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Fueled by epidemiological studies of SARS-CoV-2, contact tracing by mobile

phones has been put to use in many countries. A year into the pandemic, we

lack conclusive evidence on its effectiveness. Here, we used a unique real world

contact data set, collected during the rollout of the first Norwegian contact

tracing app in the Spring of 2020, to address this gap. Our dataset involves

millions of contacts between 12.5% of the adult population, and enabled us to

measure the real-world app performance. The technological tracing efficacy

was measured at 80%, and we estimated that at least 11.0% of the discovered

close contacts could not be identified by manual contact tracing. The overall

effectiveness of digital tracing depends strongly on app uptake, but significant

impact can be achieved for moderate uptake numbers. Used as a supplement

to manual tracing and other measures, digital tracing can be instrumental in
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controlling the pandemic. Our findings can thus help informing public health

policies in the coming months.

When the SARS-CoV-2 virus started spreading globally, many initiatives for the develop-

ment of digital contact tracing based on mobile phones were launched1, 2. The efforts were

motivated by a study by Ferretti et al., which suggested that an effective widely adopted digital

contact tracing system may be enough to keep the reproduction number below 13. Almost a year

into the pandemic, we have still not seen conclusive evidence that digital contact tracing can

play a significant role in containing the pandemic. As a result, several studies have questioned

the efficacy and need for digital contact tracing, especially when considering its encroachment

on privacy4–10. Measuring the effect of digital contact tracing has been notoriously hard, as

there is no contacts dataset available from a full scale production system. Further, most of the

deployed systems are based on the Exposure Notification System (ENS)11, which is designed

to greatly limit visibility into contact events in order to preserve privacy. Hence, current assess-

ments of ENS-based apps have resorted to using a combination of incomplete data that ENS

provides and population surveys12–14. Here, we used a unique real world contact data set, that

was collected and anonymized during the rollout of the first Norwegian contact tracing app

(Smittestopp) in the Spring of 202015, to tackle these limitations. Our dataset involves mil-

lions of contacts and enabled us to measure the real-world technological tracing efficacy of the

app, apply a machine learning classifier to estimate the number of contacts not identifiable by

manual contact tracing (see Figure 1a) and to parameterize a model that relates tracing efficacy

to the app uptake in the population. Finally, we used our efficacy estimates as an input to an

established model of pandemic spreading, to assess the potential impact as a control measure.

We measured a high success rate in accurately detecting nearby devices (80%). Further, we

estimated that a non-trivial percentage of the traced close contacts were not visible to manual
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contact tracing (at least 11%). We also found that the overall effectiveness of digital tracing

is strongly dependent on app uptake. While an overall tracing efficacy comparable to manual

contact tracing requires app uptake in the range from 80% to 90%, we found that significant

impact can be achieved for much lower uptake numbers. For example, an uptake of 40% would

be enough, assuming a fast and effective case isolation, for controlling a pandemic with repro-

duction number of 1.5. Our results add to the emerging evidence that apps are a valuable public

health tool12–14.

Digital contact tracing at scale

Smittestopp was rolled out in the Spring of 2020 and was quickly installed by 28% of the

adult population (see Figure 1b). The app was eventually suspended in June, because of a

combination of low infection rates and privacy concerns16. An ENS-based app was launched

in December 202017. Smittestopp used Bluetooth low energy (BLE) to discover phones in a

range of 10 meters. Upon a discovery event, the app measured the power of the received BLE

signal, which was used to approximate the distance to the discovered device. The devices would

upload their measurements to a central server, which fused the received data for identifying

contacts. This centralization ensured a symmetric contact identification, since Smittestopp was

asymmetric by design, that is a detection event in one direction does not imply the opposite is

true.

To track the effectiveness of Smittestopp, we used anonymized daily aggregates of BLE dis-

covery events, contacts, spanning 18 days (see the Supplementary Information). We recorded

over 26 millions contacts between 545354 phones (i.e., 12.5% of the adult population in Nor-

way). The percentage of daily active users fluctuated between 50% and 70%. Two thirds of the

daily active users were involved in a single risky contact (see Figure 1c), which corresponds

to being within 2 meters from another person for 15 minutes or longer 18. We also found that
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80% of the active users had contacts on at least five different days. When considering the entire

data set we found that 89.6% of users had at least a single risky contact that lasted 15 minutes

or longer. The observed retainability of the app and the pervasiveness of close contacts suggest

a reasonable case coverage, that is the fraction of positive cases using the app. Assuming a

homogeneous uniform mixing between app users and the rest of the population, we expect a

case coverage close to the app adoption level.

Figure 1: a): Typical settings of social contacts, the colors of the arrows capture whether man-
ual contact tracing can succeed in identifying the contacts in the respective setting (green means
complete identification, yellow partial identification, while red means zero or minor identifica-
tion), b): The percentage of population over 16 year old that were using Smittestopp in each
municipality, c): the percentage of active users per day as well as the percentage of active users
that were involved in risky close contacts (within 2 meters) that lasted 15 minutes or more, d):
The average number of contacts per day over time, all contacts (blue) and risky close contacts
(red).

To investigate whether Smittestopp captured movement patterns in the society, we examined

the number of contacts and risky contacts over time (see Figure 1d). Both numbers exhibited a

slightly increasing trend, which is consistent with the fact that society was slowly opening up

during this period. The average number of contacts dropped in weekends and national holidays.
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The trend of risky contacts followed closely that of all contacts. The development in the average

contacts matches well known properties of human contacts 19.

Estimating the technological efficacy

We used the collected contact events to estimate the tracing efficacy of Smittestopp, the proba-

bility that a physical proximity event between two phones is detected by the app, and how it is

impacted by app uptake. The key assumption to computing the efficacy of Smittestopp is that

all phones detect each other independently. The global mobile phone market is dominated by

two operating systems; iOS and Android, which we have found to differ significantly in their

ability to detect contacts. We let T be the set of all unique unordered pairs of phone architec-

tures, and instantiate our model by letting T = {[i, i], [a, a], [i, a]} where i means iOS, and a

means Android. Using the collected contact events, we estimated the following probabilities:

pii = 0.54 (iPhone detects iPhone), pai = 0.53 (Android detects iPhone), pia = 0.53 (iOS de-

tects Android), and paa = 0.74 (Android detects Android). These probabilities remained stable

throughout the measurement period (see Figure 2a). The details of the underlying assumptions

and calculations are provided in the Methods section.

Assuming a full app uptake in the population, the tracing efficacy of a centralized architec-

ture, E, can be formulated as

E = cii(2pii − p2ii) + (cia + cai)(pia + pai − piapai) + caa(2paa − p2aa). (1)

Here, cx denotes the probability that a physical contact between two phones is of type x ∈

{aa, ii, ai, ia}. The four values for cx can be calculated directly from the fraction of the different

operating systems of the phones using the app. If we define Mi = φ as the proportion of apps

running on iOS phones, and Ma = 1− φ as the proportion running on Android, we have

cii = φ2, cia = cai = φ(1− φ), caa = (1− φ)2.
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These calculations show that the efficacy of the system depends on the distribution of iOS

and Android phones in the population. The theoretical efficacy of the system in terms of detec-

tion of contacts varies between 93% with only Android phones in the population to 79% with

only iOS phones in the population, as illustrated in Figure 2b.

Figure 2: a): The probabilities of detection between different pairs of architectures as it de-
veloped over a period of 18 days, b): The detection of contacts varies between 93% with only
Android phones in the population to 79% with only iOS phones in the population. The detection
rate is 80% when we have an equal split, c): The efficacy of tracing as a function of app uptake
in the two user groups. The lines mark different iOS market shares, d): Tracing efficacy as a
function of app uptake, assuming the same uptake in the two groups as well as an equal market
share φ̄ = 0.5.

