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Summary: In this living systematic review we analyzed 98 data sets for performance of SARS-CoV-2 30 

Ag-RDTs compared to RT-PCR. Best-performing tests achieved a sensitivity of 81.7%. Highest sensitiv-31 

ity was found in patients within seven days of symptom onset when NP swabs were utilized.32 
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ABSTRACT 33 

 34 

Background: SARS-CoV-2 antigen rapid diagnostic tests (Ag-RDTs) are increasingly being inte-35 

grated in testing strategies around the world. Studies of the Ag-RDTs have shown variable perfor-36 

mance. In this systematic review and meta-analysis, we assessed the clinical accuracy (sensitivity and 37 

specificity) of commercially available Ag-RDTs. 38 

Methods: We registered the review on PROSPERO (Registration number: CRD42020225140). We 39 

systematically searched multiple databases (PubMed, Web of Science Core Collection, medRvix and 40 

bioRvix, FINDdx) for publications up until December 11th, 2020. Descriptive analyses of all studies 41 

were performed and when more than four studies were available, a random-effects meta-analysis 42 

was used to estimate pooled sensitivity and specificity in comparison to reverse transcriptase poly-43 

merase chain reaction testing. We assessed heterogeneity by subgroup analyses ((1) performed con-44 

form with manufacturer’s instructions for use (IFU) or not, (2) symptomatic vs. asymptomatic, (3) 45 

duration of symptoms less than seven days vs. more than seven days, (4) Ct-value <25 vs. <30 vs. 46 

≥30, (5) by sample type)) and with meta-regression. We assessed study quality and risk of bias using 47 

the QUADAS 2 assessment tool. 48 

Results: From a total of 11,715 articles, we extracted 98 analytical and clinical data sets. 74 clini-49 

cal accuracy data sets were evaluated that included 31,202 samples. Across all meta-analyzed sam-50 

ples, the pooled Ag-RDT sensitivity was 73.8% (CI 68.6 to 78.5). If analysis was restricted to studies 51 

that followed the Ag-RDT manufacturers’ instructions using fresh upper respiratory swab samples, 52 

the sensitivity increased to 79.1% (95%CI 75.0 to 82.8). The SD Biosensor Standard Q and Abbott 53 

Panbio showed the highest sensitivity with 81.7% and 72.7%, respectively. The best Ag-RDT perfor-54 

mance was found with nasopharyngeal sampling (77.3%, CI 72.0 to 81.9) in comparison to other 55 

sample types (e.g., anterior nasal or mid turbinate 63.5%, CI 49.5 to 75.5). Testing in the first week 56 

from symptom onset resulted in higher sensitivity (87.5%, CI 86.0 to 89.1) compared to testing after 57 

one week (64.1%, CI 54.4 to 73.8). The tests performed markedly better on samples with lower Ct-58 

values, i.e., <30 (87.9%, CI 86.7 to 88.8), in comparison to those with Ct ≥ 30 (47.8%, CI 41.1 to 54.5). 59 

Bias concerns were raised across all data sets, and financial support from the manufacturer was re-60 

ported in 28.2% of data sets. 61 

Conclusion: As Ag-RDTs detect most cases within the first week of symptom onset and those 62 

with high viral load, they can have high utility for screening purposes in the early phase of disease, 63 

and thus can be a valuable tool to fight the spread of SARS-CoV-2. Standardization of conduct and 64 

reporting of clinical accuracy studies would improve comparability and use of data.  65 
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ABBREVIATIONS 66 

Ag-RDT  = antigen rapid diagnostic test 67 

AN/MT  = anterior nasal or midturbinate 68 

AR  = Aruba 69 

BAL/TW = bronchoalveolar lavage or throat wash 70 

CI  = confidence interval 71 

Ct-value = cycle threshold value 72 

ER  = Emergency Room 73 

FINDdx  = Foundation for Innovative New Diagnostics 74 

FP  = false positive 75 

FN  = false negative 76 

IFU  = instructions for use 77 

LRT  = lower respiratory tract 78 

N  = sample size 79 

NP  = nasopharyngeal 80 

OP  = oropharyngeal 81 

POC  = point of care 82 

PC  = professional-collected 83 

RT-PCR  = reverse transcriptase polymerase chain reaction 84 

SC  = self-collected 85 

TP  = true positive 86 

TR  = travelers 87 

TN  = true negative 88 

UT  = Utrecht 89 

VTM/UTM = viral or universal transport medium  90 
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INTRODUCTION 91 

As the COVID-19 pandemic continues around the globe, antigen rapid diagnostic tests (Ag-RDTs) 92 

for SARS-CoV-2 are seen as a complimentary to fight the virus’ spread (1). The number of Ag-RDTs on 93 

the market is increasing constantly (2). Initial data from independent evaluations suggests that the 94 

performance of SARS-CoV-2 Ag-RDTs may be lower than what is reported by the manufacturers. In 95 

addition, Ag-RDT accuracy seems to vary substantially between tests (3-5). 96 

With the increased availability of Ag-RDTs, an increasing number of independent validations 97 

have been published. Such evaluations differ widely in their quality, methods and results, making it 98 

difficult to assess the true performance of the respective tests (6). To inform decision makers on the 99 

best choice of individual tests, an aggregated, widely available and frequently updated assessment of 100 

the quality, performance and independence of the data is urgently necessary. While other systematic 101 

reviews have been published, they only include data up until May 2020 (7-9), exclude preprints (10), 102 

or were industry sponsored (11). In addition, only one assessed the quality of studies in detail, with 103 

data up until May, 2020 (6). 104 

With our systematic review and meta-analysis, we aim to close this gap in the literature and link 105 

to a website (www.diagnosticsglobalhealth.org) that is continuously updated. 106 

 107 

METHODS 108 

We developed a study protocol following standard guidelines for systematic reviews (12, 13), 109 

which is available upon request. The PRISMA checklist and the study protocol are provided in the 110 

Supplements (S1, S14). We also registered the review on PROSPERO (Registration number: 111 

CRD42020225140). 112 

 113 

SEARCH STRATEGY 114 

We performed a search of the databases PubMed, Web of Science, medRxiv and bioRxiv using 115 

search terms that were developed with an experienced medical librarian (MG) using combinations of 116 
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subject headings (when applicable) and text-words for the concepts of the search question. The main 117 

search terms were “Severe Acute Respiratory Syndrome Corona-virus 2”, “COVID-19”, 118 

“Betacoronavirus”, “Coronavirus” and “Point of Care Testing”. The full list of search terms is available 119 

in the Supplement (S2). We also searched the FINDdx website (https://www.finddx.org/sarscov2-120 

eval-antigen/) for relevant studies manually. We performed the search up until December 11th, 2020. 121 

