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Abstract

When new pathogens emerge, numerous questions arise about their fu-
ture spread, some of which can be addressed with probabilistic forecasts. The
many uncertainties about the epidemiology of emerging pathogens can make
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it difficult to choose among model structures and assumptions, however. To
assess the potential for uncertainties about emerging pathogens to affect fore-
casts of their spread, we evaluated the performance of a suite of 16 forecasting
models in the context of the 2015-2016 Zika epidemic in Colombia. Each
model featured a different combination of assumptions about the role of hu-
man mobility in driving transmission, spatiotemporal variation in transmission
potential, and the number of times the virus was introduced. All models used
the same core transmission model and the same iterative data assimilation
algorithm to generate forecasts. By assessing forecast performance through
time using logarithmic scoring with ensemble weighting, we found that which
model assumptions had the most ensemble weight changed through time. In
particular, spatially coupled models had higher ensemble weights in the early
and late phases of the epidemic, whereas non-spatial models had higher ensem-
ble weights at the peak of the epidemic. We compared forecast performance
of the equally weighted ensemble model to each individual model and identi-
fied a trade-off whereby certain individual models outperformed the ensemble
model early in the epidemic but the ensemble model outperformed all individ-
ual models on average. On balance, our results suggest that suites of models
that span uncertainty across alternative assumptions are necessary to obtain
robust forecasts in the context of emerging infectious diseases.
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1 Introduction1

Pathogen emergence, or the phenomenon of novel or established pathogens invad-2

ing a new host population, has been occurring more frequently in recent decades3

[1]. In the last 40 years, more than 150 pathogens of humans have been identified4

as emerging or re-emerging [2, 3]. In these situations, host populations are largely5

susceptible, which can result in dynamics ranging from self-limiting outbreaks, as6

with Lassa virus [4], to sustained pandemics, as with HIV [5], depending on the7

pathogen’s traits and the context in which it emerges. When emergence does oc-8

cur, mathematical models can be helpful for anticipating the future course of the9

pathogen’s spread [6, 7, 8].10

A necessary part of using models to forecast emerging pathogens is making deci-11

sions about how to handle the many uncertainties associated with these unfamiliar12

microbes [8]. Given the biological and ecological diversity of emerging pathogens,13

there is often considerable uncertainty about various aspects of their natural his-14

tories, such as their potential for superspreading [9], the role of human mobility in15

their spatial spread [10, 11], drivers of spatiotemporal variation in their transmission16

[6, 12], and even their modes of transmission [13]. In the case of MERS-CoV, for ex-17

ample, it took years to determine that the primary transmission route was spillover18

from camels rather than sustained human-to-human transmission [14]. A lack of19

definitive understanding about such basic aspects of natural history represents a20

major challenge for forecasting emerging pathogens.21

Inevitably, different forecasters make diverse choices about how to address un-22

known aspects of an emerging pathogen’s natural history, as they do for numerous23

model features. This diversity of approaches has itself been viewed as part of the24

solution to the problem of model uncertainty, based on the idea that the biases of25

different models might counteract one another to produce a reliable forecast when26

viewed from the perspective of an ensemble of models [15]. This idea has support in27

multi-model efforts to forecast seasonal transmission of endemic pathogens, such as28

influenza and dengue viruses [16, 17, 18, 19, 20], with ensemble forecasts routinely29

outperforming individual models. These successes with endemic pathogens have30

motivated multi-model approaches in response to several emerging pathogens, in-31

cluding forecasting challenges for chikungunya [21] and Ebola [22], vaccine trial site32

selection for Zika [23], and a multi-model decision-making framework for COVID-1933

[15, 24].34

Although there has been increased attention to multi-model forecasting of emerg-35

ing pathogens in the last few years, these initiatives have involved significant effort to36

coordinate forecasts among multiple modeling groups [25, 26]. Coordination across37

multiple groups has clear potential to add value beyond what any single modeling38

group can offer alone. At the same time, using multiple models to hedge against39

uncertainties about a pathogen’s natural history could potentially improve forecasts40

from a single modeling group, too [16, 18]. This could, in turn, improve ensemble41

forecasts based on contributions from multiple modeling groups. An ensemble-based42

approach by one modeling group that contributes to forecasts of seasonal influenza43

in the United States demonstrates the success that a single modeling group can44

achieve with an ensemble-based approach [27], and that such an ensemble can con-45

tribute value to an ensemble of forecasts from multiple modeling groups [18]. Similar46

approaches have not been widely adopted for forecasting emerging pathogens by a47

single modeling group (although see [28]), despite the heightened uncertainty inher-48

ent to emerging pathogens.49
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Here, we evaluate the potential for an ensemble of models that span uncertain-50

ties in pathogen natural history, but share a common core structure, to accurately51

forecast the dynamics of an emerging pathogen. We do so in the context of the52

2015-2016 Zika epidemic in Colombia, which was well-characterized epidemiologi-53

cally (Fig. 1) [29] and involved potentially consequential uncertainties about: i)54

the role of human mobility in facilitating spread across the country [30], ii) the55

relationship between environmental conditions and transmission of this mosquito-56

borne virus [6, 12], and iii) the number of times the virus was introduced into the57

country [31]. In this retrospective analysis, we used data assimilation to update 1658

distinct models throughout the epidemic period and assessed forecast performance59

of all models relative to an equally weighted ensemble model. This allowed us to60

quantify the contribution of variants of each of the three aforementioned uncertain-61

ties to model performance during different phases of the epidemic. In doing so, we62

sought to not only assess the performance of the ensemble model relative to indi-63

vidual models, but also to learn about features of individual models that may be64

associated with improved forecast accuracy over the course of an epidemic.65

Amazonas
Putumayo

Vaupés
Nariño

Guaviare
Caquetá

Cauca
Huila

Guainía
Quindío

Meta
Valle del Cauca

Tolima
Risaralda

Caldas
Cudinamarca

Casanare
Vichada
Boyacá
Arauca

Santander
Chocó

Antioquia
Norte de Santander

Córdoba
Sucre

Bolívar
Cesar

Atlántico
Magdalena
La Guajira

0 4 8 16 24 32 40 48 56
Weeks since 1st reported case in Colombia

De
pa

rtm
en

ts
 (s

ou
th

 to
 n

or
th

)

Weekly
incidence

1

25

50

100

300

500

750
1000

1600

15

20

25

30

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Te
m

pe
ra

tu
re

 (c
)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

Weeks since 1st reported case in Colombia

Pr
(m

os
q 

oc
cu

r)
O

rig
in

Destination

CDR−informed

Destination

Gravity

Destination

Radiation

a b

c

d e f

Figure 1: Temporal and spatial variation of Zika incidence, temperature,
and mosquito occurrence probability in Colombia. a. Weekly Zika incidence
from August 9, 2015 to October 1, 2016 with all 31 mainland departments approx-
imately ordered from south to north. b. Points indicate average temperature data
and lines indicate temperature by department. c. Points indicate average mosquito
occurrence probability and lines indicate mosquito occurrence probability by de-
partment. d-f. Mobility matrices under three different assumptions of mobility,
with departments ordered south to north on y-axis and north south on x-axis. Tan
indicates high rates of mobility, dark purple indicates low rates of mobility, white
indicates no movements.
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2 Results66

2.1 General forecast performance67

Before any data assimilation had occurred, our 16 models (See Table 1) initially68

forecasted very low incidence across most departments over the 60-week period of69

our analysis (Figs. 2 top row, S12). Even so, short-term forecasts over a four-week70

horizon were consistent with the still-low observed incidence at that time (Figs. S371

purple, S18). By the time twelve weeks of data had been assimilated into the mod-72

els, forecasts over the 60-week period of our analysis were considerably higher than73

the initial forecasts and better aligned with the observed trajectory of the epidemic74

(Figs. 2 second row, S13). Over those first twelve weeks, model parameters changed75

modestly (Fig. S6) and correlations among parameters began to emerge (Figs. S7,76

S8, S9, S10). We observed a more substantial change in the proportion of individ-77

ual stochastic realizations (where the nth stochastic realization is the nth “particle”78

generated from some set of parameters ~θt,n at time t) resulting in an epidemic, with79

those particles resulting in no epidemic being filtered out almost entirely by week80

12 (Fig. S1). Because each particle retained its stochastic realization of past in-81

cidence across successive data assimilation periods, stochastic realizations of past82

incidence were inherited by particles much like parameter values. By week 24, many83

of the models correctly recognized that they were at or near the epidemic’s peak84

and forecasted a downward trajectory for the remainder of the 60-week period of our85

analysis (Figs. 2 third row, S27). The particle filtering algorithm replaced nearly86

half of the original particles by that point (Fig. S2), with the new particles con-87

sisting of stochastic realizations of past incidence selected through data assimilation88

and updated every four weeks with forward simulations based on either original or89

new parameter combinations. As the end of the 60-week period of our analysis was90

approached, parameter correlations continued to strengthen (Figs. S7, S8, S9, S10),91

our estimate of the reporting probability increased (Fig. S6), and only around 20%92

of the original particles remained (Fig. S1).93

Table 1: Different model assumptions regarding the role of human mobility in facil-
itating pathogen spread across the country, the relationship between environmental
conditions and transmission of ZIKV, and the number of times the virus was in-
troduced into Colombia. The suite of 16 models reflected factorial combinations of
these three assumptions.