In reality the uptake of contact tracing apps is well below 100%, and for Smittestopp we

also observed that the uptake differed significantly between iOS and Android users. To give

a realistic estimate of the app tracing efficacy, we needed to modify (1) to incorporate these
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factors. We define αi, αa as the app uptake among iOS and Android users, respectively. Then

(1) still holds, but with modified values for the probabilities cx, x ∈ {aa, ii, ai, ia}:

cii = α2
iφ

2, cia = cai = αiφαa(1− φ), caa = α2
a(1− φ)2,

Figure 2c shows the tracing efficacy as a function of app uptake among the iOS and Android

users, calculated using these modified cx values with (1) and the detection probabilities px, while

Figure 2d shows the tracing efficacy assuming an equal uptake by the two groups. The overall

effectiveness of digital tracing is strongly dependent on app uptake, and follows the expected

quadratic curve. The provided expressions for technological efficacy can be applied to systems

other than Smittestopp given that the terms in Eq. 1 can be estimated. Our formulation of the

technological efficacy gives an estimate of false negatives produced by the system, but it does

not capture false positives. Given the modest secondary attack rate of the virus20, 21, we expect

technological false positives to have a minimal impact on the number of wrongly isolated cases

(see the Supplementary Information).

One weakness of our dataset is that it was collected from an app that was developed be-

fore the ENS, the current de-facto standard for digital contact tracing, became available . It

must be noted that although ENS is expected to perform better than Smittestopp, this has not

been possible to verify in any deployed system. The technical reasons for this are presented

in Supplementary Information. Limited experiments in controlled environments do, however,

support the assumption that ENS will have an efficacy comparably to or better than we have

observed in the deployment of Smittestopp22, 23, and thereby support our conclusions on the po-

tential of digital contact tracing. The available followup data on deployed ENS-based apps is

limited. We used publicly available statistics about the German and Swiss official apps to gauge

their efficacy24, 25. These two apps were rolled out in June 2020. Inline with our results from

Smittestopp, the app uptake seems to be a good proxy for gauging the case coverage (see the
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Supplementary Information).

Detecting unknown close contacts

Figure 3: a): The contacts split over time. The fraction of risky random contacts is stable over
time and decreases in weekends and holidays, b): The density of encounter duration. Frequent
contacts tend to be markedly longer, c): The density of the number of contacts per user, which
are split based on the inferred contact type, d): The complementary cumulative distribution of
the percentage of random contacts per user for all users, users with 10 contacts or more (49% of
all users), users with 30 contacts or more (12% of all users) and users with 50 contacts or more
(4% of all users).

To check whether Smittestopp was successful in detecting untraceable close contacts, we

built a machine learning classifier to separate unknown (random) contacts from known close

contacts (see the Methods). The model learned association patterns from the contacts graph and

achieved an accuracy of 89% when classifying risky close contacts. Overall, at least 11% of the

risky close contacts were random.

The fraction of daily random contacts varied slightly over time, but remained around 6%
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(see Figure 3a). It dropped during holidays, notably the long Ascension day weekend in the end

of May, and it peaked in the days leading to the holidays. We performed the same analysis as we

varied the threshold for considering a contact as risky. The fraction of risky random contacts in-

creased to 33.3% when abolishing the duration threshold. We, however, note that our estimates

of random contacts are conservative (see the Methods and Supplementary Information).

Random contacts were shorter, mostly lasting between 20 and 40 minutes ( see Figure 3b).

This is, however, a duration long enough to spread infection. Close contacts were longer and

can last a full day (i.e. household contacts) and several hours with a peak around 7 hours (i.e.

work contacts). The number of random contacts per user, in the entire study period, was far

less than close contacts. Over half of the users did not have random contacts (i.e. only known

contacts), but over 30% of the users had 10% or more random contacts (see the lower Figures 3c

and Figures 3d). The lack of random contacts, for over 50% of the users, can be related to the

imposed lockdown and adherence to social distancing as well as our conservative estimates.

Considering only users with a relatively high number of contacts, the percentage of users with

10% random contacts increased to between 50% and 60%. Overall, the top 20% of users, in

terms of contacts, had 20% or more random contacts. This suggest that digital contact tracing

can potentially help containing super-spreaders.

The detected fraction of random contacts suggests that the app can significantly supplement

manual contact tracing. If we assume, for instance, 60% app uptake in the population, we

observe from Figure 2d that the efficacy of the app tracing is approximately 30%. This app will

improve the overall tracing accuracy by 7.5% to 10.5% in a society where the fraction of random

contacts is between 25% and 35%, respectively. Here, we assume that manual contact tracing

identifies all non-random contacts. A supplement of this magnitude can mean the difference

between a controlled pandemic and an exponential growth of cases3.
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Effect on spread of SARS-CoV-2

After investigating the technological efficacy and its viability in detecting contacts, we turned

to assess its potential impact on the pandemic spread. The tracing efficacy as a function of app

uptake was computed from (1), as illustrated in Figure 2c, and then these numbers were input

to the model of Ferretti et al3, which describes the effect of contact tracing on pandemic spread.

Figures 4a and 4b show the estimated growth rate r (in days−1), as a function of app uptake

in the two user groups. In Figure 4a, we chose the initial reproduction number as R0 = 2.7,

which is in line with reported numbers from the early phase of epidemic spread in various

countries26, 27. Figure 4b shows the growth rate for R0 = 1.5, chosen to represent a more

slowly growing epidemic resulting from control measures such as social distancing. In both

plots, the efficacy of isolating symptomatic cases was set to 70%, we assumed a four hour

delay in both case isolation and quarantining of contacts, and the proportion of environmentally

transmitted (i.e., non-traceable) infections was set to 10% inline with our estimates. Results

for other parameter choices are included in the supplementary material. The black lines show

r = 0, i.e., the threshold between increasing and declining numbers of infected cases. Figure 4c

shows the same results as curve plots, assuming identical app uptake in the two user groups.

Figure 4: The plots show the estimated growth rate r as a function of app uptake among Android
and iOS users. We have assumed 90% efficacy of case isolation and a 4 hour delay of both case
isolation and contact quarantining. a) shows the situation for R0 = 2.7 and b) shows R0 = 1.5.
c) shows the same data, but assuming identical app uptake among iOS and Android users.
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Figure 4a indicates that controlling the pandemic using app-based contact tracing alone is

probably unrealistic, since 95% of the population would need to install the app to control a

pandemic with an initial reproduction number R0 = 2.7. However, the situation is completely

different for the case of R0 = 1.5, which may be more representative for a situation with other

controlling measures in place. In this case, the required uptake was about 40% to control the

epidemic and achieve a decline in the number of cases. Unfortunately, the majority of countries

struggle with pushing app uptake beyond 20%-25%. However, a few countries including the

UK and Denmark, provide a cause for optimism, by reaching a 30% or more uptake rate. For

example, 49% of the eligible population with compatible phones have installed the NHS app in

England and Wales14.

Discussion

Our analysis of the data from the first rollout of Smittestopp reveals some central findings.

The first is that it is possible to reach a significant efficacy of digital contact tracing on mobile

phones. With an equal split between Android and iOS-phones in the population, we measured

an efficacy above 80%. Although many discussions on the topic have taken this for granted,

it should be noted that this was far from obvious. The phone-models used in a given society

varies enormously, and none of the models were designed with contact tracing in mind. Doc-

umentation of an efficacy of above 80% in a rolled out solution is therefore a decisive finding.

We expect ENS-based apps to achieve a comparable or better accuracy, given their superiority

to Smittestopp. The second finding is that when used in a real population, a digital contact

tracing system does detect a non-trivial number of close contacts that is out of reach for manual

contact tracing. Our machine learning model concluded that at least 11% of the contacts with

high risk of infection spread were random, and would likely not have been identified with man-

ual contact tracing. The third finding is that measurements from a full scale rollout combined
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with epidemiological models show significant potential contributions from digital contact trac-

ing to stopping the pandemic. Although there is significant room for improvement of technical

accuracy, it appears that the app uptake rate in the population is the only real impediment for

realizing the potential of digital contact tracing. Yet, tangible benefits are possible at modest

uptake rates. An uptake rate of 40%, for example, can help reducing the reproduction number

in the current phase of the pandemic, where the reproduction number is between 1 and 1.5 in

most countries28, 29.

