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ABSTRACT 

The association of unipolar depression (UD), relative to healthy controls (HC), with 
cortical myelin is underexplored, despite growing evidence of associations with white 
matter tract integrity. We characterized cortical myelin in the 360 Glasser atlas regions 
using the T1w/T2w ratio in 39 UD and 47 HC participants (ages=19-44, 75% female). A 
logistic elastic net regularized regression with nested cross-validation and a subsequent 
linear discriminant analysis conducted on held-out samples were used to classify UD vs. 
HC. True-label model performance was compared against permuted-label model 
performance. Cortical myelin distinguished UD from HC with 68% accuracy (p<0.001; 
sensitivity=63.8%, specificity=71.5%). Consistently selected regions were located in the 
orbitofrontal cortex, anterior cingulate, extended visual, and auditory cortices, and 
showed statistically significant both decreases and increases in myelin levels in UD vs. 
HC. The patterns of cortical myelin in these regions may be a biomarker of UD. 
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1 INTRODUCTION 

Unipolar depression (UD) is a leading cause of disability worldwide1, with an economic 
burden of $210 billion dollars in the United States alone2. Despite its impact, treatments 
for the disorder remain ineffective for many patients3. Thus, there is a pressing need to 
understand the neurobiological etiology of UD to facilitate the development of improved 
treatments and prevention strategies.  

 Unipolar depression is characterized by dysfunctional affective and cognitive 
processing4, including reduced executive functioning5, biased emotional processing6, 
and impaired reward processing7. Correspondingly, individuals with UD show aberrant 
activation during tasks which recruit these processes, including activation in the 
striatum, hippocampus, amygdala, orbitofrontal cortex, prefrontal cortex, insula, 
cingulate, and occipital cortex8–11. In addition, a growing body of literature has reported 
structural abnormalities associated with depression in many of these same regions 
described above, both in grey matter12–14 and in white matter15,16. Meta-analyses of 
diffusion weighted imaging (DWI) studies have repeatedly found evidence for lower 
fractional anisotropy (FA) in depressed populations17–19. More recently, studies using 
very large samples (i.e., the UK Biobank), as well as meta-analyses combining both 
published and unpublished data (i.e., the ENIGMA consortium), have observed 
widespread and replicable reductions in FA15,16. Notably, white matter integrity in 
identified regions has been shown to correlate with the cognitive processes disrupted in 
depression, including processing speed20,21, emotion regulation22,23, and reward 
learning24.  

Emerging evidence suggests that cortical myelin may be impacted in individuals 
with UD and that it may partially mediate some of the cognitive processes that are 
impaired in affected individuals. For example, studies of post mortem brain tissue from 
donors with UD have observed reduced myelination, a reduction in the number of 
oligodendrocytes and other glia (cells whose functions include generating and 
maintaining myelin25), and reduced expression of oligodendrocyte lineage genes26,27. A 
study of individuals with treatment resistant depression revealed a reduced 
magnetization transfer ratio (MTR), which is thought to reflect lower myelin levels, in the 
cingulate cortex and insula28. A recent study using R1 (1/T1) as a measure of 
myelination observed reduced whole-brain myelin, but no significant difference in 
cortical myelin in a handful of a priori bilateral regions between individuals with 
depression and healthy controls (HC)29,  

Developments in magnetic resonance imaging (MRI) methodology permit the 
examination of cortical myelin via the T1w/T2w ratio30,31. Studies in population-based 
samples using this metric have found that lower myelin in the cingulate, orbitofrontal 
cortex, and middle temporal cortex correlated with poor sleep quality32, lower frontal-
pole myelin and greater myelin in the occipital cortex correlated with neuroticism33, and 
lower myelin in the motor and higher myelin in the insular, cingulate, prefrontal, and 
superior parietal cortices correlated with trait anxiety34. While poor sleep, high 
neuroticism, and trait anxiety might represent concurrent symptoms of depression, prior 
studies have not systematically examined cortical myelin in participants with depression 
as compared to HC.    
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The goals of the present study were (1) to ascertain whether cortical myelin 
content (characterized by the T1w/T2w ratio) is predictive of unipolar depression (UD), 
and (2) to characterize the brain regions that are predictive of case/control status. 
Based on the prior studies mentioned above, we hypothesized that cortical myelin levels 
would distinguish individuals with UD from HC and that these differences will be 
especially pronounced in the prefrontal cortical (PFC), cingulate, parietal and occipital 
regions that support reward and emotional processing, which are dysregulated in 
UD11,35. 
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2 METHODS 