No language restrictions were applied. Weekly searches are continued thereafter to update the web-122 

site (www.diagnosticsglobalhealth.org). 123 

 124 

INCLUSION CRITERIA 125 

We included studies evaluating the accuracy of commercially available Ag-RDTs to establish a 126 

diagnosis of a SARS-CoV-2 infection against reverse transcriptase chain reaction (RT-PCR) or cell cul-127 

ture as reference standard. We included all study populations irrespective of age, presence of symp-128 

toms, or the study location. We considered cohort studies, nested cohort studies, case-control or 129 

cross-sectional studies and randomized studies. We included both peer reviewed publications and 130 

preprints. 131 

We excluded studies in which patients were tested for the purpose of monitoring or ending 132 

quarantine. Also, publications with a population size smaller than 10 were excluded (although the 133 

size threshold of 10 is arbitrary, such small studies are more likely to give unreliable estimates of 134 

sensitivity or specificity). 135 

 136 

INDEX TESTS 137 

Point of Care (POC) Ag-RDTs for SARS-CoV-2 aim to detect infection by recognizing viral pro-138 

teins. Most POC Ag-RDTs use specific labeled antibodies attached to a nitrocellulose matrix strip, to 139 

capture the virus antigen. Successful binding of the antibodies to the antigen is either detected visu-140 

ally (through the appearance of a line on the matrix strip (lateral flow assay)) or requires a specific 141 
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reader for fluorescence detection. POC microfluidic enzyme-linked immunosorbent assays have also 142 

been developed. Ag-RDTs typically provide results within 10 to 30min (5). 143 

 144 

REFERENCE STANDARD 145 

Viral culture detects viable virus that is relevant for transmission but is available in research set-146 

tings only. Since RT-PCR tests are more widely available and SARS-CoV-2 RNA (as reflected by RT-PCR 147 

cycle threshold (Ct) value) highly correlates with SARS-CoV-2 antigen quantities, we considered it an 148 

acceptable reference standard for the purposes of this systematic review (14). 149 

 150 

STUDY SELECTION AND DATA EXTRACTION 151 

Two reviewers (LEB and CE, LEB and SS or LEB and MB) reviewed the titles and abstracts of all 152 

publications identified by the search algorithm independently, followed by a full-text review for 153 

those eligible, to select the articles for inclusion in the systematic review. Any disputes were solved 154 

by discussion or by a third reviewer (CMD). 155 

A full list of the parameters extracted is included in the Supplement (S13) and the data extrac-156 

tion file is available upon request. Studies that assessed multiple Ag-RDTs or presented results based 157 

on differing parameters (e.g., various sample types) were considered as individual data sets.  158 

At first, four authors (SK, CE, SS, MB) extracted five randomly selected papers in parallel to align 159 

on the extraction of data. Afterwards, data extraction as well as the assessment of methodological 160 

quality and independency from test manufacturers (see below) was performed by one author per 161 

paper (SK, CE, SS, MB) and controlled by a second (LEB, SK, SS, MB). Any differences were resolved by 162 

discussion or by consulting a third author (CMD). 163 

 164 

STUDY TYPES 165 

We differentiated between clinical accuracy studies (performed on clinical samples) or analytical 166 

accuracy studies (performed on contrived samples with known viral load). Analytical accuracy studies 167 
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can differ widely in methodology, impeding an aggregation of their results. Thus, while we extracted 168 

the data for both kinds of studies, we only considered data from clinical accuracy studies as eligible 169 

for the meta-analysis. Separately, we summarized the results of analytical studies and compared 170 

them with the results of the meta-analysis for individual tests.  171 

 172 

ASSESSMENT OF METHODOLOGICAL QUALITY 173 

The quality of the clinical accuracy studies was assessed by applying the QUADAS-2 tool (15). 174 

The tool evaluates four domains: patient selection, index test, reference standard, and flow and tim-175 

ing. For each domain, the risk of bias is analyzed using different signaling questions. Beyond the risk 176 

of bias, the tool also evaluates the applicability of the study of each included study to the research 177 

question for every domain. The QUADAS 2 tool was adjusted to the needs of this review and can be 178 

found in the Supplement (S3).  179 

 180 

ASSESSMENT OF INDEPENDENCY FROM MANUFACTURERS 181 

We examined whether a study received financial support from a test manufacturer (including 182 

the free provision of Ag-RDTs), whether any study author was affiliated with a test manufacturer, or 183 

a respective conflict of interest was declared. Studies were judged not to be independent from the 184 

test manufacturers if at least one of these aspects were found present, otherwise they were consid-185 

ered to be independent.  186 

 187 

STATISTICAL ANALYSIS AND DATA SYNTHESIS 188 

We prepared forest plots for the sensitivity and specificity of each test and visually evaluated 189 

the heterogeneity between studies. If four or more data sets were available with more than 20 posi-190 

tive RT-PCR samples per data set for a predefined analysis, a meta-analysis was performed. We re-191 

port point estimates of sensitivity and specificity for SARS-CoV-2 detection compared to the refer-192 

ence standard along with 95% confidence intervals (CI) using a bivariate random effect hierarchical 193 
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model (implemented with the ‘metandi’ command in Stata). When there were less than four studies 194 

for an index test, only a descriptive analysis only was performed and accuracy ranges were reported. 195 

In sub-group analyses where papers presented data only on sensitivity, a univariate random effects 196 

logistic regression model was done (using the ‘metan’ command in Stata). We predefined the follow-197 

ing subgroups for meta-analysis: by sampling and testing procedure in accordance with manufactur-198 

er’s instructions as detailed in the instructions for use (henceforth called IFU-conform) vs. non-IFU 199 

conform, age (<18; ≥18), sample type, by presence or absence of symptoms, symptom duration (<7 200 

days versus ≥7 days), type of RT-PCR used, and by Ct-value range. For categorization by sample type, 201 

we assessed (1) nasopharyngeal (NP) alone or combined with other (e.g., oropharyngeal (OP)), (2) OP 202 

alone, (3) anterior nasal or mid-turbinate (AN/MT), (4) a combination of bronchial alveolar lavage 203 

and throat wash (BAL/TW) or (5) saliva. 204 

We aimed to do meta-regression with the ‘mvmeta’ command in Stata to examine the impact of 205 

covariates including symptom duration and Ct-value range. We also performed the Deeks’ test for 206 

funnel-plot asymmetry as recommended to investigate publication bias for diagnostic test accuracy 207 

meta-analyses ((16), using the ‘midas’ command in Stata ); a p-value<S0.10 for the slope coefficient 208 

indicates significant asymmetry. Analyses were performed using Stata 15 (Stata Corporation, College 209 

Station, TX, USA), and forest plots were generated using Review Manager 5.3 (Nordic Cochrane Cen-210 

tre, Copenhagen, Denmark). 211 

 212 

SENSITIVITY ANALYSIS 213 

Two types of sensitivity analyses were planned: First, estimation of sensitivity and specificity ex-214 

cluding case-control studies. Secondly, estimation of sensitivity and specificity excluding non-peer-215 

reviewed studies. We compared the results of each sensitivity analysis against overall results to as-216 

sess the potential bias introduced by considering case-control studies and non-peer reviewed stud-217 

ies.  218 
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DIAGNOSTICSGLOBALHEALTH.ORG 219 

A summary of the data included in this paper is available on the website 220 

“www.diagnosticsglobalhealth.org”. At least once per week we update this website by continuing the 221 

literature search and process described above. We plan to update the meta-analysis every month 222 

and post on the website.  223 
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RESULTS 224 

SUMMARY OF STUDIES  225 

The systematic search resulted in 11,715 articles. After removing duplicates, 5,435 articles were 226 

screened, and 93 papers were considered eligible for data extraction. Of these, 41 were excluded 227 

because they did not present primary data (14, 17-56), leaving 52 studies to be included in the sys-228 

tematic review (Figure 1) (3, 57-107). 229 

At the end of the data extraction process, 23 studies were still in preprint form (3, 57, 60, 62, 230 