With Covid-19 expected to be endemic30, new virus variants31 and a promising but lengthy

vaccination campaign32, our findings suggest that digital contact tracing can greatly boost efforts

to control the pandemic in the coming months. Health authorities should have an immediate

focus on increasing the uptake of contact tracing apps. This should be supplemented with

efforts to establish digital contact tracing as an essential tool for public health.

Methods

Modelling the technological efficacy

A central assumption in the model is that the phones detect each other completely indepen-

dently. This means that whenever phone A detects phone B, this detection event does not

change the behavior of phone B in a way that will affect its probability of detecting phone A.

There is nothing in the implementation of Smittestopp that should imply that this assumption

does not hold. The code was written such that the act of detecting another phone, and the act of

being detected by another phone are not dependent on each other.

Assume two types of phones, x and y. When two such phones are in proximity of each

other, let pxy be the probability that x detects y, and pyx be the probability that y detects x.

Let Cxy be the number of factual proximity events, i.e., contacts, over a given period, between

two app users carrying phone of type x and y, respectively. Furthermore, let Dxy and Dyx be
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the number of these events that are detected by the phone of type x and y, respectively, and let

Dxy+yx be the number of proximity events detected by both phones.

Then the following equations hold:

Cxypxy = Dxy,

Cxypyx = Dyx,

Cxypxypyx = Dxy+yx.

Solving these equations for pxy and pyx gives

pxy =
Dxy+yx

Dyx

, (2)

pyx =
Dxy+yx

Dxy

. (3)

Note that these equations are valid regardless of the number of types of phones there exist, and

they also hold if x and y are identical.

If we now let T be the set of all unique unordered pairs of phone architectures, we can

formulate the tracing efficacy E of a centralized architecture as

E =
∑

[x,y]∈T

Exy

where

Exy = cxx(2pxx − p2xx) + (cxy + cyx)(pxy + pyx − pxypyx) + cyy(2pyy − p2yy) (4)

Here cz denotes the probability that any given contact between two phones is of type z ∈

{xx, yy, xy, yx}. Note that in this formulation, cxy = cyx, whereas pxy and pyx are distinct

entities. The values for cz can be calculated directly from the fraction of the different types of

phones using the app. If we define Mi = φ as the proportion of apps running on iOS phones,

and Ma = 1− φ as the proportion running on Android, we have

cii = φ2, cia = cai = φ(1− φ), caa = (1− φ)2.
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Note that the formulation in (4) mandates that data is collected centrally. If two phones are in

proximity of each other, it suffices that the contact is detected by at least one of them. Note

also that E is defined as the ratio of detected contacts to the total number of actual contacts

among app users. In a situation with 100% app uptake in the population, E would be the total

efficiency of the system in detecting contacts.

The mobile phone market in the world is dominated by two operating systems; iOS and

Android, with significantly different properties. There is a rich set of different phone models

as well, but the differences between the operating systems dominate the picture. We therefore

instantiate our model by letting T = {[i, i], [a, a], [i, a]} where i means iOS, and a means An-

droid. We used the aggregate contact dataset (see the Supplementary Information for details on

the dataset) to calculate the number of detected contacts Dia, Dai, and Dia+ai, and from (2)-(3)

we got the following probabilities:

• Probability that iOS detects iOS; pii = 0.54

• Probability that Android detects iOS; pai = 0.53

• Probability that iOS detects Android; pia = 0.53

• Probability that Android detects Android; paa = 0.74

More specifically, we focused on the most relevant contacts from an epidemiological point

of view (i.e. within 2 meters and lasting at least 15 minutes)18, 33. The numbers of detected

contacts Dia, Dai, and Dia+ai were computed directly since each contact is associated with a

direction and labeled with phone types (i.e. phone A of type x detected phone B of type y).

In case of an app uptake less than 100%, we introduced a new set of contact probabilities c̄x,

which are defined relative to the total population. Each value c̄x is the probability that a given

contact occurs between two app users with the phone combination x, for x ∈ {aa, ii, ai, ia}.
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Above we had
∑

x cx = 1, since we only considered contacts between app users, but since

a contact can also involve phones without the app installed, we have
∑

x c̄x < 1, and the

individual c̄x values depend on the uptake of the app among the respective users. We also

assume that φ̄ of the users have iOS devices and the remaining 1− φ̄ have android devices.

We then have

c̄ii = α2
i φ̄

2, c̄ia = c̄ai = αiφ̄αa(1− φ̄), c̄aa = α2
a(1− φ̄)2,

and as above the total efficiency is given by

Ē = c̄ii(2pii − p2ii) + (c̄ai + c̄ia)(pai + pia − paipia) + c̄aa(2paa − p2aa). (5)

Identifying random contacts

We used a random forest binary classifier34, 35 to separate close contacts into known and random.

To train a binary classifier, we needed a training set that includes both true positives (i.e. known

contacts) and true negatives (i.e. random contacts). In absence of a verified ground truth, we

needed to carefully pick these two sets from the underlying data. As true positives, we picked

device pairs that met on at least seven different days. We examined contact patterns to discern

potential true negatives. More specifically, we picked device pairs that were never in contact,

despite both being in a repeated close contact with a common third device, as true negatives

(see the Supplementary Information for more details).

We trained a random forest classifier with 20 trees, gini criterion, a maximum tree depth of 8,

a minimum number of samples required to split an internal node of 2 and a minimum number of

samples required to be at a leaf node of one. The values of these hyperparameters were selected

after conducting an exhaustive grid search. Overall, we used nine features that were meant to

capture the quality of information we have on a pair of devices, their connectivity as well as the

topological commonalities between them (i.e. how many neighbours they share). We fitted three
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models for close contacts of any duration, at least five-minute long and at least fifteen-minute

long. The three models exhibited an accuracy of 84%, 88% and 89%, respectively. We classified

between 11% and 33.3% of contacts as random depending on the definition of close contact.

Our model can classify contacts between devices with at least a single common neighbour.

One-off contacts between devices without common neighbours could not be classified and were

assumed to be known close contacts in order not to inflate the the added value of digital contact

tracing. Hence, our estimates of the fraction random contacts are conservative. A detailed

analysis of these aspects is provided in the Supplementary Information.
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number of COVID-19 is higher compared to SARS coronavirus. Journal of travel medicine,

2020.

27 Marco D’Arienzo and Angela Coniglio. Assessment of the SARS-CoV-2 basic reproduction

number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosafety and Health,

2(2):57–59, 2020.

28 Rijksoverheid. Coronavirus dashboard . https://coronadashboard.government.nl/landelijk/

reproductiegetal, accessed February 8, 2021.

29 RKI. Coronavirus Disease 2019 (COVID-19) - Daily Situation Report of the Robert

Koch Institute . https://www.rki.de/EN/Content/infections/epidemiology/outbreaks/COVID-

19/Situationsberichte Tab.html, accessed February 8, 2021.

19

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf 
https://www.simula.no/sites/default/files/sammenligning_alternative_digital_smittesporing.pdf 
https://github.com/corona-warn-app/cwa-documentation/blob/master/2020_06_24_Corona_API_measurements.pdf
https://github.com/corona-warn-app/cwa-documentation/blob/master/2020_06_24_Corona_API_measurements.pdf
https://coronadashboard.government.nl/landelijk/reproductiegetal
https://coronadashboard.government.nl/landelijk/reproductiegetal
https://www.rki.de/EN/Content/infections/epidemiology/outbreaks/COVID-19/Situationsberichte_Tab.html
https://www.rki.de/EN/Content/infections/epidemiology/outbreaks/COVID-19/Situationsberichte_Tab.html
https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/


30 Jennie S Lavine, Ottar N Bjornstad, and Rustom Antia. Immunological characteristics govern

the transition of COVID-19 to endemicity. Science, 371(6530):741–745, 2021.

31 Nicholas G Davies, Sam Abbott, Rosanna C Barnard, Christopher I Jarvis, Adam J Kucharski,

James Munday, Carl AB Pearson, Timothy W Russell, Damien C Tully, Alex D Washburne,

et al. Estimated transmissibility and severity of novel SARS-CoV-2 Variant of Concern

202012/01 in England. MedRxiv, pages 2020–12, 2021.