2.1 Participants 

The study was approved by the University of Pittsburgh Institutional Review 
Board. Participants were recruited from the community, universities, and counseling and 
medical centers. They gave written informed consent, were right-handed, fluent in 
English, and were matched on age and sex. Individuals with unipolar depression (UD) 
met DSM-5 criteria for major depressive or persistent depressive disorders. Healthy 
controls (HC) had no personal or family history of psychiatric disorders. Exclusion 
criteria included a history of head injury, metal in the body, pregnancy, claustrophobia, 
neurodevelopmental disorders, systemic medical illness, premorbid IQ<85 per the 
National Adult Reading Test36, current alcohol/drug abuse, Young Mania Rating Scale 
scores>10 (YMRS37) at scan, or meeting criteria for any psychotic-spectrum disorder. 
Data were drawn from an ongoing longitudinal study that includes neuroimaging 
sessions at baseline and 6-month follow-up and clinical evaluations at baseline, 6-
months, and 12-months. The present report includes only data from the baseline 
assessment collected from 55 HC and 50 UD. Participants were excluded from 
analyses due to (1) previously undetected brain abnormalities of potential clinical 
relevance: 2 UD, (2) diagnosis conversion during the course of the study: 1 HC was 
diagnosed with major depressive disorder, and 1 UD was diagnosed with bipolar 
disorder; (3) scanner or movement-related artifacts in MRI data (4 HC, 7 UD), and (4) 
poor-quality myelin maps (see Section 2.4.2.1 Subject-level processing; 3 HC, 1 UD). 
The final sample included 47 HC and 39 UD.  

2.2. Clinical assessment 

All diagnoses were made by a trained clinician and confirmed by a psychiatrist 
according to DSM-5 criteria using SCID-538. Additional information collected included 
illness onset and duration, number of current episodes, comorbid psychiatric disorders, 
current depression symptoms using the HRSD-2539, current mania symptoms using the 
YMRS37, and lifetime depression and hypo/mania spectrum symptomatology using the 
MOODS-SR40. A total psychotropic medication load was calculated for each participant 
with UD, with greater numbers and doses of medications corresponding to a greater 
medication load41,42.  

2.3 Neuroimaging data acquisition 

The neuroimaging data were collected at the University of Pittsburgh/UPMC 
Magnetic Resonance Research Center using a 3T Siemens Prisma scanner with a 64-
channel receiver head coil and named according to the ReproIn convention43. The 
DICOM images were converted to BIDS dataset using heudiconv44 and dcm2niix45. 
High-resolution T1w images were collected using the MPRAGE sequence with 
TR=2400ms, resolution=0.8x0.8x0.8mm, 208 slices, FOV=256, TE=2.22ms, flip 
angle=8°. High-resolution T2w images were collected using TR=3200ms, 
resolution=0.8x0.8x0.8mm, 208 slices, FOV=256, TE=563ms. Field maps were 
collected in the AP and PA directions using the spin echo sequence (TR=8000, 
resolution=2x2x2mm, FOV=210, TE=66ms, flip angle=90°, 72 slices).  
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2.4 Data analyses 

2.4.1 Clinical data analysis 

HC and UD groups were compared on demographic and clinical variables using 
t-tests and chi-square tests. All analyses were conducted in R (https://www.r-
project.org/). 

2.4.2 Neuroimaging data processing 

2.4.2.1 Subject-level preprocessing 

Data quality was examined using mriqc version 0.15.146 and visually inspected. 
Participants were excluded from the analyses if visual inspection identified the presence 
of gross motion or scanner-related artifacts in the T1w or T2w images, or in the mriqc 
background noise images, (e.g., ghosting, blurring, ringing, banding, etc.). The 
distribution of mriqc image quality metrics (IQMs) reflecting scan noise in our study were 
compared to the distribution of IQMs collected by the mriqc server from other studies 
and available via its API, from 1046 T1w and 619 T2w images collected using similar 
parameters47. Scans with IQMs beyond the interquartile range of the mriqc API data 
(median +/- 1.5 x 75% quartile – 25% quartile) were flagged as potential outliers and 
were re-inspected. The distributions of the mriqc IQMs for the remaining participants 
were not different from the distribution of IQMs from the mriqc API (Supplemental 
Figures 1&2). 

Each participant’s cortical myelin was characterized with the T1w/T2w ratio30,48,49 
using the PreFreeSurfer, FreeSurfer, and PostFreeSurfer minimal preprocessing 
pipelines for the human connectome project48. Workbench v1.4.2 and HCPpipelines-
4.1.3 were installed system-wide on a workstation with GNU/Linux Debian 10 operating 
system. The spin echo field maps collected in AP and PA phase encoding directions 
were used for bias field correction in PreFreeSurfer. Registration to standard space was 
achieved via MSMSulc50 in PostFreeSurfer. FreeSurfer images and T1w/T2w myelin 
maps were visually inspected for errors and artifacts and images with gross errors (e.g., 
large regions of apparent low myelin in the occipital cortex due to the transverse sinus 
interfering with accurate identification of the pial surface) were removed from analyses.   
The resulting myelin maps were parcellated in Workbench using the 360 region Glasser 
Atlas49.  