63, 66, 67, 75-77, 81, 86, 89, 91, 93, 94, 96, 97, 100, 102-104, 106). All studies were written in Eng-231 

lish, except for one in Spanish. Out of the 52 studies, 48 reported on clinical accuracy (3, 57-65, 67-232 

83, 86-91, 93-107) and four on analytical accuracy (66, 84, 85, 92). 233 

The 48 clinical accuracy studies were divided up in 74 data sets, while the four analytical accura-234 

cy studies accounted for 24 data sets. A total of 20 different Ag-RDTs were evaluated (15 lateral flow 235 

with visual readout, five requiring an automated reader), with 18 being assessed in a clinical accuracy 236 

study. Only 11 studies reported data for more than one test, and only four of these conducted a 237 

head-to-head assessment, i.e., testing at least two Ag-RDTs on the same sample or participant. The 238 

reference method was RT-PCR in all except one study, which used viral culture. 239 

The most common reason for testing was the occurrence of symptoms (30.6% of data sets), 240 

while in another 15.3% of data sets persons were screened independent of symptoms. Close contact 241 

to a SARS-CoV-2 confirmed case was the reason for testing in further 5.1% of the data sets. In 8.2% of 242 

the data sets, persons were tested due to more than one of the reasons mentioned before and for 243 

40.8% the reason for testing was unclear. 244 

In total, 32,468 Ag-RDTs were done, 31,202 in clinical accuracy studies and 1,266 in analytical 245 

accuracy studies. In the clinical accuracy studies, the mean number of samples per clinical study was 246 

422 (Range 17 to 4183). Only 274 tests were performed on pediatric samples and 10,154 on samples 247 

from adults. For the remaining 22,040 samples, age was not specified. 18,464 samples originated 248 

from symptomatic patients and 5,071 samples from asymptomatic patients. For 8,933 samples the 249 
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patient’s symptom status could not be identified. The most common sample type evaluated was NP 250 

and mixed NP/OP (22,293 samples). There were substantially fewer data points for the other sample 251 

types: OP 796 samples and AN/MT 6,496 samples. 252 

Of the data sets assessing clinical accuracy, 39.2% performed testing according to the manufac-253 

turers’ recommendations (i.e., IFU-conform), while 58.1% were not IFU-conforming. The most com-254 

mon deviations from the IFU were (1) a sample type that was not recommended for Ag-RDTs (28 255 

(37.8%) data sets; 2 (2.7%) not known), (2) use of samples that were prediluted in transport media 256 

not recommended by the manufacturer (26 (35,1%) data sets; 9 (12,2%) not known) and (3) use of 257 

banked samples (21 (28.4%) data sets; 12 (16.2%) not known). 258 

A summary of the clinical accuracy data by study, including the test(s) evaluated, sample size, 259 

sample type, sample condition and IFU conformity, can be found in Table 1. Most data sets were 260 

available for the Panbio test by Abbott Rapid Diagnostics (Germany; henceforth called Panbio): 21 261 

data sets and 15,809 tests; while Standard Q test by SD Biosensor (South Korea; distributed in Europe 262 

by Roche, Germany; henceforth called Standard Q) was assessed in 16 data sets with 6036 tests per-263 

formed. Detailed results for each clinical accuracy study are available in the Supplement (S 4). 264 

 265 

METHOLOGICAL QUALITY OF STUDIES 266 

The findings on study quality using the QUADAS 2 tool are presented in Figure 2. Most studies 267 

assessed a relevant patient population (73.0%). However, for only 31.1% of the studies the patient 268 

selection was considered representative of the setting and population chosen (i.e., they avoided in-269 

appropriate exclusions, a case-control design and enrollment occurred consecutive or randomly). 270 

The conduct and interpretation of the index tests was considered to have low risk for introduc-271 

tion of bias in 45.9% of studies (through e.g., appropriate blinding of persons interpreting the visual 272 

read-out). However, 51.4% of studies did not provide sufficient information to clearly judge the risk 273 

of bias. Only a subset of studies performed the Ag-RDTs according to IFU (39.2% of studies), while 274 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.26.21252546doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.26.21252546
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

58.1% were non-IFU conforming, which potentially affected the accuracy negatively (for 2.7% of 275 

studies it was unclear). 276 

For half of the data sets (51.4%) the reference standard was performed ahead of the Ag-RDT or 277 

the operator conducting the Ag-RDT was blinded to its results, which resulted in a low risk of bias. 278 

However, almost half (47.3%) did not report sufficient information to judge the risk and one study 279 

specifically stated to have performed the reference standard not blinded to the Ag-RDT results. 280 

Nonetheless, the applicability of the reference test was judged to be of low concern for all studies, as 281 

cell culture or RT-PCR are expected to adequately define the target condition. 282 

Most studies (67.6%) obtained the sample for the index test and reference test at the same 283 

time and applied the same reference standard across the samples. However, for 8.1% of data sets, 284 

we were concerned that not all selected patients were included in the analysis. 285 

Financial support from the Ag-RDT manufacturer was found in 28.2% of the data sets. Five per-286 

cent of the authors reported a conflict of interest and another five percent indicated employment by 287 

the manufacturer of the Ag-RDT studied. 288 

 289 

DETECTION OF SARS-COV-2 INFECTION 290 

Out of 74 clinical data sets (from 48 studies), ten were excluded from the meta-analysis, as they 291 

included less than 20 RT-PCR positive samples. Across the remaining 64 data sets, including any test 292 

and type of sample, the meta-analyzed sensitivity and specificity were 73.8% (95%CI 68.6 to 78.5) 293 

and 99.7% (95%CI 99.3 to 99.9). If testing was performed IFU-conform, sensitivity increased to 79.1% 294 

(95%CI 75.0 to 82.8) compared to non-IFU conform testing with a respective sensitivity of 68.5% 295 

(95%CI 58.4 to 77.2). Pooled specificity was the same in both groups (99.7% vs. 99.6%). 296 

 297 

ANALYSIS OF SPECIFIC TESTS 298 

Based on 47 out of the 64 clinical data sets with 24,543 tests performed, we were able to meta-299 

analyze the sensitivity and specificity of five different Ag-RDTs: Standard Q, Panbio, the Standard F by 300 
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Biosensor (South Korea; henceforth called Standard F), the COVID-19 Ag Respi-Strip by Coris 301 

BioConcept (Belgium, henceforth called Coris) and the Biocredit Covid-19 Antigen rapid test kit by 302 

RapiGEN (South Korea; henceforth called Rapigen). Across these, pooled estimates of sensitivity and 303 

specificity on all samples were 73.1% (95%CI 67.1 to 78.3) and 99.7% (95% CI 99.2 to 99.9), which 304 

were very similar to the overall pooled estimate across all meta-analyzed data sets (73.8% and 305 

99.7%, above). 306 

Standard Q had the highest pooled estimate of sensitivity with 81.7% (95% CI 74.8 to 87.0). The 307 

pooled sensitivity for Standard F and Panbio were 70.9% (95% CI 52.0 to 84.6) and 72.7% (95%CI 63.7 308 

to 80.2), respectively. Coris and Rapigen only reached a pooled sensitivity of 41.9% (95%CI 29.9 to 309 

54.8) and 65.8% (95%CI 44.4 to 82.3), respectively. It is of note that one of the studies on Coris found 310 

sensitivity to be 87% in samples with Ct-values <25, but 0% for Ct-values ≥25 (104). The pooled speci-311 

ficity was above 99% for Coris, Panbio and Standard Q and above 98% for Rapigen and Standard F. All 312 

results are presented in Figure 3. Hierarchical summary receiver-operating characteristic for Standard 313 

