + S_bad) is our nightmare scenario: we have a working model 412 

whose attention is appropriately directed, but we reject it based on a poorly localizing 413 

saliency method. Because all three scenarios result in poor localization performance, it is 414 

difficult—if not impossible—to know whether poor localization performance is attributable 415 

to the model or to the saliency method (or to both). While we cannot say whether models 416 

or saliency methods are failing in the context of medical imaging, we can say that we 417 

should not rely on saliency methods to evaluate model localization. Future work should 418 

explore potential techniques for localization performance attribution. 419 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2021. ; https://doi.org/10.1101/2021.02.28.21252634doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252634
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

22 

 420 

There are several limitations of our work. First, we did not investigate the impact of 421 

pathology prevalence in the training data on saliency method localization performance. 422 

Second, some pathologies, such as effusions and cardiomegaly, are in similar locations 423 

across frontal view CXRs, while others, such as lesions and opacities, can vary in 424 

locations across CXRs. Future work could investigate how the location of pathologies on 425 

a CXR in the training/test data distribution, and the consistency of those locations, affect 426 

saliency method localization performance. Third, while we compared saliency method-427 

generated pixel-level segmentations to human expert pixel-level segmentations, future 428 

work might explore how saliency method localization performance changes when 429 

comparing bounding-box annotations, instead of pixel-level segmentations. Finally, the 430 

impact of saliency methods on the trust and efficacy of users is underexplored. 431 

 432 

In conclusion, we present a rigorous evaluation of a range of saliency methods and a 433 

human benchmark dataset, which can serve as a foundation for future work exploring 434 

deep learning explainability techniques. This work is a reminder that care should be taken 435 

when leveraging common saliency methods for deep learning-based workflows for 436 

medical imaging. 437 

 438 

Methods 439 

Ethical and information governance approvals. 440 

This study does not involve human subject participants. 441 

 442 
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Dataset and clinical taxonomy. Dataset description. The localization experiments were 443 

performed using CheXpert, a large public dataset for chest X-ray interpretation. The 444 

CheXpert dataset contains 224,316 chest X-rays for 65,240 patients labeled for the 445 

presence of 14 observations (13 pathologies and an observation of “No Finding”) as 446 

positive, negative, or uncertain. The CheXpert validation set consists of 234 chest X-rays 447 

from 200 patients randomly sampled from the full dataset and was labeled according to 448 

the consensus of three board-certified radiologists. The test set consists of 668 chest X-449 

rays from 500 patients not included in the training or validation sets and was labeled 450 

according to the consensus of five board-certified radiologists. See Supplementary Table 451 

2 for dataset summary statistics. 452 

 453 

Ground-truth segmentation. The chest X-rays in our validation set and test set were 454 

manually segmented by two board-certified radiologists with 18 and 27 years of 455 

experience, using the annotation software tool MD.ai59 (see Supplementary Figs. 12 456 

through 14). The radiologists were asked to contour the region of interest for all 457 

observations in the chest X-rays for which there was a positive ground truth label in the 458 

CheXpert dataset. For a pathology with multiple instances, all the instances were 459 

contoured. For Support Devices, radiologists were asked to contour any implanted or 460 

invasive devices including pacemakers, PICC/central catheters, chest tubes, 461 

endotracheal tubes, feeding tubes and stents and ignore ECG lead wires or external 462 

stickers visible in the chest X-ray. Finally, of the 14 observations labeled in the CheXpert 463 

dataset, Fracture, Pleural Other, Pneumonia, and No Finding were not segmented 464 
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because they either had low prevalence and/or ill-defined boundaries unfit for 465 

segmentation.  466 

 467 

Evaluating the expert performance using benchmark segmentation. To evaluate the 468 

expert performance on the test set using the IoU evaluation method, three radiologists, 469 

certified in Vietnam with 9, 10, and 18 years of experience, were asked to segment the 470 

regions of interest for all observations in the chest X-rays for which there was a positive 471 

ground truth label in the CheXpert dataset. These radiologists were also provided the 472 

same instructions for contouring as were provided to the radiologists drawing the 473 

reference segmentations. To extract the “maximally activated” point from the benchmark 474 

segmentations, we asked the same radiologists to locate each pathology present on each 475 

CXR using only a single most representative point for that pathology on the CXR (see 476 

Supplementary Figs. 1 through 11 for the detailed instructions given to the radiologists). 477 

There was no overlap between these three radiologists and the two who drew the 478 

reference segmentations. 479 

 480 

Classification network architecture and training protocol. Multi-label classification 481 

model. The model takes as input a single-view chest X-ray and outputs the probability for 482 

each of the 14 observations. In case of availability of more than one view, the models 483 

output the maximum probability of the observations across the views. Each chest X-ray 484 

was resized to 320×320 pixels and normalized before it was fed into the network. The 485 

model architectures (DenseNet121, ResNet152, and Inception-v4) were used. Cross-486 

entropy loss was used to train the model. The Adam optimizer60 was used with default β-487 
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parameters of β1 = 0.9 and β2 = 0.999. The learning rate was hyperparameter tuned for 488 

the different model architectures. The best learning rate for each architecture was: 489 