2.4.2.2 Group-level preprocessing 

 Data quality in some brain regions is worse than in the other regions due to 
susceptibility artifacts51. This inconsistent quality of data may increase variability in 
myelin values across participants. The distribution of myelin values across all 
participants in each of the 360 regions was examined to identify regions whose 
variability was an outlier relative to variability in other regions. The coefficient of 
variation (sd/|mean|) was used to summarize the variability within each region. Rosner’s 
test for outliers52,53 identified 11 outlier parcels with excessively high variation 
(Supplemental Table 1) including parcels located in bilateral hippocampus, entorhinal 
cortex, presubiculum, piriform cortex, and posterior orbitofrontal cortex complex, and the 
right subgenual cingulate (bilateral H, EC, PreS, Pir, pOFC, and right 25).These 
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regions, which are known to suffer from an excess of susceptibility artifacts,54,55 were 
removed from the analyses, leaving 349 parcels. 

2.4.3 Neuroimaging data analysis 

2.4.3.1 Elastic net and linear discriminant analysis 

Neuroimaging data decoding studies can capitalize on complex relationships 
between variables, but their large numbers can present a challenge in deriving a 
generalizable model. The elastic net approach has emerged as a flexible tool for use 
with neuroimaging data56 as it is able to reduce the influence of overly large coefficients 
and reducing the number of variables while generating multivariate models predictive of 
complex behaviors57–59. Elastic net is a regularized regression which combines lasso 
and ridge regression (i.e., L1- and L2- norm regularization)60. Ridge regression 
penalizes overly large coefficients, while lasso regression removes variables with small 
coefficients. Elastic net has two parameters: alpha (α) controls the balance between the 
ridge and lasso regularizations, and lambda (λ) controls the strength of regularization.  

We used logistic elastic net regularized regression implemented in the R 
package glmnet61  to select variables that were most predictive of case/control status. 
To provide equal contribution of each penalty to the loss function, we used α=0.5. To 
avoid model overfitting and bias, we implemented nested cross-validation to identify the 
optimal λ parameter. A linear discriminant analysis (LDA)62 model was subsequently 
trained using selected variables to make out-of-sample prediction  on held-out 
participants. This strategy is illustrated in Figure 1A and described in detail in 
Supplemental Methods. For each repetition of the nested cross-validation loop, two 
participants (1 UD and 1 HC) were held out. The rest of the sample was used to identify 
the optimal λ parameter which were then used to fit the elastic net model and select 
variables whose myelin levels were predictive of UD/HC status. These variables were 
then used to train an LDA model, which was tested on held-out participants. Results 
(model fit, variable selection, prediction accuracy) were evaluated for statistical 
significance using a permutation analysis (Figure 1B and Supplemental Methods).  
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Figure 1. Diagram of analysis steps 

 

Conceptual depiction of analysis steps including: (1) a unique pair of one UD and one HC participant is 
held-out; (2) an elastic net regression is used to select variables; (3) the retained variables are used an 
LDA model predicting case/control status; (4) the LDA model is tested on the held-out sample; (5) this 
process is repeated for each of the n=1833 pairs of subjects; (6) for each held-out pair, the training 
procedure is repeated with 100 unique permutations.  

 

2.4.3.2 Post-hoc analyses 

2.4.3.2.1 The relationship between true-label and permuted-label sample demographics 

To ensure that the permuted results were not due to changes in the internal structure of 
the permuted samples in terms of demographic variables (i.e., age, sex and IQ), we 
compared the age, sex and IQ values in the permuted samples with that in the true-
label samples.  

2.4.3.2.2 Association of LDA accuracy and cortical myelin with demographic and clinical 
characteristics 

To further characterize the parcels selected by the logistic elastic net regression, we 
tested the association of participant group (i.e., UD vs HC) with cortical myelin. These 
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analyses controlled for age, sex, and IQ. To assess the potential influence of 
confounding variables on model accuracy, we tested whether demographic (i.e., age, 
sex, and IQ) or clinical characteristics (i.e., HRSD-25 and MOODS-SR) were predictive 
of classification accuracy. This was done via a two-way ANOVA, which tested whether 
group (i.e., UD vs. HC), the variable in question, or their interaction, was associated with 
participant-wise accuracy63. Additionally, a 1-way ANOVA tested whether clinical 
characteristics of UD participants (e.g., medication type, medication load, duration of 
illness) were associated with model accuracy only in UD participants. To assess the 
potential influence of confounding variables on variable selection, ANCOVAs tested the 
association of demographic and clinical variables with cortical myelin. These analyses 
controlled for age, sex, and IQ, and were performed across both UD and HC 
participants (i.e., 2-way Group x Variable ANCOVA), as well as only in UD participants 
(i.e., 1-way ANCOVA). Results for each variable were separately corrected for multiple 
comparisons using false discovery rate (FDR). 