32 Kate M Bubar, Kyle Reinholt, Stephen M Kissler, Marc Lipsitch, Sarah Cobey, Yonatan H

Grad, and Daniel B Larremore. Model-informed COVID-19 vaccine prioritization strategies

by age and serostatus. Science, 2021.

33 Centers for Disease Control, Prevention, et al. Public health guidance for community-related

exposure, 2020.

34 Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on

document analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

35 Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to

statistical learning, volume 112. Springer, 2013.

36 Smittestopp. ”https://github.com/smittestopp”, accessed February 11, 2021.

37 Bluetooth, SIG. Inc., Bluetooth Specification Version 4.2.

38 Anne van Rossum. Smartphone localization. https://github.com/crownstone/bluenet-ios-

basic-localization/blob/master/BROADCASTING AS BEACON.md, accessed January 26,

2021.

39 David G. Young. Hacking The Overflow Area. http://www.davidgyoungtech.com/2020/05/

07/hacking-the-overflow-area, accessed January 21, 2021.

20

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://github.com/smittestopp 
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
https://github.com/crownstone/bluenet-ios-basic-localization/blob/master/BROADCASTING_AS_BEACON.md
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
http://www.davidgyoungtech.com/2020/05/07/hacking-the-overflow-area
https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/


40 Government Technology Agency. 6 things about OpenTrace, the open-source code pub-

lished by the TraceTogether team. https://www.tech.gov.sg/media/technews/six-things-

about-opentrace#6-last-but-not-least-an-extra-step-for-ios-users, accessed January 26, 2021.

41 Apple Developer Documentation. iBeacon. https://developer.apple.com/ibeacon/, accessed

January 26, 2021.

42 Apple Developer Documentation. Core Location. https://developer.apple.com/

documentation/corelocation/, accessed January 26, 2021.

43 Secure Hash Standard. Federal Information Processing Standards (FIPS) Publication FIPS-

180-2. US Doc/NIST, 2002.

44 Zachary J Madewell, Yang Yang, Ira M Longini, M Elizabeth Halloran, and Natalie E Dean.

Household Transmission of SARS-CoV-2: A Systematic Review and Meta-analysis. JAMA

network open, 3(12):e2031756–e2031756, 2020.

45 Wei Li, Bo Zhang, Jianhua Lu, Shihua Liu, Zhiqiang Chang, Cao Peng, Xinghua Liu, Peng

Zhang, Yan Ling, Kaixiong Tao, et al. Characteristics of household transmission of COVID-

19. Clinical Infectious Diseases, 71(8):1943–1946, 2020.

46 Maogui Hu, Hui Lin, Jinfeng Wang, Chengdong Xu, Andrew J Tatem, Bin Meng, Xin Zhang,

Yifeng Liu, Pengda Wang, Guizhen Wu, et al. The risk of COVID-19 transmission in train

passengers: an epidemiological and modelling study. Clinical Infectious Diseases, 2020.

47 Lieve Hamers et al. Similarity measures in scientometric research: The jaccard index versus

salton’s cosine formula. Information Processing and Management, 25(3):315–18, 1989.

48 Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks,

25(3):211–230, 2003.

21

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://www.tech.gov.sg/media/technews/six-things-about-opentrace#6-last-but-not-least-an-extra-step-for-ios-users
https://www.tech.gov.sg/media/technews/six-things-about-opentrace#6-last-but-not-least-an-extra-step-for-ios-users
https://developer.apple.com/ibeacon/
https://developer.apple.com/documentation/corelocation/
https://developer.apple.com/documentation/corelocation/
https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/
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Supplementary Material

1 Smittestopp

As a response to a rising number in Covid-19 cases, the Norwegian health authorities decided

on the 13th of March, 2020 to develop a contact tracing application. The app was subsequently

launched on the 16th of April, which was received positively by the population15. The number

of app downloads reached 1.5 million two weeks after the launch date. The number of active

users per day (i.e. users that shared tracing information) peaked around 800k in the first few

days post launch then decreased steadily to approximately 500k in early June (see Figure S1).

The phone population was dominated by iOS devices but twice as many Android devices were

lost in the course of the app deployment compared to iOS. The difference in the adoption rate

between the two platforms reflects their popularity. The discrepancy in lost users can be blamed
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on the app resulting in a higher energy consumption on Android. Optimizing for Android was

particularly hard given the high diversity in terms of both vendors and devices. The active

users of Smittestopp were distributed across the country with a higher concentration in major

urban hubs (see Figure 1b in the main text). Smittestopp was suspended on the 16th of June

due to privacy concerns and decrease in infections16. Norway released a new app based on the

exposure notification system in December 202017. The source code of Smittestopp is publicly

available36.

Date

U
se
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0

250000

500000

750000
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19-Apr 3-May 17-May 31-May

Android iOS Total

Figure S1: The number of active users per day.

Smittestopp was intended to both automate contact tracing and collect aggregate informa-

tion on the mobility and interactions between users. This information was needed to help inform

government policy on pandemic control. To this end, Smittestopp logged both users GPS lo-

cations and used Bluetooth Low Energy (BLE) to discover other users in proximity 37. Phones

with Smittestopp would continuously broadcast their presence over BLE as well as periodically

scan for phones with Smittestopp in proximity. Smittestopp used a universally unique service

identifier for advertising presence and scanning for nearby devices. Note that BLE signals have
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a 10-meter propagation range. Upon the discovery of a nearby device, the phone would connect

to it and measure the strength of the received BLE signal. Phone pairs acted independently

meaning that the event a phone A discovering another phone B did not automatically translate

to a discovery event in the opposite direction. In other words, the discovery in Smittestopp was

asymmetric. Smittestopp was a centralized solution, that is all phones would upload their GPS

and BLE measurments to a central database. This design choice was necessary for providing

aggregate information on the mobility and interactions between users. It also transformed the

discovery process from asymmetric to symmetric.

1.1 The ”iPhone-problem”

In the main text, we pointed to the fact that iOS and Android differ when it comes to the effec-

tiveness of detecting nearby phones. The difference is related to limitations imposed by iOS on

apps that run in the background, that is the app is running while the user is looking at another

app or the screen is turned off. These limitations manifested in two forms. First, Apps using

BLE and running in background were suspended by iOS a few second after entering the back-

ground mode. Suspended apps would still be visible to nearby phones that were active (e.g.

Android phones or iOS devices with the app in the foreground). If a suspended app was dis-

covered by another phone, iOS would bring it for approximately 30 seconds to the background,

which means it could scan for other devices for a short while. Second, iOS would alter the for-

mat of BLE advertisement packets, sent by an app in the background, to a proprietary one. This

makes it harder for other devices to discover nearby phones with Smittestopp running in the

background38, 39. These limitations implied that two iPhone devices with apps in background

would not be able to detect each other. In other words, Smittestopp would not report that two

iPhone users sitting next to each other in a bus with phones in their pockets as a close contact.

This was a major hurdle given the large fraction of Smittestopp users that had iOS devices.
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Note that these limitations faced all apps that were not built using the Exposure Notification

System40.

Figure S2: The average number of detected phone by an iOS device over time.

Smittestopp team eventually found a work around that would partially handle the aforemen-

tioned limitations. The work around leveraged the iBeacons and locations framework in iOS

to periodically scan for BLE beacons in proximity41, 42. A BLE beacon is a fixed device that

periodically advertises its presence to nearby phones, which is typically used in indoor settings

to help in navigation to various points of interest. Smittestopp scanned for non existent bea-

cons, a positive side effect of this was that iOS would, during the scanning, relay BLE packets

to apps in the background. The only caveat was that the screen needed to be on. So, a user

flipping through the news, for example, was visible to nearby phones although the app was in

the background. Even brief screen on events, for example in connection with the arrival of any

notification, would make the phone detectable. The work around was rolled out in early May

and immediately led to an increase in the detection rate for iOS devices (see Figure S2). The

average number of detected devices increased steadily starting on the 8th of May. It continued

climbing up as more users downloaded the update and eventually stabilized around the 18th of
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May ( the red line in Figure S2).