1×10−4 for DenseNet121, 1×10−5 for ResNet152, 1×10−5 for Inceptionv4. Batches were 490 

sampled using a fixed batch size of 16 images. 491 

 492 

Ensembling. We use an ensemble of checkpoints to create both predictions and saliency 493 

maps to maximize model performance. In order to capture uncertainties inherent in 494 

radiograph interpretation, we train our models using four uncertainty handling strategies 495 

outlined in CheXpert: Ignoring, Zeroes, Ones, and 3-Class Classification. For each of the 496 

four uncertainty handling strategies, we train our model three separate times, each time 497 

saving the 10 checkpoints across the three epochs with the highest average AUC across 498 

5 observations selected for their clinical importance and prevalence in the validation set: 499 

Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleural Effusion. In total, after 500 

training, we have saved 4 x 30 = 120 checkpoints for a given model. Then, from the 120 501 

saved checkpoints for that model, we select the top 10 performing checkpoints for each 502 

pathology. For each CXR and each task, we compute the predictions and saliency maps 503 

using the relevant checkpoints. We then take the mean both of the predictions and of the 504 

saliency maps to create the final set of predictions and saliency maps for the ensemble 505 

model. See Supplementary Table 3 for the performance of the model on each of the 506 

pathologies. 507 

 508 

CNN interpretation strategy. Saliency methods (Grad-CAM, Grad-CAM++, and 509 

Integrated Gradients) were used to visualize the decision made by the classification 510 
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network. The saliency map was resized to the original image dimension using bilinear 511 

interpolation. It was then normalized using max-min normalization and then converted 512 

into a binary segmentation using binary thresholding (Otsu’s method). We also reported 513 

mIoU localization performance using different saliency map thresholding values. We first 514 

applied max-min normalizations to the saliency maps so that each value gets transformed 515 

into a decimal between 0 and 1. We then passed in a range of threshold values from 0.2 516 

to 0.8 to create binary segmentations and calculated the mIoU score per pathology under 517 

each threshold on the validation set. Then for the analysis with the full dataset (see 518 

Supplementary Figure 16), we further ensure that the final binary segmentation is 519 

consistent with model probability output by applying another layer of thresholding such 520 

that the segmentation mask produced all zeros if the predicted probability was below a 521 

chosen level. The probability threshold is searched on the interval of [0,0.8] with steps of 522 

0.1. The exact value is determined per pathology by maximizing the mIoU on validation 523 

set.  524 

 525 

Segmentation evaluation metrics. Localization performance of each segmentation was 526 

evaluated using Intersection over Union (IoU) score. The IoU is the ratio between the 527 

area of overlap and the area of union between the ground truth and the predicted areas, 528 

ranging from 0 to 1 with 0 signifying no overlap and 1 signifying perfectly overlapping 529 

segmentation. Confidence intervals are calculated using bootstrapping with 1000 530 

bootstrap samples. The variance in the width of CI across pathologies can be explained 531 

by difference in sample sizes. For the percentage decrease from expert mIoU to AI mIoU, 532 

we bootstrapped the difference between human benchmark and saliency method 533 
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localization and created the 95% confidence intervals. The confidence intervals for hit 534 

rates were calculated in the same fashion. 535 

 536 

Statistical analysis. 537 

Pathology Characteristics. We used four features to characterize the pathologies. (1) 538 

Number of instances is defined as the number of disjoint components in the 539 

segmentation. (2) Size is the area of the pathology divided by the total image area. (3) 540 

and (4) Elongation and irrectangularity are geometric features that measure shape 541 

complexities. They were designed to quantify what radiologists qualitatively described as 542 

focal or diffused. To calculate the metrics, a rectangle of minimum area enclosing the 543 

contour is fitted to each pathology. Elongation is defined as the ratio of the rectangle’s 544 

longer side to short side. Irrectangularity =  1 - (area of segmentation/area of enclosing 545 

rectangle), with values ranging from 0 to 1 with 1 being very irrectangular. When there 546 

are multiple instances within one pathology, we used the characteristics of the dominant 547 

instance (largest in perimeter).  548 

 549 

Model Confidence. We used the probability output of the DNN architecture for model 550 

confidence. The probabilities were normalized using max-min normalization per 551 

pathology before aggregation. 552 

 553 

Linear Regression. For each evaluation scheme (overlap and hit rate), we ran two groups 554 

of simple linear regressions, with AI evaluation metrics and their differences as the 555 

response variables. Each group has four regressions using the above four pathological 556 
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characteristics as the regressions’ single attribute, respectively, and only the true positive 557 

slice was included in each regression. All features are normalized using min-max 558 

normalization so that they are comparable on scales of magnitudes. We report the 95% 559 

confidence interval and Bonferroni adjusted p-value of the regression coefficients. 560 
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