2.4.3.3 Exploratory analysis of a HC participant who was diagnosed with major 
depressive disorder 12 months from the baseline scan 

One participant entered the study as a HC but was diagnosed with major depressive 
and generalized anxiety disorders sometime between 6 and 12 months after study 
onset. At the study visit at 12 months the participant had mild depressive symptoms. 
While this participant was excluded from all primary analyses described above, we 
thought it would be informative to conduct exploratory analyses investigating whether 
the myelin was predictive of the participant’s conversion from HC to UD. This 
exploratory analysis used the primary 86 participants and the variables selected in 
primary analyses (cortical myelin in 33 parcels and IQ) to train an LDA model. UD/HC 
status was then predicted at baseline (12 months prior to conversion) and at the 6-
month follow-up (6 months prior to conversion).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.25.21252472doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252472
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

3 Results 

3.1 Sample demographics 

Individuals with UD did not differ by age or sex but had higher IQ and current and 
lifetime depression severity compared to HC (Table 1).  

 

Table 1. Demographic and clinical characteristics          

 
HC (mean/sd or 
count/percent) 

UD (mean/sd or 
count/percent) 

t-test or chi-squared 
test  
HC vs. UD 

N 47 (54.7%) 39 (45.3%)  

Gender (number females) 36 (76.6%) 29 (74.6%) χ2(1)=0, p=1 

UD diagnoses (MDD/PDD) na 26/13 na 

Age (years) 28.55 (6.15) 29.07 (6.88) t(84)=-0.37, p=0.71 

IQ (NART) 106.72 (6.24) 110.2 (7.49) t(84)=-2.35, p=0.02 

Illness Onset (year of age) na 15.05 (5.02) na 

Lifetime episodes of depression na 3.25 (1.5) na 

Current depression severity (HRSD-25) 1.74 (2.16) 12.69 (6.77) t(84)=-10.48, p<.01 

Lifetime depression (MOODS-SR) 2.15 (2.27) 18.41 (4.36) t(84)=-22.21, p<.01 

Number taking Antidepressants na 22 (56.4%) na 

Number taking Mood stabilizers na 3 (7.7%) na 

Number taking Antipsychotics na 1 (2.6%) na 

Number taking Benzodiazepines na 5 (12.8%) na 

Number taking Stimulants na 3 (7.7 %) na 

Mean number of psychotropic medications na 1.05 (1.12) na 

Mean total medication load na 1.33 (1.53) na 

Number with comorbid diagnoses na 27 (69.2%) na 

Comparison of demographic and clinical characteristics between healthy controls (HC) and individuals 
with Unipolar Depression (UD). Tests were run as t-tests or chi-squared tests, as specified. Bold = 
p<0.05. na=not applicable.  

 

3.2 UD vs. HC LDA nested cross-validation classification accuracy 

Cortical myelin levels and IQ distinguished UD from HC in subjects held-out 
during cross-validation, with an average accuracy of 68% (Figure 2A; sensitivity (UD): 
63.8%, specificity (HC): 71.5%). The mean participant-wise accuracy across 84 
classification loops ranged from 0% to 100%. Greater than 50% accuracy was achieved 
in 63 (73.6%) participants (26 (66.7%) UD, 37 (78.7%) HC, exact binomial test 
p<0.001). When demographic variables were excluded from the LDA classification, 
nested cross-validation achieved 69% accuracy (UD: 65.2%, HC: 73%). Notably, while 
the mean classification accuracy was higher in the HC group, this difference was not 
statistically significant (t=0.88, p=0.38), and similarly the proportion of participants 
classified at greater than 50% accuracy did not differ statistically between the two 
groups (χ2=1.03, p=0.31).   
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In permutation analyses, no variable was selected in 66.9% of 183300 models.  
Within each participant, the proportion of models that did not select any variables 
ranged from 65.4% to 68.7%. Excluding instances when no variables were selected, the 
average participant-wise LDA accuracy in permutation analyses ranged from 41.2% to 
59.2%, with an average accuracy of 50.5% (i.e., chance level). The test of whether age, 
sex and IQ in permuted samples differed from that in the sample with true labels 
showed that the demographics of the permuted groups differed (p<0.05, uncorrected) 
from the true-label groups only in 1.7% of cases. 

 

Figure 2. Classification accuracy and variable selection 

 

A) Average subject-wise nested cross-validation classification accuracy in both healthy controls (HC) and 
participants with unipolar depression (UD). B) Variable selection frequency (percent of models where a 
given parcel was retained) in the true data (light blue) and permutations (green). The n=90 parcels which 
were retained at least once are shown. IQ, the only demographic variable selected, is labeled. Solid black 
lines represent the median of the variable selection frequency for all n=350 variables +/- 3.5 x the 
interquartile range (IQR). See Supplemental Table 2 for the full list of variable selection frequencies.  