Q and Panbio are available in the Supplement (S6). 314 

The remaining thirteen Ag-RDTs did not have sufficient data to allow for a test-specific meta-315 

analysis. For the ESPLINE SARS-CoV-2 by Fujirebio (Japan; henceforth called Espline) sensitivity 316 

ranged widely from 23.5% to 80.7%, while both the 2019-nCov Antigen Rapid Test Kit by Shenzhen 317 

Bioeasy Biotechnology (China; henceforth called Bioeasy) and BD Veritor by Becton, Dickinson and 318 

Company (US, New Jersey; henceforth called BD Veritor) showed smaller variability with sensitivities 319 

within 66.7% to 93.9% and 76.3% to 96.4%, respectively. For the Sofia SARS Antigen FIA by Quidel 320 

(US, California; henceforth called Sofia), a sensitivity between 76.8% and 93.8% was reported (Table 321 

1). Forest plots for the data sets for each Ag-RDT are provided in the Supplement (S5). 322 

Specificity was above 98% for BD Veritor and Espline for studies on NP or NP/OP samples and 323 

for Sofia it was 96.9%. For Bioeasy, specificity was as low as 85.6% in one study, even though the test 324 

was performed as recommended by the manufacturer. The results for all Ag-RDTs that have been 325 

evaluated in more than one data set but did not qualify for a test specific meta-analysis are summa-326 
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rized in Table 2. The residual Ag-RDTs that were evaluated in one data set only are included in Table 327 

1 and Supplement (S5). 328 

Four studies accounting for 15 data sets conducted head-to-head clinical accuracy evaluations 329 

of tests using the same sample or samples from the same participant. These data sets are underlined 330 

in Table 1. Two such studies included more than 100 samples, whereas the other two included too 331 

small sample sizes to draw clear conclusions (96, 106). All tests were performed non-IFU conform as 332 

banked specimens were tested, the type of sample (OP, BAL/TW) was not recommended or vi-333 

ral/universal transport medium (VTM/UTM) was used resulting in pre-dilution. Not surprisingly, one 334 

head-to-head study found overall low sensitivity, with Standard Q (sensitivity 49.4%) being slightly 335 

more sensitive than Panbio (sensitivity 44.6%), but less sensitive than the CLINITEST® Rapid COVID-19 336 

Antigen Test by Siemens Healthineers (Germany; sensitivity 54.9%) (89). Another study found 337 

Bioeasy (sensitivity 85.0%) to have higher sensitivity than Rapigen (sensitivity 62.0%) (105). In both 338 

studies, specificity was above 97.0% for all Ag-RDTs, except for SARS-CoV-2 Ag-RDT by Liming Bio 339 

(China; specificity 90.0%) (Supplement S5).  340 

 341 

SUBGROUP ANALYSIS 342 

The results are presented in Figure 4. Detailed results for the subgroup analysis are available in 343 

the Supplement (S7 to 11). 344 

 345 

Subgroup analysis by IFU conformity 346 

The summary results are presented in Figure 4B. When assessing only studies with an IFU-347 

conforming sampling, a subgroup analysis by test type was possible for studies using Panbio (58, 59, 348 

62, 63, 67, 68, 73, 77, 86, 97, 102) and Standard Q (62, 72, 74, 76, 81, 82, 88, 97) with 20 data sets 349 

performing 11,658 tests in total (Standard Q accounted for eight (40%) data sets and 3,293 (28.2%) 350 

tests). For Standard Q, we found a pooled sensitivity and specificity of 84.4% (95% CI 79.1 to 88.6) 351 

and 99.3% (95% CI 97.9 to 99.8) and for Panbio, we found a pooled sensitivity and specificity of 352 
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76.9% (95% CI 69.4 to 83.0) and 99.9% (95% CI 99.5 to 100.0), respectively. These results are largely 353 

similar to the subgroup analysis of the two tests when using NP samples. 354 

 355 

Subgroup analysis by sample type 356 

Most data sets evaluated NP or combined NP/OP swabs (49 data sets and 20,115 samples) as 357 

the sample type for the Ag-RDT. NP or combined NP/OP swabs achieved a pooled sensitivity of 77.3% 358 

(95% CI 72.0 to 81.9). Data sets that used AN/MT swabs for Ag-RDTs (five data sets and 6496 sam-359 

ples) showed a summary estimate for sensitivity of 63.5% (95% CI 49.5 to 75.5). Out of these five 360 

AN/MT data sets, three data sets used NP samples for the RT-PCR comparison (sensitivity 44.7% to 361 

82.1%, specificity 99.1% to 100%) (57, 58, 82), while only two data sets used AN/MT for both Ag-RDT 362 

and RT-PCR testing (sensitivity 57,7% to 79,5%, specificity 98,7% to 100%; Figure 4A) (60, 93).  363 

When evaluating results from two studies that reported direct head-to-head comparison of NP 364 

and MT samples from the same participants using the same Ag-RDT (Standard Q), the two sample 365 

types showed equivalent performance (81, 82). 366 

Analysis of performance with an OP swab (722 samples), showed pooled sensitivity of only 367 

48.2% (95%CI 42.7 to 53.8). However, all data were from one single head-to-head study that applied 368 

the same sample to four different tests after dilution with UTM (89). Specificity was above 99% for all 369 

three of the subgroups analyzed. 370 

We were not able to perform a subgroup meta-analysis for BAL/TW due to insufficient data as 371 

there was only one study with 73 samples evaluating the Rapigen, Panbio and Standard Q (96). How-372 

ever, BAL/TW would in any case be off label use and is not considered a POC sample. 373 

Another off-label sample used in one study (58) was saliva. In this data set with 610 samples, 374 

overall sensitivity was 23.1% (95% CI 16.2 to 31.9), while even sensitivity in samples from sympto-375 

matic patients with a Ct-value ≤25 was of only 41% (95% CI 28 to 56). Specificity was reported to be 376 

100% (95% CI 99 to 100) (58). 377 
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Three tests had sufficient data sets available to meta-analyze performance with NP swabs by 378 

test type. Standard Q with 83.3% (95%CI 77.3 to 87.9) sensitivity and 99.1% (95%CI 98.2 to 99.6) 379 

specificity and Panbio with 78.7% (95%CI 71.4 to 84.5) sensitivity and 99.9% (95%CI 99.5 to 100) 380 

specificity were the best performing tests. Coris had a sensitivity of only 41.9% (95%CI 29.9 to 54.8). 381 

 382 

Subgroup analysis in symptomatic and asymptomatic patients 383 

Within the data sets possible to meta-analyze, 12,625 samples (77.2%) were from symptomatic 384 

and 3,737 (22.8%) from asymptomatic patients. The pooled sensitivity for symptomatic patients was 385 

markedly different compared to asymptomatic patients with 78.1% (95%CI 69.6 to 84.8) versus 386 

62.5% (95%CI 39.7 to 80.8), but confidence intervals were overlapping. Specificity was 99.7% (95%CI 387 

99.4 to 99.9) for symptomatic and 99.9% (95%CI 97.6 to 100) for asymptomatic patients, respectively 388 