Human mobility Transmission potential Number of ZIKV introductions
CDR-informed Fixed R [6] One
Gravity model Dynamic R [12] Two
Radiation model
No human mobility

2.2 Model-specific forecast performance94

To quantify the forecast performance of individual models over time, we used loga-95

rithmic scoring (hereafter, log scoring) to compare forecasts of cumulative incidence96

four weeks into the future to observed values at departmental and national levels.97

We assessed log scores once the first case was reported nationally for spatially cou-98

pled models (i.e., models with explicit human mobility), and once the first case was99
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Figure 2: Observed incidence (navy points) with the median forecast for
16 models (black lines) with the equally weighted ensemble model (green
band) for Antioquia, Norte de Santander, Cauca, and Amazonas at five
points throughout the epidemic. Plotted departments reflect differences in
population, epidemic size, and geographic regions of Colombia and are represented
by each column. The vertical pink line indicates the point at which the forecast was
made (also labeled on the right axis), with data to the left of the line assimilated
into the model fit. Forecasts to the right of the vertical line change as more data
is assimilated into the model, while model fits to the left of the vertical line do not
change. The green band reflects the 50% credible interval of the equally weighted
ensemble model.

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2021. ; https://doi.org/10.1101/2021.02.25.21252363doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252363
http://creativecommons.org/licenses/by/4.0/


reported in each department for non-spatial models (i.e., models with no explicit100

human mobility). Log scores were generally high for spatially coupled models early101

in the epidemic, given that observed cases and forecasts were both low at that time102

(Fig. S18, a-c). By week 12, as cases were reported in more departments, the accu-103

racy of forecasts from non-spatial models improved (Fig. S18 d onward). Forecast104

performance around the peak of the epidemic differed considerably across models105

and departments, with forecasts from non-spatial models being somewhat lower106

than observed incidence and forecasts from spatially coupled models being some-107

what higher (Fig. S14, Fig. S18 f-j). Around the peak of the epidemic, forecasts108

from spatially coupled models generally had higher log scores in departments with109

lower incidence (e.g., Nariño). Later in the epidemic (weeks 40-56), some models110

continued to forecast higher incidence than observed in some departments, despite111

having passed the peak incidence of reported cases (Fig. S16). In particular, models112

that used the dynamic instead of the static formulation of the reproduction number113

(i.e., the temporal relationship between R and environmental drivers is dynamic114

instead of static) were more susceptible to this behavior (note lower log scores in115

“Rt” versus “R” models in Fig. S18 k-o), given that their forecasts were sensitive to116

seasonal changes in temperature and mosquito occurrence.117

Next, we used these log scores in an expectation-maximization (EM) optimiza-118

tion algorithm [32] to identify an optimal weighting of retrospective model-specific119

forecasts into an ensemble forecast (Fig. S25-S29) in each forecasting period (Fig.120

S17). To learn how model assumptions affected the inclusion of different models into121

the optimally weighted ensemble for each forecasting period, we summed and then122

normalized models’ ensemble weights across each class of assumption (Fig. 3). Over123

the course of the epidemic, changes in weighting for the assumptions about human124

mobility and spatiotemporal variation in transmission, but not about the number125

of virus introductions into the country, closely followed patterns in the trajectory126

of the national epidemic. Spatially coupled models had most or all of the weight127

in the early and late stages of the epidemic, while non-spatial models had most of128

the weight around the peak of the epidemic (Fig. 3 b). Although the non-spatial129

models somewhat under-predicted incidence in the middle stages of the epidemic,130

this was often to a lesser extent than the spatially coupled models’ over-predictions131

of incidence (Fig. S3). As a result, the EM algorithm achieved a balance between132

the over- and under-predictions of these different models.133

The maximum ensemble weight in any forecasting period was 0.802, held by134

one model with a static R, two ZIKV introductions into the country, and CDR-135

informed human mobility 12 weeks after the first reported Zika case (Fig. S17).136

Combined, the two models with static R and CDR-informed human mobility data137

had the most instances of a non-zero ensemble weight (Fig. S17), occurring in 13138

of 15 assimilation periods, with an average weight of 0.18. Around the peak of139

the epidemic, non-spatial models had the highest ensemble weight, reflecting the140

accuracy of short-term forecasts in some departments (e.g., Magdalena and Vaupés)141

and their overall accuracy in nationally-aggregated forecasts (Fig. S11). Near the142

end of the epidemic, the ensemble weight for models with a static R (Fig. 3 c)143

increased as their forecasts more closely matched the downturn of incidence later144

in the epidemic relative to models with dynamic R (Fig. S20). This was likely the145

result of mosquito occurrence probability and temperature becoming more favorable146

for transmission in many departments later in the epidemic (Fig. S21-S22), causing147

the dynamic R models to forecast a late resurgence in Zika incidence.148
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2.3 Target-oriented forecast performance149

Short-term changes in incidence are an important target of infectious disease fore-150

casting, but there are other targets of potentially greater significance to public health151

decision making. To explore these, we evaluated the ability of the 16 models—and an152

evenly weighted ensemble—to forecast three targets at the department level: peak153

incidence, week of peak incidence, and onset week, which we defined as the week154

by which ten cases were first reported. We evaluated models based on log scores155

of these targets. Summing log scores across departments to allow for comparisons156

across different forecasting periods (Fig. 4), we found that, on average, the en-157

semble model outperformed every individual model for all three forecasting targets158

(indicated by the ensemble model’s location on the y-axis). Early in the epidemic,159

spatially coupled models with a static R performed only slightly better (up to 1%)160

than the equally weighted ensemble (Fig. 4). For the remainder of the epidemic,161

the equally weighted ensemble model outperformed all individual models (Fig. 4).162

Such small changes in forecast performance when averaging over space shows that163

differences in forecast performance across space dominate relative to those across164

time.165

By summing log scores across forecasting periods to allow for comparisons across166

departments (Fig. 5), we found that some individual models outperformed the167

ensemble model in forecasting the peak incidence and the week of peak incidence.168

In departments on the Caribbean Coast that experienced intermediate epidemic169

sizes (e.g., Antioquia, Sucre, Atlántico), spatially coupled models with a static R170

outperformed the ensemble model at forecasting the peak week by about 10% (Fig.171

5 A). At those same locations, the equally weighted ensemble performed better than172

or similar to those same models at forecasting peak incidence and onset week (Fig. 5173

b-c). Over forecasting periods and departments, the non-spatial models consistently174

had lower average forecast scores than the spatially coupled models (indicated by175

their location on the y-axis in Figs. 4-5). This trend appeared because initial176

forecasts from non-spatial models were not updated until the first case appeared in177

each department, while initial forecasts from spatially coupled models were updated178

when the first case appeared in the country.179

3 Discussion180

We assessed the potential for a suite of individual models that span a range of un-181

certainties, and ensembles of these models, to accurately forecast the dynamics of an182

emerging pathogen. Results from the general forecast performance analysis demon-183

strated that once we began assimilating data into models, forecasts rapidly became184

more accurate. Models were initialized with a wide range of parameter values [33],185

with many initial parameter combinations producing unrealistic forecast trajectories,186

but after only four assimilation periods (12 weeks), nearly 100% of those parameters187

that produced zero infections were dropped. Similar to other retrospective forecast188

analyses [16, 34], as more data were assimilated into the models over time, the model189

fits and forecasts generally became more closely aligned with temporal trends in the190

data. This was because the particle filter allowed model parameters to continually191

adapt to noisy data [35]. There were still some exceptions where the particle filter192

could not fully compensate for shortcomings of the transmission model, such as the193

drastic underestimates of incidence in departments with sub-optimal conditions for194