 

3.3 Elastic net variable selection 

True-label nested cross-validated elastic net models predicting diagnostic status 
(UD vs. HC) with 349 myelin parcels, age, sex and IQ, selected 90 myelin parcels 
(Supplemental Table 1) and IQ in at least one model (Figure 2B). Models selected 
between 9 and 68 variables, with a median of 17 variables. Permuted-label nested 
cross-validated elastic net models selected all predictor variables at least once, but no 
variable was selected by more than 3% of the models. In addition, 66.9% of models with 
permuted labels did not select any variable at all. Within permuted-label models where 
at least one variable was selected, the number of selected variables ranged from 1 to 
113, with a median of 17 variables selected. 

Given that the variable selection frequency in the models with permuted labels 
likely represents noise, we applied the criterion of the median + 3.5*IQR across all 
permuted variables (3.77%) as the cutoff value to separate the potential noise variables 
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from ‘signal’ variables in the nested cross-validated elastic net with true labels. This 
latter analysis identified 33 out of 90 myelin parcels, plus IQ, across the true-label 
nested cross-validated elastic net models that were above the cutoff line (Table 2, 
Figure 2B). These 33 parcels included multiple regions in the orbitofrontal cortex, insula, 
cingulate, and frontal operculum, as well as regions in the auditory and visual cortices 
(Supplemental Figure 3). Of these parcels, six parcels (left 11l, left 7PC, left MST, left 
p10p, right FOP2, and right FFC) were retained in all 1833 models (100%), an 
additional 7 parcels were retained in more than 90% of models, 13 more parcels were 
retained in more than 10% of models, and 7 parcels were retained in less than 10% of 
models. IQ was retained by 85.8% of models. No model retained the age and sex 
variables. 

Post-hoc analyses tested the association of diagnostic status with cortical myelin 
levels in the 33 selected myelin parcels (Table 2, Figure 3). These parcels include both 
regions where UD participants have lower mean cortical myelin than HC and regions 
where UD participants have greater mean cortical myelin, as well as regions where the 
two groups do not differ in their average level of cortical myelin. After FDR-correction for 
multiple comparisons, fourteen of the parcels showed evidence of significant differences 
between UD and HC participants (Table 2). These parcels included left 7PC, right TE2p, 
and left MST, where participants with UD had greater myelin levels, and left s32, left 
FOP4, right FFC, left RI, right 7AL, right FOP2, left 24dv, left p10p, left LBelt, left a24pr, 
and left 11l where participants with UD had lower myelin levels. (see Table 2 for an 
expanded description of each parcel). An additional 8 parcels showed nominally 
significant differences between UD and HC participants (Table 2; p<0.05 uncorrected), 
including left STSdp, left d23ab, left 6a, and right LBelt, where participants with UD had 
lower myelin levels, and left p32, right PH, left MT, and right RSC, where participants 
with UD had greater myelin levels. Parcels that showed a greater absolute mean 
difference between the groups were selected more frequently in the nested cross-
validation analysis (r=0.7, p=4x10-6).  
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Table 2. Association of unipolar depression with cortical myelin in selected parcels 

Parcel t p p-FDR 
Selection 

Frequency 
Extended Description 

Left 11l -3.056 0.003 0.032 100.00 BA 11 (orbital and polar frontal) 

Left 7PC 3.081 0.003 0.032 100.00 BA 7 (superior parietal cortex) 

Left MST 2.892 0.005 0.032 100.00 Medial superior temporal area 

Left p10p -2.536 0.013 0.038 100.00 BA 10 (frontopolar margin of orbital prefrontal cortex) 

RIght FOP2 -2.574 0.012 0.038 100.00 Frontal Opercular area 2 (posterior opercular cortex) 

Right FFC -2.534 0.013 0.038 100.00 Fusiform face complex 

Left STSdp -2.036 0.045 0.071 99.95 Auditory association cortex 

Right TE2p 2.928 0.004 0.032 99.89 Lateral temporal complex 

Left LBelt -2.713 0.008 0.038 99.35 Lateral belt complex (auditory) 

Left a24pr -3.003 0.004 0.032 99.29 Ventral anterior cingulate cortex. 

Right 7AL -2.512 0.014 0.038 99.18 BA 7 (superior parietal cortex) 

Left d23ab -2.157 0.034 0.060 95.53 Ventral posterior cingulate cortex 

Left 6a -2.291 0.025 0.054 95.25 BA 6 (premotor subdivisions) 

Left 24dv -2.556 0.012 0.038 59.36 Ventral anterior cingulate cortex. 