2 Dataset

Our dataset is an aggregated and anonymized version of the BLE measurements collected by

Smittestopp. The original data was deleted, because Smittestopp’s privacy policy committed to

deleting all raw data that was older than 30 days.

Data aggregation. The data was aggregated on daily basis. All device pairs that were in prox-

imity were identified as contacts. A contact corresponds to a series of N BLE measurements,

where N ≥ 1. Every measurement i is a tuple (ti, RSSI i), where ti is the measurement times-

tamp and RSSI i is the measured BLE signal strength. All measurements in a contact, within

a single day, were sorted, then the daily contact was defined as spanning the entire duration

between the earliest and latest timestamps ti and tN , respectively. Also the maximum and aver-

age RSSIs were recorded. As a result, a daily contact between two devices pa and pb is a tuple

of (pa, pb,∆t, RSSImax, RSSIavg, N, Ta, Tb), where ∆t is the time difference between tN and

ti, RSSImax is the strongest signal strength, RSSIavg is the average signal strength, Ta is the

type of device pa and Tb is the type of device pb. Note that Ta and Tb ∈ (iOS,Android). This

approach to data aggregation masks all details about the time of contact, which is essential for

ensuring users’ privacy. This has the side effect of mischaracterizing a pair of short encounters

that were spaced by several hours as a single long varying contact. For example, two unrelated

individuals that sat in the same train carriage in the morning and the afternoon of the same day.

Filtering on the measured signal strength reduces the impact of such false positives by discard-

ing encounters that are associated with a weak signal. Further, if such a contact was observed

over a number of days with a signal strength that indicates a close spatial proximity, we can

assume that the contact may qualify as a valid close contact.

Data anonymization. After aggregating encounters between device pairs into daily contacts,
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the device identifiers (i.e. pa and pb above) were hashed using the Secure Hash Algorithm 2

(SHA-2) with a 256 bits digest43. This algorithm produces a hash that can not be traced back

to the original device identifier. It always, however, maps a device identifier to the same hash,

which allows to track the activity of a device across several days. After the initial hashing step,

each hash was mapped to a random number in the range (1, ..., N), where N is the total number

of devices, then the hashes were deleted. These random numbers were generated using the

default seed which is the system clock timestamp. The mapping from the hashes to the random

numbers is not reversible because the original hashes were deleted. Every contact in the dataset

can not possibly be mapped to a particular individual, since the raw data was deleted. Further,

the contact does not include additional spatial details like GPS coordinates or even any fine

granular details on devices beyond being an iOS or Android device.

Basic contacts statistics. The dataset spans the period from the 17th of April to the 4th of

June 2020, that is from the first day after Smittestopp was released to ten days before it was

suspended. As explained in Sec .1.1, Smittestopp underwent a major update in early May to

address the iOS-imposed limitations. This translated into a higher rate of false negatives in the

first three weeks of Smittestopp’s lifetime. We therefore considered mainly the data collected

between the 18th of May and 4th of June, that is a total of 18 days. In this 18-day period no

updates of the app were pushed to the phones, and the effects of previous updates of the app had

stabilized. In order to avoid spurious users who downloaded the app and stopped using it after

a short while, we removed from the dataset all devices that were not present on seven different

days (i.e. the device was seen in a contact on seven different days). We also considered only

contacts between devices that had a 7-day overlap, meaning that both devices appeared in the

dataset on at least the same seven days.

We further derived three datasets as follows:

1. Proximity Contacts (PC). These are contacts of any duration but with an average RSSI
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Table S1: Basic statistics of contacts

All PC RRC PRC
Unique devices 545354 525646 485730 461068
Unique contacts 26792433 10665399 3946986 2889922

that is consistent with 2 meters proximity. To convert from RSSI to distance, we used the

thresholds that were set by Smittestopp22, where contacts with RSSI ≥ −85 dBm were

considered as close.

2. Relatively Risky Contacts (RRC). These are contacts that were at least 5 minutes long

with an average RSSI that is consistent with 2 meters proximity.

3. Potentially Risky Contacts (PRC). These are contacts that were at least 15 minutes long

with an average RSSI that is consistent with 2 meters proximity. PRC contacts are as-

sociated with a higher covid-19 transmission risk, if one of the involved individuals is

contagious.

Accordingly, PRC ⊂ RRC ⊂ PC. Table. S1 summarizes the number of contacts and

devices in our dataset. The number of unique devices is about 545k, which amounts to 12.5%

of the Norwegian population over 16 years old. 1 The number of unique devices drops as the

dataset becomes stricter. Overall, 10.8% of all contacts were PRC.

3 Bluetooth and False Positives

Our approach for estimating the efficacy of Smittestopp does not capture the number of false

positives generated by the system. We do not believe that this information is to be found in

the dataset, as the dataset contains no ground truths on proximity. These false positives stem

from the fact that the BLE signal can exhibit non-trivial propagation patterns depending on

surrounding environments5. For example, environments with metallic elements like the inside
1Smittestopp had an age limit of 16.

29

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/


of a tram can amplify BLE signal and thus underestimate the actual distance. Also phones

separated by thin walls may appear closer than they really are as far as the virus spreading is

concerned.

We, however, argue that the number of false positives generated by BLE is at the level of

noise when compared to the false positives stemming from accidental lack of infection spread.

Let us first define a false positive contributed by the technology to be a registered contact, where

the definitions of what constitutes a contact does not hold. Since BLE will only communicate

over short distances, usually up to 10 meters, a false positive according to this definition will

amount to situations where the following holds:

• There is a proximity between the two persons of 10 meters or less. If this was not the case

the phones would be out of range for each other’s BLE signal, and no registration would

be made.

• The proximity between the persons lasted for 15 minutes or more - otherwise it would

not be registered as a contact.

• The true distance between the two persons would be more than 2 meters - otherwise it

would not be a false positive.

• The measurements from BLE falsely indicate a distance of less than 2 meters for 15

minutes.

There will be situations in daily life where these four requirements hold, for example people

seated within 10 meters of each other on a bus or in a theater. Still, for this to be a dominating

factor, two things must be true. First, the disease must be extremely contagious, so that most

contacts within 2 meters in 15 minutes get infected. Second it must be extremely accurate so

that contagion stops at 2 meters, and starts after 15 minutes. This is far from being the case for
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Covid-19. Various studies estimate the secondary attack rate for Covid-19 at 17% for household

contacts and 27.8% to contacts who were spouses of index cases44, 45. The secondary attack rate

is markedly lower for settings outside the household20, 46. Accordingly, both manual and digital

contact tracing will yield a high fraction of false positives from an epidemiological point view,

that is identified contacts that did not contract the virus.

4 Classifying contacts

Contacts can either be known or random. Manual contact tracing can in principle identify all

known contacts given that the case recalls all recent encounters. Random contacts, however,

can not be identified by manual contact tracing alone. An additional approach that tracks the

presence of unrelated individuals in a particular location at a particular time, like digital contact

tracing or restaurants guest lists, is needed.

Our dataset does not include any extra information, like GPS coordinates or a user-provided

context, to help separating known from random contacts. Nevertheless, it tracks contacts over

time as well as contact duration and these two can provide an idea about repeated long encoun-

ters. The contact dataset can also be represented as a network with devices as nodes. A pair of

nodes are connected, if a contact is recorded between them. The corresponding edge weight is

the number of unique days with contacts. This contact graph can give insights into similarity

between devices, in terms of presence of common neighbours, which can be used in inferring

known contacts.

The lack of ground truth, however, complicates the task of validating the outcome of the

classification process. To address this, we leveraged the intuition that random encounters tend

to be shorter than known contacts as well as unlikely to repeat. In addition, since the data was

collected as the first wave of the pandemic was receding, human mobility was still limited and

the society was in many ways closed, we would expect a relatively small number of random
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Dataset % of one-off contacts
PC 77.1%
RRC 64.1%
PRC 57.3%

Table S2: One-off contacts.

encounters.