transmission (e.g., static R model in Risaralda in Fig. S20). At the same time,195
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Figure 4: Model-specific forecast scores relative to equally weighted ensem-
ble model for each assimilation period and forecasting target. a. Timing of
peak week (within two weeks). b. Incidence at peak week. c. Onset week. Forecast
scores are averaged over department. Models are ordered on the y-axis by average
forecast score for each forecasting target. Model names on the y-axis are abbrevi-
ated such that “R” or “Rt” indicates assumption about spatiotemporal variation, “1”
or “2” indicates number of introduction events, and “CDRs”, “gravity”, “radiation”
or “nonspatial” indicates the human mobility assumption. In the heat plot, blue
indicates individual model performed better than the ensemble model in a given
department, red indicates individual model performed worse than ensemble model,
and white indicates individual model performed roughly the same as the ensemble
model.
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Figure 5: Model-specific forecast scores relative to equally weighted en-
semble model for each department and forecasting target. a. Timing of
peak week (within two weeks). b. Incidence at peak week. c. Onset week, or the
week by which ten cumulative cases occurred. Forecast scores are averaged over
department. Models are ordered on the y-axis by average forecast score for each
forecasting target, with model names abbreviated in the same manner as Fig. 4.
Departments are ordered on the x-axis from high to low for overall incidence. In
the heat plot, blue indicates individual model performed better than the ensemble
model in a given department, red indicates individual model performed worse than
ensemble model, and white indicates individual model performed roughly the same
as the ensemble model.
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the broader suite of models buffered against shortcomings of any single transmission196

model.197

In the model-specific forecast performance analysis, we identified clear temporal198

trends related to when models with a static R versus a dynamic R should be in-199

cluded in an optimally weighted ensemble. In contrast, there were no clear temporal200

trends in weighting regarding the assumption about the number of times the virus201

was introduced into the country, potentially reflecting that, even with multiple in-202

troductions, most transmission may have been linked to a single introduction [31].203

Models with a dynamic R had higher weights in the ensemble at the peak of the204

epidemic, while models with a static R had higher weights at the beginning and205

end of the epidemic. This was likely due to temporal shifts in temperature and206

mosquito occurrence probabilities dominating forecasts of transmission potential for207

the models with a dynamic R. For example, in the latter parts of the epidemic208

when reported cases were declining, mosquito conditions and temperature became209

more suitable for transmission in many departments. This caused models with a dy-210

namic R to forecast a resurgence in ZIKV transmission in those departments, while211

models with a static R forecasted a downturn in incidence that was more similar212

to the observed dynamics. This finding that susceptible depletion may have been213

more influential than temporal variation in environmental conditions for the Zika214

epidemic is consistent with recent findings for SARS-CoV-2 [36].215

Through the model-specific forecast performance analysis, we also found that216

spatially coupled models had higher ensemble weights in the early and late stages of217

the epidemic, while non-spatial models had higher weights around the peak of the218

epidemic. The importance of including spatially coupled models in the optimally219

weighted ensemble early in the epidemic supports the general notion that human220

mobility may be particularly predictive of pathogen spread early in an epidemic [7,221

30, 37, 38]. In part, temporal shifts in weighting around the peak of the epidemic222

were due to more accurate nationally-aggregated forecasts from the non-spatial mod-223

els. This result was consistent with a previous modeling analysis of the invasion of224

chikungunya virus in Colombia, which showed that models fitted independently to225

sub-national time series recreated national-level patterns well when aggregated [39].226

A shift in ensemble weights toward non-spatial models around the peak of the epi-227

demic was also due to less accurate department-level forecasts from the spatially228

coupled models. At that point in the epidemic, prevalence was at its highest, which229

means that we would expect local epidemics to be more endogenously driven and230

less sensitive to pathogen introductions across departments.231

In the target-oriented forecast performance analysis, we found that the equally232

weighted ensemble generally outperformed individual models, with a few key ex-233

ceptions. In the months leading up to the peak of the epidemic, spatially coupled234

models with a static R had slightly, but consistently, higher forecast scores with235

respect to peak week and onset week. Like the model-specific analysis results, this236

result illustrates the importance of human mobility in facilitating the spread of an237

emerging pathogen across a landscape [30]. Individual models outperforming the238

equally weighted ensemble model in the early phase of the epidemic is not wholly239

surprising given that non-spatial models were represented equally in that ensemble240

throughout the epidemic. Non-spatial models may be realistic when locations have241

self-sustaining epidemics, but they are not appropriate for capturing early-phase242

growth and its dependence on importations [40]. Another instance when individ-243

ual models had higher forecast scores than the equally weighted ensemble was with244

respect to peak week for spatially coupled models with a static R in departments245
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along the Caribbean Coast. Compared to dynamic R models, the static R models246

more accurately forecasted peak week in these departments (e.g., Magdalena, Cesar,247

Sucre), as they did not forecast a late-stage resurgence in transmission. The equal248

weighting of the dynamic R models in the ensemble therefore led to overall lower249

peak week forecast scores for the ensemble relative to static R models. Still, our250

results indicating that an equally weighted ensemble mostly outperformed individ-251

ual models adds to the growing literature highlighting the importance of ensemble252

methods in epidemiological forecasting [16, 17, 27, 41, 42].253

We considered both equally and optimally weighted ensembles and found that254

the equally weighted ensemble had a lower root mean square error than the op-255

timally weighted ensemble (RMSE=0.640 and 0.705, respectively)—therefore pro-256

viding slightly more accurate forecasts of the observed data (Fig. S23). With the257

optimally weighted ensemble, which we updated at each data assimilation period,258

we found that model weights changed over the course of the epidemic Fig. S17). Al-259

though this is intuitive given the changing nature of an emerging epidemic through260

time [8], it may be problematic in practice. It is almost as if the ensemble weights261

require their own forecast. On the one hand, promising new advances in ensem-262

ble modeling [27, 41]—such as adaptive stacking for seasonal influenza forecasting263

[43]—are being used to address this issue of identifying optimal, adaptive weights264

without training to historical data. On the other hand, in an emerging pathogen265

context, establishing optimal model weights by way of model fitting and forecast266

generation is often reliant on available incidence data (rather than historical data)267

that is highly variable [44], given the delayed nature of data reporting [45]. In this268

context, our results demonstrate that it is preferable to use an equally weighted en-269

semble to buffer against uncertainty in optimal ensemble weights. As is also being270

demonstrated in forecasts of COVID-19, equally weighted ensembles can provide271

accurate forecasts [26, 46, 44] and may be a better reflection of the considerable272

structural uncertainty inherent to models of emerging pathogen transmission [24].273

A few limitations of our study should be noted. First, while an equally weighted274

ensemble approach allowed us to consider contributions of several alternative model275

assumptions, there was high uncertainty associated with these forecasts (sometimes276

spanning orders of magnitude, see Fig. S24). Potential end-users of these types277

of forecasts could consider high levels of uncertainty to be problematic for decision-278

making [47], though if the uncertainty does not affect the choice of a control measure,279

then the uncertainty may not be as relevant [48]. In the future, ensemble approaches280

aimed at increasing precision and reducing uncertainty [49, 27] could be used in con-281

junction with equally weighted ensembles. Second, we considered alternative models282

across only three assumptions. With ZIKV transmission, there are additional struc-283

tural uncertainties that could be considered, such as the role of sexual transmission284

[50]. In real-time applications of our or other Zika forecasting models, it could be285

worthwhile to explore these types of ZIKV-specific structural uncertainties. Relat-286

edly, the static and dynamic R had minor differences in their formulations, such287

that the static R also included a socioeconomic index. In future work, it could be288

interesting to explore if the inclusion of this time-independent variable affected the289

dynamic R. Third, in this analysis we did not explicitly consider delays in reporting290

that likely would have occurred had these forecasts been generated in real time [51].291

In that context, temporally aggregating data to a wider interval (e.g., at 2-week292

intervals rather than 1-week intervals) could potentially help mitigate the effects of293

reporting delays to some extent. Fourth, we assumed that the reporting probability294

was constant through time. Although this is a standard assumption [52] given the295
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lack of data to inform a time-varying relationship for this mechanistic element [53],296

it would be interesting to include and test a reporting dynamics model (e.g., the re-297

porting probability scales with incidence [54]) as an additional component included298

in our ensemble framework. Fifth, we conducted this analysis at the departmental299

level instead of this municipality level, which could obfuscate meaningful differences300

across regions of a single department [29]. In future work, it would be useful to test301

and assess our forecasting algorithm and outputs at different spatial scales [39].302

As the world is reminded of on a daily basis with COVID-19, pathogen emer-303

gence is an ongoing phenomenon that will continue to pose threats in the future [55].304