Right V3A 1.795 0.076 0.097 47.52 Visual area V3A 

Left V4t -1.650 0.103 0.117 39.44 Visual area V4t 

Right LBelt -2.122 0.037 0.061 33.99 Lateral belt complex (auditory) 

Left p32 2.179 0.032 0.060 33.66 BA 32 (pregenual anterior cingulate) 

Right PH 2.152 0.034 0.060 22.97 Posterior temporal visual region 

Right POS2 1.921 0.058 0.082 19.97 Parieto-occipital sulcus area 2 

Right FOP1 -1.816 0.073 0.096 19.31 Frontal Opercular area 1 (posterior opercular cortex) 

Right RI 1.559 0.123 0.135 18.22 RetroInsular cortex 

Left 47m -1.735 0.086 0.102 15.77 BA 47 (orbital part of inferior frontal gyrus) 

Left s32 -2.442 0.017 0.040 12.22 BA 32 (subgenual anterior cingulate) 

Left MT 2.176 0.033 0.060 11.95 Middle temporal area 

Left RI -2.520 0.014 0.038 11.78 RetroInsular cortex 

Right OP1 -1.237 0.220 0.220 8.89 Parietal operculum (secondary somatosensory cortex) 

Left PeEc -1.429 0.157 0.162 6.98 Perirhinal ectorhinal cortex 

Left FOP4 -2.489 0.015 0.038 6.66 Frontal Opercular area 4 (posterior opercular cortex) 

Right RSC -2.009 0.048 0.072 6.22 RetroSplenial complex 

Right 52 1.493 0.139 0.148 6.06 BA 52 (parainsular) 

Right 7Pm 1.913 0.059 0.082 5.18 BA 7 (superior medial parietal cortex) 

Right 5m -1.777 0.079 0.097 3.98 BA5 (paracentral lobule) 

The association of UD with cortical myelin in the n=33 selected variables. Tests were run as linear 
regressions, testing the association of case/control status with cortical myelin, controlling for age, sex, 
and IQ. Positive t-values indicate greater cortical myelin in UD. P-values were FDR-corrected.  
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Figure 3. Association of Unipolar Depression with cortical myelin in selected parcels 

 

A) The t-statistic for the association of unipolar depression (UD) with cortical myelin in the n=33 selected 
parcels. Regions where UD participants had greater average myelin than HC participants are in blue, and 
regions where HC participants had greater average myelin than UD participants are in red. B) The 
percent of models in which each parcel was retained. Regions are individually labeled (note that FFC is 
not visible, as it lies on the ventral surface).  

 

3.5 Post-hoc analyses 

3.5.1 Association of myelin level in 33 parcels and demographic and clinical variables 

 Analyses which tested the association of cortical myelin in the 33 selected 
parcels with demographic and clinical variables (see Table 1) found no statistically 
significant results (Supplemental Table 4). Across all participants neither sex, IQ, nor 
MOODs-SR score were correlated with cortical myelin in selected parcels, nor did they 
interact with group (HC vs UD) to predict cortical myelin. There was evidence for 
associations between age and cortical myelin in two regions (p-fdr<0.05), driven by a 
positive correlation in right LBelt, and a negative correlation in left a24pr. Within UD 
participants, neither illness duration, antidepressant medication, UD diagnosis category 
(MDD vs PDD), number of comorbid diagnoses, nor lifetime number of mood episodes, 
were correlated with cortical myelin in selected parcels. Antidepressants were nominally 
associated (p<0.05 uncorrected) with increased cortical myelin in right OP1, left 24dv, 
and left p32, and decreased cortical myelin in right LBelt (Supplemental Table 4, 
Supplemental Figure 4).  

3.5.2 Association of LDA accuracy with demographic and clinical variables 

Two-way ANOVAs found that no demographic or clinical variable was predictive 
of classification accuracy (Table 3). Similarly, within the UD participant group, no clinical 
or medication variable was associated with classification accuracy (Table 3).  
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Table 3.  

Association of demographic and clinical variables with classification accuracy 

Sample Variable Type F p 

All IQ x Group 2-Way ANOVA 0.50 0.68 

All Age x Group 2-Way ANOVA 1.65 0.18 

All Sex x Group 2-Way ANOVA 2.44 0.07 

All HRSD-25 x Group 2-Way ANOVA 0.73 0.54 

All MOODS-SR x Group 2-Way ANOVA 1.13 0.34 

UD Only Antidepressants 1-Way ANOVA 0.17 0.69 

UD Only Age of illness onset 1-Way ANOVA 0.39 0.53 

UD Only Illness duration 1-Way ANOVA 0.43 0.52 

UD Only Lifetime episodes of depression 1-Way ANOVA 1.67 0.20 

UD Only Number of comorbid diagnoses 1-Way ANOVA 0.13 0.72 

UD Only UD Diagnosis (MDD/PDD) 1-Way ANOVA 2.04 0.16 

Two-way ANOVAs were run as Group x Variable predicting classification accuracy. No test was 
significant (all ps > 0.05). Medications other than antidepressants were not examined, as too few 
participants were taking them (Table 1).  