One-off contacts. A plausible starting point, when identifying random contacts, is to look at

one-off contacts, i.e., contacts that were observed on only one day in our dataset. This one-off

behaviour was observed despite the fact that the involved devices were simultaneously present,

that is they have registered contacts with other devices, in at least seven days. In other words,

we can not explain the lack of several contacts by simply non-overlapping activity periods.

We now focus only on the three derived datasets and ignore the raw contacts since these

involve many contacts that are associated with distances greater than two meters. Table S2

shows the percentage of one-off contacts for each dataset. The percentage of one-off contacts

decreased as we tightened the contact selection criteria. This is expected since the tighter the

criteria the more likely we avoid spurious contacts. Given the state of the society at the time,

we would expect a lower extent of random contacts. Accordingly, these numbers are likely

to involve known close contacts, since these also were recommended to social distance. For

example, friends and family who only met once during the study period. Other causes like app-

related artefacts; users tendency to switch off the app when they are home and only use it when

outdoors or simply people living in larger homes end up leaving their phones in separate rooms

which results in a lower signal strength might have also contributed to the high fraction of one-

off contacts. Hence, the percentage of random contacts will likely be greatly overestimated if

we assume that all one-off contacts were random contacts.

Simple filtering. A simple approach would classify an one-off link between two devices a and
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Dataset naive time-limited
PC 18.6% 70.1%
RRC 19.8% 43.5%
PRC 15.6% 29.2%

Table S3: Percentage of one-off contacts after applying simple filters.

b as random if and only if there exists no third node c that is connected to both a and b (i.e.

a and b do not have common neighbours). This classifier, which we refer to as naive in the

following, can result in false negatives by classifying an actual random link as non-random.

For instance, two devices, which are actual close contacts, encountered a third random contact

while traveling together. These devices will form a triad that would be interpreted as a sign

of a non-random contact. It can also lead to false positives by classifying known contacts as

random contacts. For example, friends that met only once during the study period without being

in proximity to a third person simultaneously. Another naive approach for identifying random

contacts is to impose a minimum time duration for accepting a contact as non-random, we refer

to this classifier in the following as time-limited. Here, we do not take into account whether the

contacts had a common neighbor or not. We set this threshold to 60 minutes, which should be

enough to capture encounters with friends and neighbours for example. While this may seem

plausible, such a minimum duration is a function of the type of encounter as well as the app and

can vary widely.

Table S3 shows the percentage of one-off contacts after applying the naive and time-limited

filtering. The two approaches reduced the percentage of one-off contacts but with different

magnitudes.

The naive approach returned comparable percentages of one-off contacts for the three datasets.

This is unexpected given the underlying differences between the datasets with respect to min-

imum contact duration. The number of one-off contacts is expected to be the highest for PC
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and lowest for PRC. The naive approach is simply indicating that the likelihood of having no

common neighbor is invariant to the contact duration and is consistent across the three dataset.

The time-limited approach returned higher percentages of one-off contacts, which means that

the majority of the original one-off contacts lasted less than an hour. Here, the three dataset ex-

hibited differences that are consistent with the underlying differences between them. We further

looked at the duration of the one-off contacts that were flagged by the naive approach in table S3

(i.e. those between users without common neighbours) and those which were not flagged. Ta-

ble S4 shows the percentage of contacts that were longer than one hour for both categories.

Contacts between users with common neighbours were more likely to be longer. The flagged

contacts involved a non-trivial percentage of long contacts, especially for PRC, which hints at

the presence of false positives. The not flagged contacts included also a large fraction of short

contacts, which suggests that the naive approach had failed in identifying a sizable fraction of

random contacts (i.e. false negatives).

In summary, the two approaches yielded different results. The naive approach did not ac-

count for the underlying differences between the three datasets. This resulted in inferring close

estimates of potential random contacts and apparently sizable fractions of both false positives

and false negatives. The results of the time-limited approach were compatible with differences

between the underlying datasets, which is expected as these differences are indirectly captured

by the time threshold. However, this approach does not take into account the structure of the

contact graph, which would make it vulnerable to false positives. Accordingly, a successful

approach for identifying random contacts must yield results, with respect to the volume and

duration of random contacts, that are consistent with the differences between the underlying

dataset. Further, the results should indicate clear qualitative differences between known and

random close contacts.

Machine learning classifier. To overcome these limitations, we employed a random forest
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Dataset Flagged Not flagged
PC 3.0% 11%
RRC 15.6% 39.5%
PRC 30.9% 55.7%

Table S4: Percentage of contacts longer than one hour for one-off contacts that were flagged
(left as one-off) and not flagged by the naive approach.

binary classifier that takes into account a broader set of features34, 35. Using a supervised clas-

sifier, we aimed to identify relationships between the features beyond the presence of common

neighbours as well as to avoid imposing arbitrary thresholds on contact duration.

To train a binary classifier, we needed a training set that includes both true positives (i.e.

close contacts) and true negatives (i.e. random contacts). In absence of a verified ground truth,

we needed to carefully pick these two sets from the underlying data. Intuitively, true positives

will be users that have a high frequency of daily encounters, for instance people living or work-

ing together. We accordingly picked device pairs that had at least seven encounters, that is they

met on seven different days. Identifying true negatives is more challenging though. One could

think of picking random pairs of devices with no common neighbours. This can be a viable

approach, if all devices occupy the same physical space and they can plausibly meet. However,

our data covers the whole of Norway, which reduces this plausibility and renders the above ap-

proach inadequate. We instead reverted to the contact pattern to discern potential true negatives.

Assume that devices a and b have met each others frequently, while device c has more than two

encounters with device a but has never been in the proximity of device b. The higher the fre-

quency at which a and b meet, the less likely that c has ever been in the proximity of b. In this

example, a and b could be family members and a and c coworkers, so b and c are true negatives

that never met during the data collection period despite the presence of common neighbours.

Note that we did not require that a and c have only one common neighbour, since that would

directly influence the definition of random contacts. We expected nevertheless true negatives
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to share fewer neighbours if any, which serves as a reasonable test to verify the identified true

negatives. To confirm this, we plotted the density of the number of common neighbours for both

true positives (TP) and true negatives (TN) (see Figure S3). The plot matched our expectations.

TNs shared only one neighbour in most cases.

Figure S3: The density of the number of common neighbours for both the inferred true positives
and true negatives. TNs have clearly fewer common neighbours.

Features. We trained our model using a total of nine features, which were meant to cap-

ture the quality of information we have on a pair of devices, their connectivity as well as the

topological commonalities between them.

1. device visibility and overlap features: for a pair of devices a and b, we collected the num-

ber of days each device was active, i.e., either discovered or was discovered by another

device. We also collected the number of days both devices were active, which we refer

to as availability overlap. These features were meant to control for the effect of devices’

measurement coverage on the likelihood they discover each other repeatedly.

2. Graph and topological commonalities features: for a pair of devices, we collected each

device degree (i.e. the total number of unique contacts it recorded) and the number of
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common neighbors. We further computed two features to capture the similarity in con-

nectivity: Jaccard’s index 47 and Adamic/adar (AA) index48. For a pair of devices with a

set of neighbours N(a) and N(b), Jaccard’s index is given by |N(a)∩N(b)|
|N(a)∪N(b)| , which is basi-

cally the fraction of common neighbours. The AA index is defined as the summation of

the inverse logarithmic degree centrality of the neighbours shared by pair, it is given by∑
c∈N(a)∪N(b)

1
log|N(c)| . Essentially, the AA index is higher if devices tend to commonly

connect to low degree devices than high degree ones. Both metrics have been used before

to predict missing links in social networks49.

3. device type features: for each pair of devices, we input their device type(s), which is

either Android or iOS.

Note that the aforementioned features do not include contact duration since we do not have a

clear mapping between contact duration and type. Also, these features can only help classifying

one-off contacts with common neighbours, that is the difference between the initial one-off

contacts in Table S2 and those identified by the naive approach in Table S3. For example, it

will classify over 70% of the one-off contacts in the PRC dataset. Classifying one-off contacts

without common neighbours requires extra features about contexts of contacts that do not exist

in our dataset. We argue that this is not a major limitation because the majority of one-off

contacts were between users with common neighbours. More specifically, the share of one-off

contacts between users with common neighbours is 75.8%, 69.2 and 72.8% for PC, RRC and

PRC respectively. Also assuming that one-off contacts without common neighbours are not

random will give a conservative estimate of the share of random contacts.