(Figure 4C). 389 

 390 

Subgroup analysis comparing symptom duration  391 

Limited data were available for this sub-analysis: data was analyzed for 2,875 patients with 392 

symptoms less than 7 days and 249 patients with symptoms ≥ 7 days. It was only possible to perform 393 

a univariate analysis of sensitivity. The pooled sensitivity for patients with onset of symptoms <7 days 394 

was 87.5% (95%CI 86.0 to 89.1) which is markedly higher than the 64.1% (95%CI 54.4 to 73.8) sensi-395 

tivity found for individuals tested ≥ 7 days from onset of symptoms (Figure 4C). 396 

 397 

Subgroup analysis by Ct-values 398 

There were also limited data available for comparison of Ct-values in similar ranges. In an effort 399 

to use as much of the heterogeneous data as possible, the cut-offs for the Ct-value groups were re-400 

laxed by 2-3 points within each range. The <25 group included values reported as ≤24 to <25, the <30 401 

group included values from ≤29 to ≤33. This resulted in some overlap for the <30 and ≥30 groups. 402 

The pooled sensitivity for Ct-values <25 was markedly better with 94.2% (95%CI 93.2 to 95.2) com-403 
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pared to ≥ 25 32.5% (95%CI 28.0 to 37.1; Figure 4D). A similar pattern was observed when the Ct-404 

values were analyzed using cut-offs <30 or ≥30, resulting in a sensitivity of 87.9% (95%CI 86.7 to 89.2) 405 

and 47.8% (95%CI 41.1 to 54.5), respectively (Figure 4D). Sensitivity in samples with a low viral load 406 

(<5 log 10 copies/ml) ranged between 46.9% (lowest estimate in single study) to 48.1% (highest es-407 

timate in a single study). In contrast, higher viral load samples (>6 log 10 copies/ml) showed higher 408 

sensitivity, ranging from 71.4% to 100%.  409 

 410 

Subgroup analysis by age, type of RT-PCR and viral load 411 

We were not able to perform a meta-analysis for the subgroups by age, type of RT-PCR or viral 412 

load (viral copies/mL) due to insufficient data.  413 

Sensitivity by age ranged from 72.7% to 100% in patients under 18 years. A similar picture was 414 

found in adults ≥18 years, with sensitivity ranging between 76.3% to 93.6%. Specificity was above 415 

99% in both groups. 416 

In 52 (70.3%) of the data sets only one type of RT-PCR was used, whereas 15 (20.3%) tested 417 

samples in the same study using different RT-PCRs. For seven (9.4%) of the data sets we could not tell 418 

the type of RT-PCR. The Cobas® SARS-CoV-2 Test from Roche (Germany) was used most frequently in 419 

24 (32.4%) of the data sets, followed by the Allplex® 2019 n-CoV Assay from Seegene in 16 (21.6%) 420 

and the SARS CoV-2 assay from Corman/TibMolBio in 14 (18.9%) of the data sets. 421 

 422 

Meta regression 423 

We were not able to perform a meta-regression due to the considerable heterogeneity in re-424 

porting sub-groups, which resulted in too few studies with sufficient data for comparison. 425 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.26.21252546doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.26.21252546
http://creativecommons.org/licenses/by-nd/4.0/


18 
 

Publication Bias 426 

The result of the Deeks’ test indicate significant asymmetry in the funnel plot for all 64 datasets 427 

with complete results (p=0.01) and for Standard Q publications (p=0.03), but not Panbio publications 428 

(p=0.95). All funnel plots are listed in the Supplement (S12). 429 

 430 

COMPARISON WITH ANALYTICAL STUDIES 431 

The four included analytical studies provided 24 data sets in total, evaluating eight different Ag-432 

RDTs. 45.8% of the samples originated from NP swabs, whereas throat saliva, a combination of naso-433 

pharyngeal aspirate and throat swab, as well as a combination of NP and throat swab accounted for 434 

16.6% each. One data set included sputum.  435 

Overall, the reported analytical sensitivity (limit of detection) in the studies correlated with the 436 

results of the meta-analysis presented above. For example, one study on NP swabs found Rapigen 437 

(limit of detection (LOD) in log10 copies per swab  (108): 10.2) and Coris (LOD 7.46) to perform worse 438 

than Panbio (LOD 6.55) and Standard Q (LOD 6.78)(66). Similar results were found in another study, 439 

where the Standard Q showed the lowest LOD (detecting virus up to what is an equivalent Ct-value of 440 

28.67), when compared to that of Rapigen and Coris (detecting virus up to what is an equivalent Ct-441 

value of only 18.44 for both)(84). 442 

 443 

SENSITIVITY ANALYSIS 444 

When case control studies (13/64) were excluded, the pooled sensitivity stayed the same with 445 

73.8% (95%CI 68.7 to 78.4) compared to 73.8% (95%CI 68.6 to 78.5) in the overall analysis with no 446 

change in pooled specificity. When excluding pre-prints (35/64), sensitivity decreased slightly to 447 

69.2% (95% CI 60.7-76.6) compared to the overall analysis.  448 
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DISCUSSION 449 

In this comprehensive systematic review and meta-analysis, we have summarized the data of 52 450 

studies evaluating the accuracy of 20 different Ag-RDTs. Across all meta-analyzed samples, our re-451 

sults show a sensitivity and specificity of 73.8% (95%CI 68.6 to 78.5) and 99.7% (95% CI 99.3 to 99.9). 452 

Over half of the studies did not perform the Ag-RDT in accordance with the test manufacturers’ rec-453 

ommendation, which affected sensitivity negatively. When considering only IFU-conform studies the 454 

sensitivity increased to 79.1% (95%CI 75.0 to 82.8). While we found the sensitivity to vary across 455 

specific tests, the specificity was more consistently high.  456 

 457 

The two Ag-RDTs that have been approved through the WHO emergency use listing procedure, 458 

Abbott Panbio and SD Biosensor Standard Q (distributed by Roche in Europe), have not only drawn 459 

the largest research interest, but also continue to be the best performing tests when comparing their 460 

meta-analyzed accuracy to that of other Ag-RDTs (Standard F, Coris and Rapigen). Two other Ag-RDTs 461 

with more data available (however insufficient data to meta-analyze) also show higher performance 462 

(BD Veritor and Sophia). However, both require an instrument for operation.  463 

 464 

Not surprisingly, lower Ct-values, the RT-PCR semi-quantitative correlate for a high virus con-465 

centration, resulted in a significantly higher Ag-RDT sensitivity when compared to a high Ct-value 466 

(pooled sensitivity 94.2% vs. 32.5%). This confirms prior data that suggested that antigen concentra-467 

tions and Ct-values were tightly correlated in NP samples (14). Ag-RDTs also showed higher sensitivi-468 

ty in patients within 7 days after symptom onset than in patients later in the course of the disease 469 

(pooled sensitivity 87.5% vs. 64.1%), which is to be expected given that samples from patients within 470 

the first week after symptom onset have been shown to contain the highest virus concentrations 471 

(109). In line with this, studies presenting an unexpectedly low overall sensitivity either shared a 472 

small population size with an on average high Ct-value (83, 98) or performed the Ag-RDT not as per 473 
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IFU, e.g., using saliva samples (58, 89). In contrast, studies with an unusually high Ag-RDT sensitivity 474 

were based on study populations with a high median Ct-value, between 18 and 22 (65, 94). 475 