 

3.5.3 Exploratory analysis of classification in a participant who converted from HC to UD 

The LDA trained on the whole sample of 86 participants, with IQ and the 33 
parcels identified in the previous analyses as predictors classified this participant as 
‘UD’ both times: 12 months and 6 months before illness onset.  
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4 DISCUSSION 

Cortical myelin distinguished healthy control participants (HC) from those who had been 
diagnosed with unipolar depression (UD) with 68% accuracy in 2 subject hold-out cross-
validations. Classification performance was not statistically significantly affected by 
inclusion/exclusion of demographic variables from the model. The Elastic net regression 
selected regions implicated in emotion and reward processing, as well as those involved 
in visual, auditory, and somatomotor processing. UD was associated with both reduced 
and increased cortical myelin in different areas, relative to HC. These results 
demonstrate that aberrant levels of cortical myelin may be a biomarker of unipolar 
depression. 

Analyses examined 349 cortical parcels and 3 demographic variables, of which 
only 90 parcels and IQ were ever selected by the elastic net regression. The selection 
of IQ is unsurprising because the UD group had a higher mean IQ score than HC (Table 
1). However, the model fit did not significantly change when no demographic variables 
were included. Of the 90 parcels selected at least once, 33 were selected more 
frequently than expected by chance based on permutation analyses.  

 There is abundant evidence of cognitive control and executive function deficits in 
depression5, and the anterior cingulate and orbitofrontal cortex play key roles in reward 
processing64, which is also disrupted in depression11.The 33 selected parcels included 
13 parcels in regions important for executive functioning and cognitive control, located 
in the anterior cingulate (left a24pr, left 24dv, left p32, and left s32), orbitofrontal cortex 
(left 11l, left p10p, and left 47m), posterior cingulate (right RSC, and left d23ab), frontal 
operculum (right FOP1 and left FOP4), and parietal cortex (right POS2 and right 7Pm). 
UD was largely associated with reduced cortical myelin in these regions, except in one 
region of the anterior cingulate (left p32), and the two regions in the parietal cortex (right 
POS2 and right 7Pm), where it was associated with increased myelin. The present 
results converge with mounting evidence of disrupted myelination28, thickness12, 
connectivity55, and activation11 of these regions in those with depression.  

 In addition to regions traditionally reported in neuroimaging studies of 
depression, 19 of the identified parcels play roles in visual, somatomotor, and auditory 
processing. Visual processing regions included extrastriate regions (right V3A, left V4t, 
and left MT), ventral stream regions (right FFC and right TE2p), and dorsal stream 
regions (left MST, right PH, left 7PC, right 7AL). Auditory processing regions included 
regions in the auditory cortex (left LBelt, right LBelt, left RI, and right RI) and regions 
implicated in language (left STSdp, left FOP2, and right 52). Somatomotor regions 
included regions implicated in somatosensation (right 5m and right OP1) and a region in 
the premotor cortex (left 6a). UD was largely associated with reduced cortical myelin in 
auditory and somatomotor regions, except for two auditory regions (right 52 and right 
RI) where it was associated with increased myelin. In contrast, participants with UD had 
greater myelin in 6 visual regions and had reduced myelin in 3 regions (left V4t, left 
FFC, and left 7AL). While depression is not typically considered a disorder of 
dysfunctional sensory processing, somatic symptoms in depression have been well 
described65, and there are reports of both visual66 and auditory67 processing deficits in 
depression. Our results contribute to a growing body of literature documenting 
associations of depression with altered structure12 and functional connectivity68,69 in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.25.21252472doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252472
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

sensory regions. These findings may point to disrupted information transfer in sensory 
regions a part of the underlying neurobiological etiology of depression. 

 Broadly, our results contribute to the consensus that the neurobiology of regions 
that play important roles in cognitive processes that are disrupted in depression may 
contribute to the etiology of the disorder. It is notable that in contrast to studies of the 
major white matter tracts, where depression is associated with lower integrity15, we 
observed both decreased and increased cortical myelin. This was particularly true in 
visual regions, where diagnosis was associated with increased cortical myelin in the 
majority of regions. Intriguingly, there are several examples in our results where 
proximal or similar regions had effects in opposing directions, including in the anterior 
cingulate (left p32 was increased, while left a24pr and left 24dv were decreased), the 
superior parietal cortex (left 7PC was increased and right 7AL was decreased), the 
retroinsular cortex (right RI was increased and left RI was decreased), and in visual 
processing regions (left MT and left MST were increased, and left V4t, which they 
border, was decreased). While the relationship between cortical myelin and functional 
activation or connectivity remains under-explored, these observations suggest that 
cortical myelin imbalance, rather than a global reduction, could drive some of the 
observed functional differences in depression, such as disrupted network integration69,70 
and patterns of both hypo- and hyper- connectivity71,72.  