Classifier. We train a random forest classifier with 20 trees, gini criterion, a maximum tree

depth of 8, a minimum number of samples required to split an internal node of 2 and a minimum

number of samples required to be at a leaf node of one. The values of these hyperparameters
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PPPPPPPPPPPPPP

Real
contact

Predicted
contact

Random Close

Random 80.5% 19.5%
Close 12.2% 87.8%

Table S5: PC confusion matrix.

PPPPPPPPPPPPPP

Real
contact

Predicted
contact

Random Close

Random 86.0% 14.0%
Close 9.6% 90.4%

Table S6: RRC confusion matrix.

were selected after conducting an exhaustive grid search.

classification accuracy. We fitted three models for the PC, RRC and PRC dataset, respec-

tively. We performed k-fold cross validation for each model to verify that our models can

generalize. The three models exhibited a high level of accuracy as follows: PC (84%), RRC

(88%) and PRC (89%). Tables S5, S6 and S7 present the confusion matrices for the three

datasets.

All three models exhibited a higher accuracy when classifying close contacts. The perfor-

mance, however, slightly degraded when classifying random contacts, where a higher fraction

of them was classified as close contacts. Hence, these models are conservative when it comes

to flagging an encounter as a random contact. This is a desirable property, because this way the

PPPPPPPPPPPPPP

Real
contact

Predicted
contact

Random Close

Random 86.7% 13.3%
Close 8.3% 91.7%

Table S7: PRC confusion matrix.
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Feature Gini importance
AA’s index 0.398
Number of common neighbours 0.162
Device A total days with measurements 0.122
Device B total days with measurements 0.116
Jaccard’s index 0.102
Total overlapping days with measurements 0.079
Device A’s degree 0.007
Device B’s degree 0.007
Type of phones 0.007

Table S8: Features importance.

model will not lead to overestimating the benefits of digital contact tracing. We also note that

the accuracy of the model improved as the definition of contacts became stricter. The stricter the

definition the less likely the contact is a false positive. Consequently, classifying these contacts

will be less error prone.

Feature importance. We also investigated the role of different features and their contribution

to the model’s accuracy. To this end, we use the Gini importance or the Mean Decrease in

Impurity measure, which counts the fraction of times a feature is used in determining how to

split the classification tree.

Table S8 shows the Gini’s importance for all features. AA’s index and the number of com-

mon numbers were important to more than half of the decisions. Then followed by the features

that describe the quality of the measurement data. Accordingly, the model has learned to clas-

sify contacts depending mainly on the features that capture topological commonalities between

devices. Note that although the number of common neighbours and Jaccard’s index capture

some of the topological similarity aspects that are captured by AA-index, the latter is more im-

portant for discriminating contacts. This could be attributed to the fact that AA-index refines

the neighbourhood comparison beyond simple counting by considering structural similarities.
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Inferred random contacts. The random forest model classifies a non-trivial fraction of one-

off contacts as close contacts, which we summarize in Table S9. Only 11% of PRC contacts

were classified as random. If we consider only the contacts that we could classify (i.e. ignore

one-off contacts between pairs without common neighbours), the percentage of random contacts

increased slightly to 40.7%, 18.3% and 13.1% for PC, RRC and PRC, respectively. The inferred

fractions of random contacts are similar to numbers suggested by previous studies of social

contacts as well as reports on untraceable Covid-19 infections19, 50. Figures S4 and S5 show how

the fraction of random contacts has evolved in period for the PC and RRC datasets, respectively.

Our estimates of random contacts are conservative, since all one-off contacts between users

without common neighbours are assumed not to be random contacts. Now, if we assume that

all such contacts lasting less than an hour were random, the fraction of random contacts would

increase to 20.8%, 31.2% and 51.4% for PRC, RRC and PC, respectively.

A limitation of our approach is that the underlying contact graph is incomplete, that it does

not include the entire adult population of Norway. This incompleteness can lead to classifying

close contacts as random contacts. We attempted to minimize the impact of this by including

users that sent data on at least seven days as well as pair of devices that were sending data on

at least the same seven days. We also considered all one-off contacts between users without

common neighbours as close since we did not have features that captured the contexts of these

contacts. We could not gauge the impact of graph incompleteness on our inference because we

lacked ground truth. However, the qualitative differences between random contacts and close

contacts in terms of contact duration and number of contacts of each type (see Figure 3 in the

main text), suggest that we are discriminating contacts of different underlying characteristics.

40

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/


Dataset Random contacts (%)
PC 33.3%
RRC 14.5%
PRC 11.0%

Table S9: Percentage of one-off contacts after applying the random forest classifier.

Figure S4: The timeseries of the fraction of random contacts for the PC dataset.

5 The effectiveness of exposure notification system-based con-
tact tracing apps

The exposure notification system (ENS) developed by Apple and Google has emerged as the

de-facto standard for digital contact tracing51. Currently, 28 countries and 19 US states US

have already rolled out ENS-based apps52. Key to the success of the ENS is the built-in privacy

preservation and expected superior performance.

The built-in privacy preservation, however, makes the task of precisely assessing apps effec-

tiveness impossible. If an app user tested positive for Covid-19, he or she is handed a one-time

code to register the test results in the app, which in turn uploads a set of keys, one key per day

for at most the last 14 days, that identifies the index case to a central server. Other app users
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Figure S5: The timeseries of the fraction of random contacts for the RRC dataset.

download periodically all uploaded keys and match them with all saved encounters to determine

whether they have been in proximity of an index case. In this process, health authorities hand

out the one-time codes and configure the ENS to define close contacts.

Quantifying the effectiveness of ENS-based apps is a multi-step process. The first step

verifies the accuracy of inferred contacts. The accuracy depends on the suitability of BLE

signal attenuation in inferring distances and the configuration of the ENS. Several efforts have

examined these two aspects and showed that ENS, like any other BLE-based distance estimation

system, can have unpredictable performance due to wireless propagation artefacts4, 22. They

also showed that ENS configurations in use by many countries tend to miss real contacts. As a

response many countries are continuously monitoring their configurations. Note that all these

efforts were limited to a small number of phones, usually less than hundred. The second step

tracks the adoption rate of the app, that is the fraction of population that have installed the app,

as well as the fraction of index cases that have the app installed. Unfortunately, both numbers

can be at best approximated. Health authorities can collect statistics from app stores about how

many users have downloaded the app, but these app stores do not track uninstalls. They can
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also instrument the apps, by for example asking each app to connect to a central server to check

for configuration changes x times per day53. There is no automated way to check whether an

index case has the app. Manual contact tracers or laboratories issue the case a one-time code

to report the diagnosis to the app, which in turn triggers the upload of exposure keys. This

has inherent limitations since the case can choose not to report having the app. Furthermore,

the index case can also choose not to report the diagnosis. Health authorities can track both

numbers since they issue the one-time codes and later verify them. The last step measures

the epidemiological benefit by tracking false positives and false negatives in comparison with

manual contact tracing. These can be estimated by surveying individuals tested for Covid-19

about the use of the app and whether they were notified through it. The test results can then

reveal whether digital contact tracing is identifying epidemiologically risky contacts.

The available followup data on deployed ENS-based apps is limited. We used publicly

available statistics about the German (Corona Warn) and Swiss (SwissCovid) apps to gauge

their effectiveness24, 25. These two apps were rolled out in June 2020. In particular, we used the

published numbers about diagnosis upload via the app, the app downloads and the number of

inquiries to the health system following the reception of an exposure notification. We analyzed

3 months worth of data for Corona Warn and over 4 months for SwissCovid.

Figures S6 and S7 present three key measures for both apps. The app coverage, that the

fraction of index cases with the app installed and have requested a one-time code, follows

closely the apps uptake ratio. Further, the coverage remains at the same level as the number of

cases surges. Hence, the app uptake seems to be a good proxy for gauging the case coverage.