A better understanding of an emerging pathogen’s natural history could help to re-305

duce pathogen-specific structural uncertainties, but these insights may not always306

occur in time to inform model development for real-time forecasting [8]. Our results307

highlight important trade-offs between individual and ensemble models in this con-308

text. Specifically, we demonstrated that an equally weighted ensemble forecast was309

almost always more accurate than individual models. Instances in which individ-310

ual models were better than the ensemble, or greatly improved the ensemble, also311

provided insight. For example, incorporating human mobility into models improved312

forecasts in the early and late phases of an epidemic, which underscores the impor-313

tance of making aggregated mobility data available early in an epidemic [56]. The314

range of outcomes resulting from alternative modeling assumptions in model-specific315

forecasts demonstrates why it will continue to be important to address structural316

uncertainties in forecasting models in the future.317

4 Materials and methods318

4.1 Data319

We used passive mandatory surveillance data for reported cases of Zika, from the320

National Surveillance System (Sivigila) at the first administrative level (31 mainland321

departments) in Colombia. To span the beginning, peak, and tail of the epidemic in322

Colombia, we focused on the 60-week period between August 9, 2015 and October323

1, 2016. We used the version of these data collated by Siraj et al. [29], as well as324

modeled values of weekly average temperature and estimates of department-level325

population from that data set. For some models, we worked with monthly estimates326

of mosquito occurrence probability (i.e., dynamic R models) obtained from Bogoch327

et al. [57], and for others we worked with time-averaged estimates (i.e., static R328

models) from Kraemer et al. [58].329

For models that relied on cell phone data to describe human mobility, we used330

anonymized and aggregated call detail records (CDRs). Every time a user receives331

or makes a call, a CDR including the time, date, ID, and the tower (BTS) providing332

the service is generated. The positions of the BTSs are georeferenced and so the333

aggregated mobility between towers can be tracked in time. We used this information334

to derive daily mobility matrices at the municipality level in Colombia from February335

2015 to August 2015. Mobility matrices captured the number of individuals that336

moved in each given day from one municipality to another (i.e., that appeared337

in BTSs of different municipalities). The change for each day was captured by338

comparing the last known municipality to the current one. No individual information339

or records were available.340

As these data did not align with the time frame of the epidemic, and to calcu-341

late a mobility matrix at a department level, we computed a representative mobility342
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matrix by summing all available CDRs within the municipalities of each department343

and normalizing them to sum to one relative to the sum of CDRs originating from344

that department. In five departments (Amazonas, Cudinamarca, Guainía, Vaupés,345

Vichada), the proportion of CDRs linking callers within the same department was346

below 60%. Given that this implied an unrealistically low proportion of time spent347

within an individual’s department of residence, we interpreted those values as id-348

iosyncrasies of the data and not representative of human mobility [59]. Thus, for349

those five departments, we replaced the proportion of within-department CDRs with350

the mean proportion of within-department CDRs from all other departments. We351

then re-normalized the number of CDRs originating from each department in our352

mobility matrix to sum to one.353

4.2 Summary of models354

To produce weekly forecasts of ZIKV transmission across Colombia, we sought to use355

a computationally efficient model with the flexibility to include relevant epidemiolog-356

ical and ecological mechanisms. We used a previously described semi-mechanistic,357

discrete-time, and stochastic model [60] that had been previously adapted and used358

to model mosquito-borne pathogen transmission [61, 62]. Using this model, we359

were able to account for the extended generation interval of ZIKV using overlapping360

pathogen generations across up to five weeks of the generation interval distribu-361

tion of ZIKV [62]. Furthermore, we could specify this model to be either spatially362

connected or non-spatial—a key assumption that we considered in our analysis.363

We considered a suite of 16 models that spanned all combinations of four as-364

sumptions about human mobility across Colombia’s 31 mainland departments, two365

assumptions about the relationship between environmental conditions and the re-366

production number (R), and two assumptions about how many times Zika virus367

was introduced to Colombia (Table 1). Twelve of 16 models allowed for spatial con-368

nectivity across departments [60], while four models were non-spatial. There were369

up to two steps in the transmission process: transmission across departments (for370

spatially connected models) and local transmission within departments.371

Across departments, we simulated the movement of individuals using a spatial372

connectivity matrix (H), the dth column of which corresponds to the proportion of373

time spent by residents of department d in all departments ~d. Using this matrix, we374

redistributed infections in department d in week t (Id,t) across ~d as a multinomial375

random variable,376

I ′~d,t ∼multinomial(Id,t,H~d,d), (1)

where the first and second arguments represent the number of trials and the probabil-377

ities of the outcomes, respectively. By taking this Lagrangian approach to modeling378

human mobility, transmission across departments can occur either by infected vis-379

itors transmitting to local susceptibles or susceptible visitors becoming infected by380

local infecteds. The relative occurrence of these events depends on the prevalence381

of infection, susceptibility, local transmission potential, and mobility patterns of a382

given pair of departments.383

Within each department, we defined a variable representing the effective number384

of infections that could have generated new infections in week t (I ′′d,t) as385

I ′′d,t =
5∑
j=1

ωGIj I ′d,t−j, (2)
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where ωGIj is the probability that the generation interval is j weeks [63]. The rela-386

tionship between I ′′d,t and the expected number of new local infections in week t+ 1387

(Id,t+1) follows388

Id,t+1 = βd,t
I ′′d,t
Nd

Sd,t, (3)

where βd,t is the transmission coefficient, Nd is the total population, and Sd,t is the389

total susceptible population prior to local transmission in week t. We accounted for390

the role of stochasticity in transmission by using the stochastic analogue of Eqn. 3,391

such that392

Id,t+1 ∼negative binomial
(
βd,t

I ′′d,t
Nd

Sd,t, I
′′
d,t

)
(4)

where the first and second arguments are the mean and dispersion parameters,393

respectively [60].394

To allow for comparison of the model’s simulations of infections (Id,t) with empir-395

ical data on reported cases (yd,t), we applied a reporting probability (ρ) to simulated396

infections to obtain simulated cases (Cd,t), such that Cd,t ∼ binomial(Id,t, ρ). Using397

this, we defined the contribution to the overall log-likelihood of the model and its398

parameters from a given department d and week t as399

`d,t(~θt) = ln (negative binomial(yd,t + 1 |φ,Cd,t + 1)) , (5)

where φ is a dispersion parameter that we estimated to account for variability in400

case reporting beyond that captured by ρ. Shifting yd,t and Cd,t by one in eq. (5)401

was intended to safeguard against `d,t being undefined in situations where Cd,t = 0.402

4.2.1 Assumptions about human mobility403

We allowed for spatial coupling across departments in 12 of 16 models. In these404

models, we informed H in three alternative ways: i) with mobility data extracted405

from mobile phone CDRs, ii) with a gravity model, or iii) with a radiation model406

(Fig. 1d-f). For the gravity model, we used parameters previously fitted to CDRs407

from Spain and validated in West Africa [11]. For the radiation model, we calculated408

human mobility fluxes according to the standard formulation of this model [64],409

which depends only on the geographic distribution of population. In four of 16410

models, we assumed that departments were spatially uncoupled (Table 1), such that411

each department was modeled individually with its own set of parameters. In those412

models, each department’s epidemic was seeded independently with its own set of413

imported infections. Further details about the spatially uncoupled models can be414

found in the Supplemental Text.415

4.2.2 Assumptions about environmental drivers of transmission416

We parameterized the transmission coefficient, βd,t, based on a description of the417

reproduction number, Rd,t, appropriate to environmental drivers for department d418

and time t. We considered two alternative formulations of Rd,t that were informed419

by data that were available prior to the first reported case of Zika in Colombia.420

Specifically, both of these alternative formulations used different outputs from pre-421

vious modeling efforts [6, 12] and because of this they contain slightly different422

components. Both formulations were defined such that423

βd,t = kRd,t (6)

16

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2021. ; https://doi.org/10.1101/2021.02.25.21252363doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252363
http://creativecommons.org/licenses/by/4.0/


where k is a scalar that we estimated over the course of the epidemic to account424

for the unknown magnitude of ZIKV transmission in Colombia. In addition to the425

summary below, further details about these formulations of Rd,t are provided in the426

Supplementary Methods.427

The formulation of βd,t that we refer to as “dynamic” is defined at each time428

t in response to average temperature at that time (Td,t) and mosquito occurrence429

probability at that time (OPd,t). This relationship can be expressed generically as430