Our analysis also found that the accuracy of Ag-RDTs is substantially higher in symptomatic pa-476 

tients than in asymptomatic (pooled sensitivity 78.1% vs. 62.5%). Given that prior studies found 477 

largely no difference in the trajectory of viral load of patients with and without symptoms over the 478 

course of disease (109), this is likely explained by the varied stage in the course of disease at which 479 

testing is performed in asymptomatic patients presenting for one-time screening testing. While we 480 

were not able to perform a meta-regression assessing performance by duration of infection, studies 481 

that enrolled asymptomatic contacts of infected patients (3, 77, 99) were more likely to show higher 482 

Ag-RDT sensitivity than studies that performed random screening of asymptomatic persons (64, 93). 483 

This is explained by the fact, that asymptomatic persons who were tested after a contact with an 484 

infected person are more likely to be captured in the early phase of disease and have higher viral 485 

loads at the time of testing (110). However, with random screening, detection is possible at any point 486 

of disease (i.e., including late in disease, when PCR is still positive, but viable virus is rapidly decreas-487 

ing (111)). 488 

With regards to the sampling and testing procedure, we found Ag-RDTs to perform similarly 489 

across upper-respiratory swab samples (e.g., NP and AN/MT), particularly when considering the most 490 

reliable comparisons from head-to-head studies.  491 

Similar to previous assessment (6), the methodological quality of the included studies revealed a 492 

very heterogenous picture. In the future, aligning the design of clinical accuracy studies to common 493 

agreed upon minimal specifications (e.g., by WHO or European Center of Disease Control) and re-494 

porting the results in a standardized way (112) would improve data quality and comparability. 495 

 496 

The main strengths of our study lie in its comprehensive approach and continuous updates. By 497 

linking this review to our website www.diagnosticsglobalhealth.org, we strive to equip decision mak-498 

ers with the latest research findings on Ag-RDTs for SARS-CoV-2 and, to the best of our knowledge, 499 
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are the first in doing so. Furthermore, our study shows rigorous methods as both the study selection 500 

and data extraction were performed by one author and independently controlled by a second, we 501 

conducted blinded test extractions ahead of the actual data extraction, and we prepared a detailed 502 

interpretation guide for the QUADAS-2 tool. 503 

However, our study is limited in that the inclusion of both preprints and peer-reviewed litera-504 

ture could affect the quality of our report. Nonetheless, we aimed to counterbalance this effect by 505 

applying a thorough assessment of all clinical studies included, utilizing the QUADAS-2 tool. Further-506 

more, a sensitivity analysis excluding preprints was performed. In addition, we restricted our report 507 

to data found in common research databases and the FINDdx website. Even though we are aware 508 

that further data for example from governmental research institutes exists (113), such data could not 509 

be included as sufficient detail describing the methods and results are not publicly available. Finally, 510 

the strong heterogeneity in data reporting, as discussed above, limited the meta-analysis. 511 

 512 

CONCLUSION 513 

In summary, it can be concluded that there are Ag-RDTs available that have high sensitivity, par-514 

ticularly when performed in the first week of illness when viral load is high, and high specificity. 515 

However, our analysis also highlights the variability in results between tests (which is not reflected in 516 

the manufacturer reported data), indicating the need for independent validations. Furthermore, the 517 

analysis highlights the importance of tests to be done in accordance with the manufacturers’ rec-518 

ommended procedures and in alignment with standard diagnostic study and reporting guidelines. 519 

The accuracy achievable by the best-performing Ag-RDTs, combined with the rapid results turn-520 

around time and ease of use, suggests that these tests could have a significant impact on the pan-521 

demic if applied in thoughtful testing and screening strategies.  522 
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Table 1: Clinical accuracy data for Ag-RDTs against SARS-CoV-2  856 

  857 

Caption: * Values differ from those provided in the respective manuscript due to missing or contradictory data. 858 
Data sets from an underlined author have not undergone peer-review yet (time of data extraction, 859 
28.12.2020). 860 
In data sets with underlined sample sizes the samples were used in head-to-head studies, performing different 861 
Ag-RDTs on the same patient. 862 
Naming convention column “author”: number in brackets relates to the list of sources. Letters behind the au-863 
thor’s last name differentiates the data set from other data sets by the same author. 864 
IFU = instructions for use; NP = nasopharyngeal; OP = oropharyngeal; AN = anterior nasal; MT = mid turbine; 865 
LRT = lower respiratory tract; BAL/TW = bronchoalveolar lavage and throat wash; CI = confidence interval; Ar = 866 
Aruba; Ut = Utrecht.  867 

Author Study location
Sample

type

Sample 

condition

IFU

conform

Sample

size
Sensitivity Specificity

AAZ, COVID-VIRO® (LFA)

[97] Schwob, NP Switzerland NP fresh yes 324 84.1% (95% CI 76.9-89.7) 100% (95% CI 98.0*-100*)

Abbott, BinaxNOW™ (LFA)

[93] Pilarowski, AN USA AN/MT fresh yes 878 57.7% (95% CI 36.9*-76.7*) 100%* (95% CI 99.6*-100*)

Abbott, Panbio™ (LFA)

[60] Alemany, NP Spain NP banked no 919 93.4% (95% CI 91.5-95.0) 100% (95% CI 95.8-100)

[86] Merino-Amador, NP Spain NP fresh yes 958 90.5% (95% CI 87.5-93.6) 98.8% (95% CI 98.0-99.7)

[77] Krüger, NP Germany NP fresh yes 1034 87.5% (95% CI 79.8-92.5) 99.9% (95% CI 99.4-100)

[97] Schwob, NP Switzerland NP fresh yes 271 86.1% (95% CI 78.6-91.7) 100% (95% CI 97.6*-100*)

[62] Berger, NP Switzerland NP fresh yes 535 85.5% (95% CI 78.0-91.2) 100% (95% CI 99.1-100)

[57] Abdulrahman, AN Bahrain AN/MT fresh no 4183 82.1% (95% CI 79.2-84.8) 99.1% (95% CI 98.8-99.4)

[73] Gremmels, NP, Ar Netherlands NP fresh yes 208 81.0% (95% CI 69.0-89.9) 100% (95% CI 97.5-100)

[59] Albert, NP Spain NP fresh yes 412 79.6% (95% CI 67.0-88.8) 100% (95% CI 98.7-100)

[60] Alemany, MT Spain AN/MT banked no 487 79.5% (95% CI 71.0-86.4) 98.7% (95% CI 96.9-99.6)

[68] Fenollar, NP France NP fresh yes 341 75.5% (95% CI 69.5-81.5) 94.9% (95% CI 91.2-98.6)

[80] Linares, NP Spain NP fresh unclear 255 73.3% (95% CI 62.2-83.8) 100% (95% CI 98.1*-100*)

[73] Gremmels, NP, Ut Netherlands NP fresh yes 1367 72.6% (95% CI 64.5-79.9) 100% (95% CI 99.7-100)

[63] Bulilete, NP Spain NP fresh yes 1362* 71.4% (95% CI 63.2*-78.7) 99.8% (95% CI 99.4-99.9)

[67] Drevinek, NP Czech Republic NP fresh yes 591 66.4% (95% CI 59.9-72.2) 100% (95% CI 99.0-100)

[58] Agullo, NP Spain NP fresh yes 652* 57.3% (95% CI 48.3-65.8) 99.8% (95% CI 98.8-100)