 Intriguingly, 84% of participants were consistently classified either quite 
accurately (>80% n=53) or inaccurately (<20% n=19) across nested cross-validation 
folds. In contrast, in permutation analyses where variables were retained, participants 
were classified at chance (50%). This suggests that inaccurate classification was largely 
not due to the algorithm guessing, but rather to the presence of brain features which 
reliably led to certain participants appearing like they were members of the other group. 
It was hypothesized that participants who were consistently inaccurately classified also 
had demographic or clinical features that were closer to members of the other group. 
For instance, perhaps UD participants who were inaccurately classified had fewer 
symptoms, or took different medications, from those who were accurately classified. 
Post-hoc analyses did not find any association between demographic or clinical 
variables and classification accuracy.  

It is possible that inaccurate classification of HC participants as UD could reflect 
the presence of environmental or genetic risk factors that are not captured by clinical 
measures. As a preliminary exploration of this hypothesis, analyses tested the 
classification of a participant who was not used in primary analyses, as they 
experienced the onset of UD during the course of the study. This participant completed 
two MRI scans, at 12 months and 6 months prior to UD onset, and was classified as UD 
on both, despite not meeting criteria for a UD diagnosis at the time of scan. This 
preliminary result suggests that the pattern of cortical myelin in frontal, sensorimotor 
and extended visual cortices may be a biological marker of risk for UD diagnosis in the 
future. Further longitudinal studies are needed to test this hypothesis.  

 While the present results demonstrate that the pattern of cortical myelin is 
disrupted in UD, the cause of myelin disruption remains unknown and may include 
environmental, genetic, and other factors. However, post-hoc analyses suggest that 
myelin disruption is not due to demographic differences between the groups, nor due to 
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clinical features of UD, such as medication use, lifetime depression severity, or illness 
duration. Disrupted cortical myelin may reflect other risk factors for UD. For instance, 
sleep disturbance, which is a well-established risk factor for UD73, was recently shown 
to correlate with cortical myelin in several of the same regions found in the present 
study, including the cingulate, orbitofrontal cortex, and middle temporal cortex32. 
Another prominent hypothesis is that the source of white matter differences in 
depression is partially attributable to stress15. There is evidence that stress is 
associated with lower integrity of white matter tracts in humans74,75 and in rodents and 
non-human primates it has been found to cause microstructural alterations to white 
matter76,77. It is intriguing to note that remyelination can occur after stress as well78, and 
there is evidence that it results in altered patterns of myelination across the cortex79. 
This could potentially explain our observations of both decreased and increased cortical 
myelin in unipolar depression.  

 One limitation of this work includes the need to replicate our findings in an 
independent sample. To partially address this limitation, our analyses used robust 
machine learning methods involving model testing using held-out samples. Nested 
cross-validation was used to do model parameter selection without over-fitting, and 
cross-validation was used to estimate model accuracy, in which a model was iteratively 
trained and tested on non-overlapping participant subsets. Highly significant 
classification accuracy was achieved on held-out participants not used to train the 
model. The major strength of this approach is that it helps to reduce model bias, which 
occurs when the same participants are used to train and test a model80. It has been 
suggested that model performance with nested cross-validation is close to the accuracy 
that would be achieved on fully independent data81. It is also notable that the observed 
model accuracy is greater than the association of any of the individual parcels selected. 
The second limitation concerns the reliability of the T1w/T2w metric. While it is reported 
to be relatively insensitive to noise49, there have not been any studies of the test-retest 
reliability of estimates of cortical myelin. Future research will be needed to verify that the 
T1w/T2w ratio has adequate reliability. The third limitation concerns measurement noise 
due to susceptibility artifacts. Several regions with documented relevance to 
depression, including the bilateral hippocampus, entorhinal cortex, and posterior 
orbitofrontal cortex complex, were not included in the present analyses, as these 
regions showed an excess of between-person variability (see Methods). Future 
research should explore the association of cortical myelin in these regions with unipolar 
depression. 

In summary, cortical myelin can distinguish participants with UD from HC, even 
when clinical and demographic variables are not included in analyses. Regions that 
were most important for this classification include several that play key roles in reward 
and emotion processing as well as a host of regions important for sensory processing. 
This result highlights that the association of UD with sensory processing bears further 
investigation. Notably, UD was associated with both decreased and increased cortical 
myelin, suggesting that observations of reduced integrity of major white matter tracts in 
UD may not fully extend to the cortex. These results suggest that cortical myelin holds 
promise as a biomarker of unipolar depression and may be an early predictor of risk for 
this disorder. 
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