βd,t = kR̃d,t(Td,t, OPd,t|c, ψ, α, v), (7)

where c, ψ, α, and v are parameters governing the relationship among Td,t, OPd,t,431

and R̃d,t. We informed the component of R̃d,t related to mosquito density with432

monthly estimates of OPd,t, which derive from geostatistical modeling of Aedes ae-433

gypti occurrence records globally [57]. Other components of R̃d,t, which include434

several temperature-dependent transmission parameters, were informed by labora-435

tory estimates [12]. Given that this formulation of R̃d,t was not validated against436

field data prior to the Zika epidemic in Colombia, we estimated values of c, ψ, α,437

and v over the course of the epidemic.438

The formulation of βd,t that we refer to as “static” is defined as a time-averaged439

value that is constant across all times t. Temporal variation in Td,t is still accounted440

for, but its time-varying effect on Rd,t is averaged out over all times ~t to result441

in a temporally constant Rd. Mosquito occurrence probability is also incorporated442

through a temporally constant value (OPd) [58]. The relationship among these443

variables can be expressed generically as444

βd,t = kR̄d(Td,~t, OPd, PPPd), (8)

where PPPd is purchasing power parity in department d (a feature not included in445

the dynamic model) [65]. This input is an economic index that was intended to serve446

as a proxy for spatial variation in conditions that could affect exposure to mosquito447

biting, such as housing quality or air conditioning use [6]. Given that this formula-448

tion of R̄d was informed by data from outbreaks of Zika and chikungunya prior to449

the Zika epidemic in Colombia, we did not estimate its underlying parameters over450

the course of the epidemic in Colombia.451

4.2.3 Assumptions about introduction events452

Although many ZIKV infections were likely imported into Colombia throughout the453

epidemic, we assumed that ZIKV introductions into either one or two departments454

drove the establishment of ZIKV in Colombia [31]. Under the two different sce-455

narios, there was either one introduction event into one department or there were456

two independent introduction events into two randomly drawn departments. For457

each parameter set, the initial number of imported infections was seeded randomly458

between one and five in a single week, the timing of which was estimated as a pa-459

rameter. Following the initial introduction(s), we assumed that ZIKV transmission460

was driven by a combination of movement of infected people among departments461

and local transmission within departments, as specified by each model.462

4.3 Data assimilation and forecasting463

For each particle, we produced a single forecast to “initialize” the model prior to464

the first reported case in Colombia. Beginning with the time of the first reported465
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case in Colombia, we then assimilated new data, updated parameter estimates,466

and generated forecasts every four weeks, consistent with the four-week frequency467

used by Johansson et al. in an evaluation of dengue forecasts [16]. We specified468

20,000 initial parameter sets (~θ1,n), indexed by n, by drawing independent samples469

from prior distributions of each parameter [66] (see Supplemental Methods). Each470

parameter set was used to generate a corresponding particle: a stochastic realization471

of the state variables (Id,1,n and Cd,1,n). At each assimilation period, we normalized472

log-likelihoods summed across departments over the preceding four weeks to generate473

particle weights,474

ω(t, n) =

∑
d

∑t
τ=t−3 `d,τ (

~θt,n)∑
n

∑
d

∑t
τ=t−3 `d,τ (

~θt,n)
. (9)

Proportional to these particle weights (ω(t, n)), we sampled 18,000 sets of corre-475

sponding parameters (~θ
resampled
t ) and state variables ({Iresampled

d,t ,Cresampled
d,t }) from476

time t with replacement and used them at the next data assimilation step four477

weeks later, where boldface indicates a set of parameters or state variables, respec-478

tively, over all n. In doing so, information including the initial prior assumptions479

(~θ1,n) and the likelihoods at each four-week period was assimilated into the model480

sequentially over time. Given that particle filtering algorithms are susceptible to481

particle drift—or the convergence of particles onto very few states through iter-482

ative re-sampling [33]—we also generated 2,000 new parameter sets at each data483

assimilation step. To do so, we drew random samples of model parameters from484

a multivariate normal distribution with parameter means and covariances fitted to485

the resampled 18,000 parameter sets (~θ
resampled
t ). Whereas the 18,000 resampled486

parameter sets already included simulated values of state variables Id,t,n and Cd,t,n487

through time t, the 2,000 new parameter sets did not and so we informed initial488

conditions of Inew
d,t with draws from Iresampled

d,ι:t for those parameter sets at the time489

they were created. Together, the 18,000 resampled parameter sets (~θ
resampled
t ) and490

the 2,000 new parameter sets (~θ
new
t ) constituted the set of parameter sets used as491

input for the next data assimilation step (~θt+4 = {~θ
resampled
t , ~θ

new
t }). We also used492

this new set of parameters as the basis for forecasts made at time t, which simply493

involved simulating forward a single realization of the model for each parameter set.494

4.4 Evaluating forecast performance495

At each of the 15 time points at which we performed data assimilation through the496

60-week forecasting period, we created an ensemble forecast that evenly weighted497

contributions from each of the 16 models [46]. To populate this ensemble, we spec-498

ified 20,000 total samples, with 1,250 samples from each model. We assessed the499

model-specific performance of individual and ensemble forecasts using log scores,500

which are forecast scoring rules that assess both the precision and accuracy of fore-501

casts [67]. For a specific forecasting target, z, and model, m, the log score is defined502

as logfm(z∗|x), where fm(z|x) is the predicted density conditioned on the data, x,503

and z∗ is the empirical value of the target Z [16].504

We computed log scores for departmental and national incidence over each four-505

week assimilation period. Following [17], we used an expectation-maximization al-506

gorithm to generate ensemble weights for each model in each assimilation period.507

For each model, we computed 32 log scores (i.e., one for each department and one508
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nationally). To compute the ensemble weight for a given model feature, such as the509

static R assumption, we summed the weights of all models with that feature.510

We assessed target-oriented forecast performance using log scores for three fore-511

casting targets: timing of peak week (within two weeks), incidence at peak week,512

and onset week, which we defined as the week by which ten cumulative cases oc-513

curred. These choices were motivated by forecasting assessments for influenza and514

dengue [16, 17, 18, 68] and deemed applicable to public health objectives for fore-515

casting an emerging pathogen such as Zika. For peak week and onset week, we used516

modified log scores [18], such that predictions within two weeks of the correct week517

were considered accurate. We evaluated a total of 7,680 log scores, reflecting three518

targets for each of 16 models in each of 31 departments plus at the national level519

and at each of 15 time points at which data assimilation occurred.520

As log scores only yield a relative measure of model performance, we used fore-521

casting scores [18] as a way to retrospectively compare forecast performance for522

different forecasting targets. Whereas log scores are preferable for comparing per-523

formance across models on the same data, forecasting scores are preferable for com-524

paring forecast performance across data composed of different locations and times.525

A forecasting score is defined simply as the exponential of the average log score,526

where the latter reflects an average over one or more indices, such as models, time527

points, targets, or locations.528

Data availability529

The mobile phone data set used in this study is proprietary and subject to strict530

privacy regulations. The access to this data set was granted after reaching a non-531

disclosure agreement with the proprietor, who anonymized and aggregated the orig-532

inal data before giving access to the authors. The data could be available on request533

after negotiation of a non-disclosure agreement. The contact person is Enrique Frías-534

Martínez (enrique.friasmartinez@telefonica.com). Epidemiological, meteorological,535

and demographic data are available from Siraj et al. [29] and additionally available536

on https://github.com/roidtman/eid_ensemble_forecasting.537
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Supplemental methods1

Priors on parameters common to all models2

In each model that we considered, we iteratively estimated the reporting probability3

(ρ), dispersion parameter of the negative binomial distribution (φ), R multiplier4