[77] Krüger, OP Germany OP fresh no 74 50.0% (95% CI 1.3-98.7) 100% (95% CI 94.9-100)

[96] Schildgen, LRT Germany BAL/TW unclear no 73 50.0% (95% CI 34.2*-65.8*) 77.4% (95% CI 58.9*-90.4*)

[102] Torres, NP Spain NP fresh yes 634 48.1% (95% CI 37.4-58.9) 100% (95% CI 99.3-100)

[58] Agullo, AN Spain AN/MT fresh no 659 44.7% (95% CI 36.1-53.6) 100% (95% CI 99.1-100)

[89] Olearo, OP Germany OP unclear no 184 44.6% (95% CI 34.3-55.3) 100% (95% CI 96.3-100)

[58] Agullo, saliva Spain saliva fresh no 610 23.1% (95% CI 16.2-31.9) 100% (95% CI 99.0-100)

Becton, Dickinson and Company, BD Veritor™ (requires reader)

[91] Pekosz, NP USA NP fresh no 251 96.4% (95% CI 82.3-99.4) 98.7% (95% CI 96.1-99.7)

[103] Van der Moeren, MT/OP, scn Netherlands MT/OP banked no 351* 94.1% (95% CI 71.1-100) 100% (95% CI 98.9-100)

[107] Young, NP USA NP banked no 251 76.3%* (95% CI 60.8*-87.0*) 99.5%* (95% CI 97.4*-99.9*)

Beijing Savant Biotechnology, SARS-CoV-2 detection kit (LFA)

[105] Weitzel, NP/OP Chile NP/OP banked no 109 16.7% (95% CI 10.0-26.5*) 100% (95% CI 89.0-100)

Bionote, NowCheck® (LFA)

[69] FIND, NP Brazil NP fresh yes 400 89.2% (95% CI 81.7-93.9) 97.3% (95% CI 94.8-98.6)

Coris BioConcept, COVID-19 Ag Respi-Strip (LFA)

[87] Mertens, NP Belgium NP banked no 328 57.6% (95% CI 48.7*-66.1*) 99.5% (95% CI 97.2*-100*)

[79] Lambert-Niclot, NP France NP fresh no 138 50.0% (95% CI 39.5-60.5) 100% (95% CI 91.8-100)

[3] Krüger, NP/OP Germany/England NP/OP unclear no 417 50.0% (95% CI 21.5-78.5) 95.8% (95% CI 93.4-97.4)

[98] Scohy, NP Belgium NP fresh no 148 30.2% (95% CI 21.7-39.9) 100% (95% CI 91.6*-100*)

[104] Veyrenche, NP France NP fresh no 65 29.0% (95% CI 15.7-42.3) 100% (95% CI 83.2*-100*)

Fujirebio, ESPLINE® SARS-CoV-2 (LFA)

[100] Takeda, NP Japan NP unclear no 162 80.7%* (95% CI 68.6*-89.6*) 100%* (95% CI 96.4*-100*)

[106] Yokota, NP Japan NP banked no 17 58.8%* (95% CI 32.9*-81.6*) not provided

[106] Yokota, saliva Japan saliva banked no 17 23.5%* (95% CI 6.8*-49.9*) not provided

Fujirebio, Lumipulse® G SARS-CoV-2 Ag (requires reader)

[106] Yokota, NP Japan NP banked no 17 100% (95% CI 80.5*-100) not provided

[106] Yokota, saliva Japan saliva banked no 17 82.4%* (95% CI 56.6*-96.2*) not provided
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Table 1 (continued): Clinical accuracy data for Ag-RDTs against SARS-CoV-2 868 

 869 

Caption: * Values differ from those provided in the respective manuscript due to missing or contradictory data. 870 
A list including the original data can be found in the Supplement (S4). 871 
Data sets from an underlined author have not undergone peer-review yet (time of data extraction, 872 
28.12.2020). 873 
In data sets with underlined sample sizes the samples were used in head-to-head studies, performing different 874 
Ag-RDTs on the same patient. 875 
Naming convention column “author”: number in brackets relates to the list of sources. Letters behind the au-876 
thor’s last name differentiates the data set from other data sets by the same author. 877 
IFU = instructions for use; NP = nasopharyngeal; OP = oropharyngeal; AN = anterior nasal; MT = mid turbine; 878 
LRT = lower respiratory tract; BAL/TW = bronchoalveolar lavage and throat wash; CI = confidence interval; sc = 879 
self-collected; pc = professional-collected; ER = emergency room; tr = travelers.  880 

Author Study location
Sample

type

Sample 

condition

IFU

conform

Sample

size
Sensitivity Specificity

Liming Bio, SARS-CoV-2 Ag-RDT (LFA)

[105] Weitzel, NP/OP Chile NP/OP banked no 19 0.0% (95% CI 0.0-29.9) 90.0% (95% CI 59.6-98.2)

MEDsan®, SARS-CoV-2 Antigen Rapid Test (LFA)

[89] Olearo, OP Germany OP unclear no 184 45.8% (35.5%-56.5%) 97.0% (91.5%-98.9%)

QUIDEL, Sofia SARS Antigen FIA (requires reader)

[94] Porte, NP/OP Chile NP/OP banked no 64 93.8% (95% CI 79.9-98.3) 96.9% (95% CI 84.3-99.4)

[61] Beck, NP USA NP fresh yes 346 77.0% (95% CI 64.5*-86.9*) 99.6% (95% CI 98.1*-100*)

[75] Herrera, unknown USA unclear unclear unclear 1172 76.8% (95% CI 72.6-80.5) 99.2% (95% CI 98.2-99.7)

RapiGEN, Biocredit Covid-19 Antigen Detection Kit (LFA)

[99] Shrestha, NP Nepal NP fresh yes 113 85.0% (95% CI 71.7*-93.8*) 100% (95% CI 94.6*-100*)

[70] FIND, NP Brazil NP fresh yes 476 74.4% (95% CI 65.8-81.4) 99.0% (95% CI 97.2-99.6)

[104]Weitzel, NP/OP Chile NP/OP banked no 109 62.0% (95% CI 51.0-71.9) 100% (95% CI 88.7-100)

[96] Schildgen, LRT Germany BAL/TW unclear no 73 33.3% (95% CI 19.6*-49.6*) 87.1% (95% CI 70.2*-94.6*)

R-Biopharm, RIDA®QUICK SARS-CoV-2 Antigen (LFA)

[101] Toptan, NP/OP Germany NP/OP banked no 67 77.6% (95% CI 64.7*-87.5*) 100% (95% CI 66.4*-100*)

[101] Toptan, unknown Germany unclear banked no 70 50.0% (95% CI 31.9*-68.1*) 100% (95% CI 90.8*-100*)

SD Biosensor, Standard F (requires reader)

[94] Porte, NP/OP Chile NP/OP banked no 64 90.6% (95% CI 75.8-96.8) 96.9% (95% CI 84.3-99.4)

[71] FIND, NP Brazil NP fresh yes 453 77.5% (95% CI 69.2-84.1) 97.9% (95% CI 95.7-99.0)

[67] Drevinek, NP Czech Republic NP fresh yes 591 62.3% (95% CI 55.8-68.4) 99.5% (95% CI 98.0-99.9)

[83] Liotti, NP Italy NP banked no 359 47.1% (95% CI 37.1-57.1) 98.4% (95% CI 96.0-99.6)

SD Biosensor / Roche, Standard Q (LFA)