Each uploaded one-time code generates at least one call to the app hotline, a phone number that

is only revealed when a user is notified of a potential risky contact, which is an indirect indicator

of the effect of the app. Note that Corona Warn makes available both the number of people

received one-time codes and those decided to enter them, while SwissCovid makes only the
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latter available. Between September 2020 and January 2021, only 55% of index cases uploaded

the received one-time codes to Corona Warn. Earlier analysis reported a higher fraction, 66.2%,

for SwissCovid54. Both numbers are low essentially halving the effectiveness of the apps.

We also looked at average app coverage in comparison with adoption rate for Denmark

based on the publicly available numbers55. The Danish app was rolled out in June and it has

been, by January 3rd 2021, downloaded by 35% of the population. The average coverage of the

Danish app is at 29% compared to 14% and 11% for Switzerland and Germany, respectively.

About 80% of index cases in Denmark, with app installed, have opted to submit their test

diagnosis. Denmark goes one step further by reporting the number of individuals that submit to

testing following an app notification and the corresponding true positive rate for the PCR test.

This rate is at 0.9% for app users compared to 4.2% for all tested individuals. While this rate

may appear low, recent epidemiological findings show that the infection rate is far lower for

random/casual contacts, which is exactly the type of contacts that digital contact tracing aims

to find. More specifically, Cheng et al. showed that, in Taiwan, family contacts had a secondary

attack rate between 4.7% and 5.3% compared to 0.9% and 0.1% for health personnel and other

less frequent contacts20.

Figure S6: (Left)Left Y-axis: the adoption rate of Corona Warn measured as the fraction of the
German population that downloaded the app and the app coverage measured as the fraction of
index cases that requested one-time codes. The right Y-axis shows the daily confirmed Covid
cases. (Right) the average number of calls to the Corona Warn hotline per each issued one-time
code
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Figure S7: (Left)Left Y-axis: the adoption rate of SwissCovid measured as the fraction of the
German population that downloaded the app and the app coverage measured as the fraction of
index cases that requested one-time codes. The right Y-axis shows the daily confirmed Covid
cases. (Right) the average number of calls to the SwissCovid hotline per each issued one-time
code

6 Estimating the efficacy of manual contact tracing

An attempt to estimate the number of traceable contacts is provided by Kucharski et al.56. The

study is based on the BBC Pandemic dataset, which contains self-reported contacts in the form

of a face-to-face conversation (> 3 words) or a contact involving physical touch. Contacts were

grouped into household contacts, work, school, and other. For each contact, responders also

reported whether they knew this person (i.e. if had they met before). Kucharski et al. classified

a contact as non-traceable if the two persons had not met before, and arrived at the following

proportion of traceable contacts: household contacts 100%, school contacts 90%, work 71%,

and other contacts 52%. These proportions were combined with the mean number of contacts

in each category, listed in Table S10 to estimate the total number of traceable and non-traceable

contacts. For instance, a person over 18 will have, on average, 7.62 traceable contacts and 5.26

non-traceable contacts per day.

There are several limitations in the use of the BBC pandemic dataset for estimating traceable

contacts. Since the data is based on self-reporting, it only considers contacts in the form of
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Under 18 Over 18
Household 3.02 Household 1.90
School 5.54 Work 5.94
Other 1.47 Other 3.74

Table S10: Mean number of contacts in each catoegory, calculated from the supplementary data
provided with56.

conversations and physical contact. Other contacts, such as being in close proximity on public

transportation, are not included. Furthermore, there is (to our knowledge) no threshold on the

duration of a contact. A very short exchange of words, lasting less than a minute, will still be

counted as a contact, while manual contact tracing typically uses ten minutes as a guideline

threshold.

Authorities in many countries publish reports on infected cases and the source of infection,

which provides an alternative data source for estimating the efficacy of manual contact tracing.

For instance the local health authorities in Oslo, Norway reported 423 cases from October 19 to

October 25, 2020. For 96 of these cases, (23%), the source and location of infection were not

known. From October 26 to November 2, 179 (25%) out of 716 reported cases had an unknown

source50.

The impact of tracing random contacts on the pandemic. If we assume, for instance, 60%

app uptake in the population, we observe from Figure 2 in the main text that the efficacy of the

app tracing is approximately 30%. We may further assume that the app is used as a supplement

to manual contact tracing, and that its main purpose is to trace contacts that are not traceable by

manual tracing. Based on the BBC pandemic dataset, Kucharski et al56 estimated that 41% of

contacts were non-traceable. This estimate gives maximum efficacy of 59% and adding digital

tracing with 30% efficacy will increase the overall tracing efficacy to 71%. As previously

demonstrated by Ferretti et al3, a difference of this magnitude can easily mean the difference

between a controlled pandemic and an exponential growth of cases.
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Parameter Value(s) Source
Reproduction number (R0) 1.5, 2.7 57

Efficacy of contact tracing 0-100% Calculated from Eq. 5 in the main text
Efficacy of case isolation 50%, 70%, 90% 3, 56, 58, 59

Delay of tracing and isolation 4 hrs, 24 hrs, 48 hrs 3

Table S11: Parameters that are varied in our application of the model from3 to assess the effect
of app uptake on the pandemic spread.

7 Modeling the effect on the pandemic spread

We have used the model of Ferretti et al3 to quantify the potential effect of the digital contact

tracing on the pandemic spread. In3 the model was used to quantify the effect of efficacy and

delay in isolation of infected individuals and tracing of their contacts, while for the present study

our primary interest is the potential effect of app uptake. To quantify this effect, we calculated

the tracing efficacy as a function of app uptake for the two operating systems, given by Eq. 5

in the main text , and used these numbers as input to the model. Although efficacy of self-

isolation and delays in quarantining and isolation are not a a primary focus of the present work,

we used multiple values for these parameters to investigate their potential impact on results and

conclusions. The model parameters that were varied in our calculations are specified in Table

S11. All other parameters were fixed at their default values specified in3.

Figure S8 shows the growth rate as a function of app uptake for R0 = 1.5, for case isolation

efficacy of 50% (top), 70% (middle) and 90% (bottom), and for delays of 4, 24, and 48 hours,

respectively, from left to right. The black line shows the limit r = 0, which marks the difference

between exponential growth and a decaying pandemic. As previously demonstrated in3, both

the delay and isolation efficacy impact the overall effectiveness significantly. For a delay of

48 hours and a isolation efficacy of 50% (upper right corner) the app uptake must be around

75% to control the pandemic spread. Assuming a more realistic, yet still conservative, isolation

efficacy of 70%, in combination of a four hour delay, around 40% app uptake is sufficient. The
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Figure S8: The figures show the exponential growth rate r as a function of app uptake, for
different choices of model parameters. The reproduction number R0 = 1.5 for all plots. For
the top row the efficacy of isolating infected cases is set to 50%, middle row 70%, and bottom
row 90%. From left to right shows a delay of quarantining and isolation of 4, 24, and 48 hours,
respectively.

lower right panel shows that 90% effective isolation of cases with four hours delay should be

sufficient to contain the pandemic, without any tracing of contacts. This result is in line with the

model results shown in3, and indicates that at this moderate reproduction number the pandemic

cannot be driven solely by infections from pre-symptomatic individuals. Figure S9 shows the

same results as Figure S8, but for R0 = 2.7. We see that for this reproduction number it is not

realistic to control the pandemic based on on digital contact tracing alone, since even for the

highest isolation efficacy and lowest delay (lower left corner) the necessary uptake is around

90% .

48

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252577doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252577
http://creativecommons.org/licenses/by-nd/4.0/


0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

0 10 20 30 40 50 60 70 80 90 100
App uptake iOS (%)

100
90
80
70
60
50
40
30
20
10

0

Ap
p 

up
ta

ke
 A

nd
ro

id
 (%

)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Figure S9: The figures show the exponential growth rate r as a function of app uptake, for
different choices of model parameters. The reproduction number R0 is set to 2.7 for all plots.
For the top row the efficacy of isolating infected cases is set to 50%, in the middle row 70%,
and in the bottom row 90%. From left to right shows a delay of quarantining and isolation of 4,
24, and 48 hours, respectively.
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