(k), and the timing of the first infection (ι). When possible, we leveraged previous5

estimates of parameters to inform prior distributions for model parameters. In some6

instances, we used dengue-specific parameter estimates as priors for Zika-specific7

parameters [1].8

For the reporting probability (ρ), we assumed a mean of 0.2 and a variance of9

0.05. Although this mean and variance are not directly informed by an empirical10

study of Zika reporting, they are in line with what we would expect for dengue [2, 3]11

and Zika [4]. We assumed that ρ was a beta random variable and, using the method12

of moments, we specified a prior distribution for ρ such that13

ρ ∼ beta(0.44, 1.76) (10)

which resulted in mean and variance consistent with our prior assumptions.14

The dispersion parameter of the negative binomial distribution accounts for vari-15

ability in case reporting beyond that captured by ρ. Lower values of the dispersion16

parameter indicate overdispersion, such that variability in cases cannot be explained17

by a single rate of case incidence, as would be generated by a Poisson distribution18

with rate ρId,t. Given the likelihood of variation in the reporting probability over19

the course of the epidemic [5] and across departments [6], we specified a uniform20

prior for φ,21

φ ∼ uniform(0, 1), (11)

which resulted in a level of overdispersion in reporting equal to at least a geometric22

distribution (φ = 1) but potentially greater (φ < 1).23

To relate the transmission coefficient (βd,t) to environmentally driven descriptions24

of the reproduction number (Rd,t), we used a multiplier (k) that applied to both the25

static and dynamic models of R. We specified a gamma prior distribution,26

k ∼ gamma(2.25, 0.75), (12)

the parameters of which were chosen by moment matching to result in a mean of27

three and a variance of two.28

To seed the Zika epidemic in Colombia, we assumed that undetected transmission29

could have been occurring at any time throughout the first 34 weeks of 2015. For30

reference, the first case was not reported until August 9, 2015 (week 35). Thus, we31

specified a uniform prior for the date of the initial introduction (ι1) between weeks32

1 and 34 of 2015. We assumed that the location of the first introduction (l1) could33

have been any of the departments in Colombia with equal prior probability.34

Assumptions about human mobility35

Spatially coupled models36

For the spatially coupled models, we assumed that transmission was coupled across37

departments by human mobility. In these models, we informed the spatial connec-38

tivity matrix in three ways: i) aggregated mobility patterns extracted from mobile39

phone call detail records (CDRs), ii) a gravity model, or iii) a radiation model. In40

1
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the gravity and radiation models, Ti,j is defined as the total number of trips from41

department i to department j. This takes the form Ti,j = c
Nα
i N

β
j

dγi,j
in the gravity42

model and Ti,j = Ti
NiNj

(Ni+si,j)(Ni+Nj+si,j)
in the radiation model, where Ni and Nj are43

population sizes at the origin i and destination j, dγi,j is the distance between i and44

j, si,j is the total population within radius di,j from i, and Ti is the total number45

of individuals who make a trip. The parameters c, α, β, and γ were fitted to CDRs46

from Spain and validated in West Africa [7]. All three mobility models were row-47

normalized to correspond to the proportion of time spent by residents of department48

i in department j.49

Spatially uncoupled models50

For the spatially uncoupled models, we assumed that each department’s epidemic51

occurred independently of all other departments. We used the same prior distribu-52

tions as described above for ρ, φ, k for each department. Under this assumption, we53

did not include a parameter for the location of the initial introduction into Colom-54

bia, as we instead were concerned with the initial introduction into that department.55

It was still necessary to specify the timing of that introduction and, for models that56

considered it, the timing of a second introduction. Following the rationale that57

undetected transmission could have occurred for up to 34 weeks prior to the first58

reported case in a given department, we assumed an even prior for the timing of the59

introduction(s) into a given department.60

Assumptions about environmental drivers of transmission61

Dynamic model62

The environmentally driven component of βd,t for the dynamic model, R̃d,t(Td,t, OPd,t|c, ψ, α, v),63

was defined as the product of two functions: one that depends on Td,t and one that64

depends on OPd,t.65

The function of OPd,t was defined as c(−log(1 − OPd,t)), which converts occur-66

rence probability into an expectation of mosquito abundance [8]. The constant c67

scales this expectation to account for uncertainty in its magnitude, which we esti-68

mated and assumed to have a gamma-distributed prior with a shape parameter of69

16 and a rate parameter of 0.07. This choice of prior resulted in average R̃d,t being70

equal to one when evaluated at the mean values of the prior for c.71

The function of Td,t was based on a temperature-dependent description of the72

basic reproduction number by Mordecai et al. [9]. Specifically, we used the version73

of that model based on Briere functions for parameters that were not otherwise ac-74

counted for in estimates of mosquito occurrence probability [10]. Those parameters75

include the mosquito biting rate (a), mosquito-to-human transmission probability76

(b), human-to-mosquito transmission probability (c), average adult mosquito lifes-77

pan (lf), and parasite development rate (PDR). Those functions combine to form78

the temperature-dependent component of R̃d,t,79

a(Td,t)b(Td,t)c(Td,t)e
−1/(lf(Td,t)PDR(Td,t))PDR(Td,t). (13)

We did not include other parameters from Mordecai et al. [9] related to mosquitoes,80

such as immature development rate and egg-to-adult survival rate, as the effects of81

those parameters were accounted for in estimates of OPd,t from Kraemer et al. [10].82
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To reduce the number of parameters that we needed to estimate, we worked with83

a simplified description of the temperature curves produced by eq. (13) (Fig. S5).84

To do so, we took random draws from the posterior distribution of parameters from85

Mordecai et al. [9], computed functions of temperature according to eq. (13), and86

fitted parameters of a skew normal distribution to those curves by least squares.87

The skew normal distribution has three parameters—location (ψ), scale (α), shape88

(υ)—that together control the mean, variance, and skew of the distribution, which is89

sufficient to approximate the uncertainty in posterior predictions of the temperature90

curves described by eq. (13). We then took the mean and covariance across those91

estimates of ψ, α, and υ to describe their variation with a multivariate normal92

distribution, which was the prior distribution we used for those parameters at the93

first step of our particle filter.94

Static model95

The environmentally driven component of βd for the dynamic model, R̄d(Td,~t, OPd, PPPd),96

was defined as the product of three functions: one that depends on Td,~t, one that97

depends on OPd, and one that depends on PPPd. We used values of R̄d at the 598

km x 5 km grid cell level as calculated by Perkins et al. [8]. To aggregate them to99

the department level, we took a population-weighted mean of R̄d across 5 km x 5100

km grid cells within each department. Although we made no other modifications to101

the calculation of R̄d, we summarize the methodology used by Perkins et al. [8] in102

the interest of comparability with the dynamic model.103

The function of OPd was defined as −log(1−OPd)), which was the same proce-104

dure used to convert occurrence probability into an expectation of mosquito abun-105

dance as used in the dynamic model. For the static model, however, we followed106

Perkins et al. [8] and relied on a description of occurrence probability that was not107

defined on a time-varying basis [10].108

Rather than estimate a scaling parameter like c in the dynamic model, we relied109

on a scaling parameter defined as a function of PPPd by Perkins et al. [8]. This110

function took the form of a monotonically decreasing, cubic spline function estimated111

with a shape-constrained additive model. The data that informed this estimate of112

both the relationship with PPPd and the magnitude of R̄d were outbreak sizes of 12113

chikungunya outbreaks and one Zika outbreak [8] that occurred prior to the ZIKV114

invasion of the Americas.115

The function of Td,~t was based on a temperature-dependent description of the116

basic reproduction number that includes temperature-dependent descriptions of117

mosquito mortality (µ) [11] and the extrinsic incubation period (n) [12]. Those118

functions contribute to an expression for monthly contributions to Rd,t,119

bca2e−µ(Td,t)n(Td,t)

µ(Td,t)r
, (14)

along with constants that represent the mosquito-to-human transmission probability120

(b), human-to-mosquito transmission probability (c), mosquito biting rate (a), and121

rate of recovery from human infection (r). For each department d, we took the122

average of the six largest values of eq. (14) as the contribution of Td,~t to R̄d.123
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Assumptions about introduction events124

One-introduction models125

Each of the one-introduction models assumed infections were seeded at one point in126

time (ι1) in one location (l1), as specified in the general model parameters section127

of the Supplementary Methods.128

Two-introduction models129

Each of the two-introduction models made similar assumptions about ι1 and l1 for130

the first introduction. For these models, we additionally specified the timing (ι2) and131

location (l2) of the second introduction events, for which we assumed even priors.132

In reality, there were likely more than only one or two introductions throughout133

the epidemic, but genomic epidemiology suggests the majority of local transmission134

resulted from only one or two introductions [13].135
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Supplemental tables136

Symbol Definition Class
ρ Reporting probability Estimated parameter
φ Overdispersion in reporting Estimated parameter
k Rd,t multiplier Estimated parameter
ι1 Timing of first infection Estimated parameter
ι2 Timing of second infection Estimated parameter
l1 Location of first infection Estimated parameter
l2 Location of second infection Estimated parameter
c Dynamic R scalar Estimated parameter
ψ Location for skew normal Estimated parameter
α Scale for skew normal Estimated parameter
υ Shape for skew normal Estimated parameter
θ Parameter set Set of estimated parameters
Id,t Simulated infections State variable
I ′d,t Redistributed infections State variable
I ′′d,t Effective number of infections State variable
Cd,t Simulated cases State variable
yd,t Observed data Data
d Department index Data
t Time; t = 0, ..., T Data
n Particle index; n = 1, ..., N Data
η Timing of first reported case Data

Table S1: Mathematical symbols for parameters, state variables, and data with their
respective meanings.
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Supplemental figures137
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Figure S1: Proportion of forecast trajectories predicting zero infections.
Forecast trajectories are specific to each particle and this example is from the model
using CDR-derived mobility data, static R, and one importation event, correspond-
ing to Fig. S2.