[65] Chaimayo, NP/OP Thailand NP/OP banked no 454 98.3% (95% CI 91.1-100) 98.7% (95% CI 97.1-99.6)

[97] Schwob, NP Switzerland NP fresh yes 333 92.9% (95% CI 86.4-96.9) 100% (95% CI 98.3*-100*)

[62] Berger, NP Switzerland NP fresh yes 529 89.0% (95% CI 83.7-93.1) 99.7% (95% CI 98.4-100)

[72] FIND, NP Brazil NP fresh yes 400 88.7% (95% CI 81.3-93.4) 97.6% (95% CI 95.2-98.8)

[96] Schildgen, LRT Germany BAL/TW unclear no 73 88.1% (95% CI 74.4*-96.0*) 19.4% (95% CI 7.5*-37.5*)

[76] Igl?i, NP Netherlands NP fresh yes 970 84.9% (95% CI 79.1-89.4) 99.5% (95% CI 98.7-99.8)

[74] Gupta, NP India NP fresh yes 330 81.8% (95% CI 71.3-89.6) 99.6% (95% CI 97.8-99.9)

[82] Lindner, NP, sc Germany NP fresh yes 289 79.5% (95% CI 64.5-89.2) 99.6% (95% CI 97.8-100)

[3] Krüger, NP/OP Germany/England NP/OP unclear no 1263 76.6% (95% CI 62.8-86.4) 99.3% (95% CI 98.6-99.6)

[82] Lindner, AN Germany AN/MT fresh no 289 74.4% (95% CI 58.9-85.4) 99.2% (95% CI 97.1-99.8)

[81] Lindner, NP, pc Germany NP fresh yes 180 73.0% (95% CI 58.1-84.3) 99.3% (95% CI 96.0-100)

[64] Cerutti, NP, ER Italy NP unclear no 185 72.1% (95% CI 62.5*-80.5*) 100% (95% CI 95.6*-100*)

[78] Krüttgen, NP Germany NP banked no 150 70.7% (95% CI 59.0*-80.6*) 96.0% (95% CI 88.9*-99.2*)

[88] Nalumansi, NP Uganda NP fresh yes 262 70.0% (95% CI 60.0-79.0) 92.0% (95% CI 87.0-96.0)

[89] Olearo, OP Germany OP unclear no 184 49.4% (95% CI 38.9-59.9) 100% (95% CI 96.3-100)

[64] Cerutti, NP, tr Italy NP fresh no 145 40.0% (95% CI 5.3*-85.3*) 100% (95% CI 97.4*-100*)

Shenzen Bioeasy Biotechnology, 2019-nCov Antigen Rapid Test Kit (requires reader)

[95] Porte, NP/OP Chile NP/OP banked no 127 93.9% (95% CI 86.5-97.4) 100% (95% CI 92.1*-100*)

[104] Weitzel, NP/OP Chile NP/OP banked no 111 85.0% (95% CI 75.6-91.2) 100% (95% CI 89.0-100)

[90] Parada-Ricart, NP Spain NP fresh yes 172 73.1%* (95% CI 52.2*-88.4*) 85.6%* (95% CI 78.9*-90.9*)

[3] Krüger, NP/OP Germany NP/OP fresh no 727 66.7% (95% CI 41.7-84.8) 93.1% (95% CI 91-94.8)

Siemens Healthineers, CLINITEST® Rapid COVID-19 Antigen Test (LFA)

[89] Olearo, OP Germany OP unclear no 170 54.9% (95% CI 43.4-65.9) 100% (95% CI 96.3-100)

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.26.21252546doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.26.21252546
http://creativecommons.org/licenses/by-nd/4.0/


31 
 

Table 2: Summary clinical accuracy data for major Ag-RDTs not included in the meta-analysis 881 

 882 

Caption: * only one data set for specificity was provided 883 
IFU = instructions for use; Ag-RDT = antigen rapid diagnostic test; NP = nasopharyngeal; OP = oropharyngeal; 884 
AN = anterior nasal. 885 
  886 

Manufacturer,

Ag-RDT

Number of 

data sets
Sensitivity range Specifcity range Comments

Becton, Dickinson and Company, 
BD Veritor™
(requires reader)

3 76.3% to 96.4% 98.7% to 100%

- For the data set reporting 96.4% sensitivity, 
samples originated from symptomatic patients 
only and cell culture was used as reference 
standard

Fujirebio,
ESPLINE® SARS-CoV-2
(lateral flow assay)

3 23.5% to 80.7% 100%*
- The data set reporting 23.5% sensitivity used 
saliva samples (not IFU-conform)

Fujirebio,
Lumipulse® G SARS-CoV-2 Ag
(requires reader)

2 82.4% to 100% not provided

- Both data sets originate from the same study
- One data set used saliva (sensitivity 82.4%), 
the other NP samples (sensitivity 100%). For 
this Ag-RDT, both sample types are IFU 
conform.

QUIDEL,
Sofia SARS Antigen FIA
(requires reader)

3 76.8% to 93.8% 100%
- For the data set reporting 76.8% sensitivity, 
it is not clear whether it was conducted IFU-
conform

R-Biopharm,
RIDA®QUICK SARS-CoV-2 Antigen
(lateral flow assay)

2 50.0% to 77.6% 100%

- Both data sets originate from the same study 
and were conducted not IFU-conform
- For the data set reporting 50.0% sensitivity, 
the used sample type is not clear. The other 
used NP/OP samples

Shenzen Bioeasy Biotechnology,
2019-nCov Antigen Rapid Test Kit
(requires reader)

4 66.7% to 93.9% 85.6% to 100%

- The data set reporting 85.6% specificity was 
conducted IFU conform
- The data sets reporting highest sensitivity 
were drawn from just symptomatic patients, 
for the others symptomatic patients made up 
more than two thirds of the study population
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Figures 887 

Figure 1 PRISMA flow diagram  888 

Figure 2 Methodological quality of the clinical accuracy studies 889 

Figure 3 Summary forest plot for five meta-analyzed Ag-RDT 890 

Figure 4 Summary forest plot for subgroup analysis.  891 
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Figure 1 - PRISMA flow diagram 892 

 893 

Caption: * some data sets split up data by multiple Ct-values, therefore the subgroup analysis by Ct-values 894 

includes more individual records than the overall amount of meta-analyzed data sets. 895 

Abbreviations: Ag-RDT = antigen rapid diagnostic tests; IFU = instructions for use. 896 

  897 
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Figure 2 - Methodological quality of the clinical accuracy studies 898 

 899 

 900 

  901 
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Figure 3 - Summary forest plot for five meta-analyzed Ag-RDT 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

Caption: N=sample size; TP = true positive; FP = false positive; FN = false negative; TN = true negative; CI = con-914 
fidence interval 915 
  916 
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Figure 4 - Summary forest plot for subgroup analysis 917 

 918 

 919 

 920 

 921 

Caption: Panel A: Nasopharyngeal incudes mixed naso-/oropharyngeal; Nasal includes anterior nasal and mid-922 
turbinate; Panel B: IFU = instructions for use; Panel C:  <7d = below seven days of onset of symptoms; ≥7d = 923 
equal and greater than seven days of symptoms; N= sample size; CI = confidence interval 924 
The samples size (N) and cell counts (True positive, etc.) were included in forest plots where data was available. 925 
However, these numbers were not reported consistently for many sub-groups. 926 
 927 
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