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2021. ; https://doi.org/10.1101/2021.02.25.21252363doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252363
http://creativecommons.org/licenses/by/4.0/


●

●

●

●

●

●

●
●

●
●

●
● ●

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Assimilation period

P
ro

p.
 o

f p
ar

tic
le

s 
fr

om
 o

rig
in

al
 e

ns
em

bl
e

Figure S2: Proportion of particles that remain from the original particle
ensemble present in the retained ensemble at each assimilation period.
This example is from the model using CDR-derived mobility data, static R, and one
importation event, corresponding to Fig. S1.
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Figure S3: Cumulative observed versus forecasted incidence at 4-week
ahead intervals for each individual model for Antioquia, Norte de Sa-
tander, Cauca, and Amazonas at five points throughout the epidemic.
a-p. Each plot represents a different model, with model features labels on rows and
columns. Plotted departments reflect differences in population, epidemic size, and
geographic regions of Colombia and are denoted by point type. Point shape denotes
department. Point color indicates time at which forecasts were generated and is vi-
sually denoted in inset plot and color bar. 1-, 2-, 3-, and 4-week ahead forecasts and
observed incidence were aggregated for ease of comparison. Points are the median
values and lines are the 50% credible interval. 1:1 line is in grey.

8

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2021. ; https://doi.org/10.1101/2021.02.25.21252363doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252363
http://creativecommons.org/licenses/by/4.0/


R
 m

ul
tip

lie
r

R
ep

or
tin

g 
ra

te

O
ve

rd
is

pe
rs

io
n

R
t s

ca
la

r

lo
ca

tio
n 

(s
ke

w
 n

or
m

al
)

sc
al

e 
(s

ke
w

 n
or

m
al

)

sh
ap

e 
(s

ke
w

 n
or

m
al

)
R−1−CDRs

R−2−CDRs

Rt−1−CDRs

Rt−2−CDRs

R−1−nonspatial

R−2−nonspatial

Rt−1−nonspatial

Rt−2−nonspatial

R−1−gravity

R−2−gravity

Rt−1−gravity

Rt−2−gravity

R−1−radiation

R−2−radiation

Rt−1−radiation

Rt−2−radiation

M
od

el
s

Parameters

−0.52

1.7
Posterior − Prior

Figure S4: Relative difference between the prior estimates of the parame-
ters and the posterior estimates at the final time point in the epidemic.
Parameters include the R multiplier (k), reporting rate (ρ), overdispersion parame-
ter (φ), Rt scalar (c), and the location (ψ), shape (α), and scale (ν) parameters for
the skew normal distribution. Blue indicates posterior estimates were higher than
prior estimates, red indicates posterior estimates were lower than prior estimates,
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does not use that parameter. To calculate the relative difference, we subtracted
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divided the difference by the prior to standardize over different parameter magni-
tudes. For comparison purposes, we left out the initial timing and initial location
of ZIKV introduction parameters.
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Figure S5: Estimates of R at each assimilation week across temperatures
for average mosquito occurrence probability in Colombia. Blue bands indi-
cate 95% credible interval, with think navy line indicating the median estimate of
R. Horizontal red line indicates R = 1.
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Figure S6: Posterior distributions of model parameters for the spatially
coupled models with a static R at five different points in time. The R
multiplier (k), reporting rate (ρ), the overdispersion parameter (φ), and the timing
of the first importations (ι1) were model parameters represented in each model,
although we are showing the posterior distribution only for a subset of the models.
Violin plots are colored by time at which the forecasts were made, and correspond
to time points in Fig. S3 and Fig. S23, S10

.
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Figure S7: Rd multiplier versus the overdispersion parameter in the nega-
tive binomial distribution. The overdispersion parameter in the negative bino-
mial distribution represents the variability in the reporting probability. Pearson’s
correlation coefficient for the two parameters within a parameter set is listed in the
top right corner. This example is from the model using CDR-derived mobility data,
static R, and one importation event, corresponding to Fig. S1.
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Figure S8: Rd multiplier versus the reporting probability. Pearson’s corre-
lation coefficient for the two parameters within a parameter set is listed in the top
right corner. This example is from the model using CDR-derived mobility data,
static R, and one importation event, corresponding to Fig. S1.
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Figure S9: The negative binomial overdispersion parameter versus the
reporting probability for one example model at each assimilation period.
The overdispersion parameter in the negative binomial distribution represents the
variability in the reporting probability. Pearson’s correlation coefficient for the two
parameters within a parameter set is listed in the top right corner. This example
is from the model using CDR-derived mobility data, static R, and one importation
event, corresponding to Fig. S1.
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Figure S10: Correlation of model parameters across within a parameter
set through time for the spatially coupled models with a static R at five
different points in time. Parameters include, the R multiplier (k), reporting rate
(ρ), the overdispersion parameter (φ), and the timing of the first importations (ι1)
as they were represented in each model, although we are showing the correlations
only for a subset of the models. Time points shown here correspond to those time
points in Fig. S3 and Fig. S23, S6.
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Figure S11: Cumulative observed versus forecasted incidence at 1-, 2-, 3-,
4- week ahead intervals for each individual model aggregated nationally
at each point throughout the epidemic. a-p. Each plot represents a different
model, with model feature labels on rows and columns. Point color indicates time
at which forecasts were generated. Points are the median values and lines are the
50% credible interval. 1:1 line is in grey.
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Figure S12: Observed incidence with initial median forecast for each of
the 16 models with no weeks of data yet assimilated forecasting models.
Navy bars indicate Zika incidence data at weekly time interval [14]. Vertical line
indicates the point at which the forecast was made, with data to the left of the line
assimilated into the model. Forecasts to the right of the vertical line change as more
data is assimilated into the model, while model fits to the left of the vertical line
do not change. With the forecasts generally being at zero cases in the majority of
the departments, we see that models were unlikely to forecast an epidemic to occur
when no data was yet to be assimilated.
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Figure S13: Observed incidence with median forecast for each of the 16
models with 12 weeks of data assimilated into forecasting models. Navy
bars indicate Zika incidence data at weekly time interval [14]. Vertical line indicates
the point at which the forecast was made, with data to the left of the line assimilated
into the model. Forecasts to the right of the vertical line change as more data is
assimilated into the model, while model fits to the left of the vertical line do not
change.
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Figure S14: Observed incidence with median forecast for each of the 16
models with 24 weeks of data assimilated into forecasting models. Navy
bars indicate Zika incidence data at weekly time interval [14]. Vertical line indicates
the point at which the forecast was made, with data to the left of the line assimilated
into the model. Forecasts to the right of the vertical line change as more data is
assimilated into the model, while model fits to the left of the vertical line do not
change.
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Figure S15: Observed incidence with median forecast for each of the 16
models with 36 weeks of data assimilated into forecasting models. Navy
bars indicate Zika incidence data at weekly time interval [14]. Vertical line indicates
the point at which the forecast was made, with data to the left of the line assimilated
into the model. Forecasts to the right of the vertical line change as more data is
assimilated into the model, while model fits to the left of the vertical line do not
change.
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Figure S16: Observed incidence with median forecast for each of the 16
models with 48 weeks of data assimilated into forecasting models. Navy
bars indicate Zika incidence data at weekly time interval [14]. Vertical line indicates
the point at which the forecast was made, with data to the left of the line assimilated
into the model. Forecasts to the right of the vertical line change as more data is
assimilated into the model, while model fits to the left of the vertical line do not
change.
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Figure S17: Ensemble weights of each model at each assimilation period.
Ensemble weights were calculated using the expectation-maximization algorithm on
short-term forecast performances, where forecast performance was assessed against
4-wk ahead incidence in a given department and nationally.
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Figure S19: Forecasts for a spatially coupled (green) and uncoupled (yel-
low) models with one introduction and static R for three departments.
Navy bars denote incidence data. Large bands denote the 75% CrI, darker band
denotes the 50% CrI, and thick line denotes the median forecast. Each row is from
the same time point. Time points were chosen to be equally spaced out through the
epidemic, with the first set of forecasts from the week of the first case, the second
set of forecasts generated at 24 weeks after the first case was reported in Colombia,
and the third set of forecasts generated at 48 weeks after the first case was reported
in Colombia.
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Figure S20: Fitted R and forecasts in two departments for models with two
ZIKV introductions, cell phone mobility informed human movement, and
a dynamic or static R. Models with dynamic R are depicted in red and models
with a static R are depicted in blue. In plots of R, each line is a draw from the
posterior, with a bold median line; horizontal black line depicts R = 1. The first
set of forecasts in the middle column are from the peak week in both Risaralda and
Córdoba, 24-28 weeks after the first case was reported in Colombia, and the second
set are from 44-48 weeks after the first case was reported in Colombia. Vertical grey
bars depict the forecasts and data considered when assessing short-term forecast
performance.
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Figure S21: Incidence by department with temperature trends. Blue bars
denote weekly Zika incidence and red line denotes temperature trends.
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Figure S22: Incidence by department with mosquito occurrence probability
trends. Blue bars denote weekly Zika incidence and green line denotes mosquito
occurrence trends.
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Figure S23: Observed versus forecasted incidence at 1-, 2-, 3-, and 4-
week ahead intervals for EM-weighted and equally weighted ensemble
models for Antioquia, Norte de Santander, Cauca, and Amazonas. Plotted
departments reflect differences in population, epidemic size, and geographic regions
of Colombia and are denoted by point type. Point shape denotes department. Point
color indicates time at which the forecast was made (visually denoted in inset plot
and color bar). Point is the median value and lines are the 50% credible interval.
1:1 line is in grey. The root mean square errors for the EM-weighted and equally
weighted forecasts shown here are 0.705 and 0.640, respectively.
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Figure S24: Magnitude of the 50% uncertainty bounds (as shown in Fig.
S23) for 1-, 2-, 3-, and 4- week ahead forecasts in five different data
assimilation periods for the EM-weighted and equally weighted ensemble
models for Amazonas, Antioquia, Cauca, and Norte de Santander. The
four points per data assimilation period represent the 1-, 2-, 3-, and 4- week ahead
forecasts for each of the four departments denoted by color. Smoothed loess lines
are shown to demonstrate how the magnitude of uncertainty changes through time
for each department.
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Figure S25: Observed incidence with initial expectation maximization
algorithm-weighted ensemble forecast with no weeks of data yet assimi-
lated into forecasting models. Navy bars indicate Zika incidence data at weekly
time interval [14]. Light green band denotes 75% credible interval, darker green
band denotes 50% credible interval, and the dark green line denotes median ensem-
ble forecast. Vertical line indicates the point at which the forecast was made, with
data to the left of the line assimilated into the model. Forecasts to the right of the
vertical line change as more data is assimilated into the model, while model fits to
the left of the vertical line do not change.
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Figure S26: Observed incidence with expectation maximization algorithm-
weighted ensemble forecast with 12 weeks of data assimilated into fore-
casting models. Navy bars indicate Zika incidence data at weekly time interval
[14]. Light green band denotes 75% credible interval, darker green band denotes
50% credible interval, and the dark green line denotes median ensemble forecast.
Vertical line indicates the point at which the forecast was made, with data to the
left of the line assimilated into the model. Forecasts to the right of the vertical line
change as more data is assimilated into the model, while model fits to the left of the
vertical line do not change.
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Figure S27: Observed incidence with expectation maximization algorithm-
weighted ensemble forecast with 24 weeks of data assimilated into fore-
casting models. Navy bars indicate Zika incidence data at weekly time interval
[14]. Light green band denotes 75% credible interval, darker green band denotes
50% credible interval, and the dark green line denotes median ensemble forecast.
Vertical line indicates the point at which the forecast was made, with data to the
left of the line assimilated into the model. Forecasts to the right of the vertical line
change as more data is assimilated into the model, while model fits to the left of the
vertical line do not change.
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Figure S28: Observed incidence with expectation maximization algorithm-
weighted ensemble forecast with 36 weeks of data assimilated into fore-
casting models. Navy bars indicate Zika incidence data at weekly time interval
[14]. Light green band denotes 75% credible interval, darker green band denotes
50% credible interval, and the dark green line denotes median ensemble forecast.
Vertical line indicates the point at which the forecast was made, with data to the
left of the line assimilated into the model. Forecasts to the right of the vertical line
change as more data is assimilated into the model, while model fits to the left of the
vertical line do not change.
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Figure S29: Observed incidence with expectation maximization algorithm-
weighted ensemble forecast with 48 weeks of data assimilated into fore-
casting models. Navy bars indicate Zika incidence data at weekly time interval
[14]. Light green band denotes 75% credible interval, darker green band denotes
50% credible interval, and the dark green line denotes median ensemble forecast.
Vertical line indicates the point at which the forecast was made, with data to the
left of the line assimilated into the model. Forecasts to the right of the vertical line
change as more data is assimilated into the model, while model fits to the left of the
vertical line do not change.
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Figure S30: Observed incidence with initial equally weighted ensemble
forecast with no weeks of data yet assimilated into forecasting models.
Navy bars indicate Zika incidence data at weekly time interval [14]. Light green band
denotes 75% credible interval, darker green band denotes 50% credible interval, and
the dark green line denotes median ensemble forecast. Vertical line indicates the
point at which the forecast was made, with data to the left of the line assimilated
into the model. Forecasts to the right of the vertical line change as more data is
assimilated into the model, while model fits to the left of the vertical line do not
change.

34

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2021. ; https://doi.org/10.1101/2021.02.25.21252363doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.25.21252363
http://creativecommons.org/licenses/by/4.0/


10
100

1000
10000

La Guajira

10
100

1000
10000

Magdalena

10
100

1000
10000

Atlántico

10
100

1000
10000

Cesar

10
100

1000
10000

Bolívar

10
100

1000
10000

Sucre

10
100

1000
10000

Córdoba

0 10 30 50

10
100

1000
10000

Norte de Santander

Antioquia

Chocó

Santander

Arauca

Boyacá

Vichada

Casanare

0 10 30 50

Cudinamarca

Caldas

Risaralda

Tolima

Valle del Cauca

Meta

Quindío

Guainía

0 10 30 50

Huila

Cauca

Caquetá

Guaviare

Nariño

Vaupés

Putumayo

0 10 30 50

Amazonas

Weeks since 1st reported case in Colombia

N
ew

 w
ee

kl
y 

ca
se

s 
(lo

g1
0)

12 weeks of data assimilated into model

Figure S31: Observed incidence with equally weighted ensemble forecast
with 12 weeks of data assimilated into forecasting models. Navy bars indi-
cate Zika incidence data at weekly time interval [14]. Light green band denotes 75%
credible interval, darker green band denotes 50% credible interval, and the dark
green line denotes median ensemble forecast. Vertical line indicates the point at
which the forecast was made, with data to the left of the line assimilated into the
model. Forecasts to the right of the vertical line change as more data is assimilated
into the model, while model fits to the left of the vertical line do not change.
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Figure S32: Observed incidence with equally weighted ensemble forecast
with 24 weeks of data assimilated into forecasting models. Navy bars indi-
cate Zika incidence data at weekly time interval [14]. Light green band denotes 75%
credible interval, darker green band denotes 50% credible interval, and the dark
green line denotes median ensemble forecast. Vertical line indicates the point at
which the forecast was made, with data to the left of the line assimilated into the
model. Forecasts to the right of the vertical line change as more data is assimilated
into the model, while model fits to the left of the vertical line do not change.
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Figure S33: Observed incidence with equally weighted ensemble forecast
with 36 weeks of data assimilated into forecasting models. Navy bars indi-
cate Zika incidence data at weekly time interval [14]. Light green band denotes 75%
credible interval, darker green band denotes 50% credible interval, and the dark
green line denotes median ensemble forecast. Vertical line indicates the point at
which the forecast was made, with data to the left of the line assimilated into the
model. Forecasts to the right of the vertical line change as more data is assimilated
into the model, while model fits to the left of the vertical line do not change.
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Figure S34: Observed incidence with equally weighted ensemble forecast
with 48 weeks of data assimilated into forecasting models. Navy bars indi-
cate Zika incidence data at weekly time interval [14]. Light green band denotes 75%
credible interval, darker green band denotes 50% credible interval, and the dark
green line denotes median ensemble forecast. Vertical line indicates the point at
which the forecast was made, with data to the left of the line assimilated into the
model. Forecasts to the right of the vertical line change as more data is assimilated
into the model, while model fits to the left of the vertical line do not change.
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