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Abstract: 
Hypoxemia is a significant driver of mortality and poor clinical outcomes in conditions such as brain injury 
and cardiac arrest in critically ill patients, including COVID-19 patients. Given the host of negative clinical 
outcomes attributed to hypoxemia, identifying patients likely to experience hypoxemia would offer 
valuable opportunities for early and thus more effective intervention. We present SWIFT (SpO2 
Waveform ICU Forecasting Technique), a deep learning model that predicts blood oxygen saturation 
(SpO2) waveforms 5 and 30 minutes in the future using only prior SpO2 values as inputs. When tested on 
novel data, SWIFT predicts more than 80% and 60% of hypoxemic events in critically ill and COVID-19 
patients, respectively. SWIFT also predicts SpO2 waveforms with average MSE below .0007. SWIFT 
provides information on both occurrence and magnitude of potential hypoxemic events 30 minutes in 
advance, allowing it to be used to inform clinical interventions, patient triaging, and optimal resource 
allocation. SWIFT may be used in clinical decision support systems to inform the management of 
critically ill patients during the COVID-19 pandemic and beyond. 
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Introduction: 

Hypoxemia, or a decrease in blood oxygen saturation, is a common symptom in critically ill 
patients, with a multinational, multicenter study finding that hypoxemia is a significant risk factor for 
mortality, with prevalence greater than 50% in ICU patients (SRLF Trial Group, 2018). Severe hypoxemia 
can cause permanent brain injury, end-organ shock and cardiac arrest, and even mild or moderate 
hypoxemia contributes to increased mortality risk by decreasing resistance to infection and wound 
healing (Strachan & Noble, 2001). 

Severe cases of COVID-19 are also characterized by hypoxemia and dyspnea (difficulty 
breathing) which can rapidly progress to respiratory failure (Berlin et al., 2020). These patients often 
require advanced life support measures including invasive mechanical ventilation, hospitalization in ICUs 
and even extra-corporeal membrane oxygenation (ECMO). During the COVID-19 pandemic, ventilators 
and ICU beds have become scarce resources with insufficient capacity in the hardest hit regions (Dar et 
al., 2020). As the COVID-19 pandemic continues to exact a heavy mortality toll with at least half a million 
deaths directly attributed to the disease in the United States alone and herd immunity by vaccination 
remains months away, it is important to find ways to manage these scarce resources and identify 
patients unable to maintain oxygen saturation without intervention. Clinically, an important decision point 
in the management of COVID-19 patients is determining whether the patient requires endotracheal 
intubation, a form of invasive ventilation (Berlin et al., 2020). Triage systems using monitoring of blood 
oxygenation to inform life support measures are tremendously useful for directing resource allocation and 
have been demonstrated to reduce mortality (Starr et al., 2020). 

Given the host of negative clinical outcomes attributed to hypoxemia, identifying patients likely to 
experience acute hypoxemia in the near future would offer valuable opportunities for rapid intervention. 
Life support interventions ranging from supplemental oxygen to invasive ventilation prior to the onset of 
hypoxemia can mitigate or prevent the morbidity and mortality associated with hypoxemia (Strachan & 
Noble, 2001). Moreover, identifying patients not at imminent risk of hypoxemia represents an opportunity 
to conserve ventilators and ICU beds in the context of resource shortages arising from a global 
pandemic.  

To this end, we present SWIFT (SpO2 Waveform ICU Forecasting Technique), a neural network 
that predicts the blood oxygen saturation (SpO2) waveform for critically ill patients, 5 and 30 minutes in 
the future. SWIFT is unique for several reasons. First, SWIFT predicts both the occurrence and 
magnitude of hypoxemic events, and its prediction time horizon provides enough time for potential 
clinical interventions prior to acute desaturation events. Prior studies have made predictions on short 
time horizons (20 seconds to 5 minutes), leaving little room for potential clinical interventions (Elmoaqet 
et al., 2014; Erion et al., 2017; Ghazal et al., 2019; Lundberg et al., 2018). Moreover, most other 
attempts at hypoxemia prediction predict only a class value (hypoxemia vs. no hypoxemia, or mild 
hypoxemia vs. severe hypoxemia vs. no hypoxemia) rather than an actual SpO2 value (Elmoaqet et al., 
2014; Erion et al., 2017; Ghazal et al., 2019). Clinically, there is a large difference between a transient 
dip in SpO2 to 91% versus an acute desaturation to 75% SpO2, though both would be considered 
hypoxemia. SWIFT recognizes this difference, hence providing important clinical information.  

Second, SWIFT employs a Long Short-Term Memory (LSTM) architecture with only prior SpO2 
values as inputs, hence allowing SWIFT to make predictions with limited, routinely acquired and readily 
available data. LSTM models are a type of recurrent neural network well-suited to modeling of time-
series data that have shown promise in clinical applications (Che et al., 2018; Lin et al., 2019; Lipton et 
al., 2017). One prior study did use LSTM architectures with prior SpO2 values as inputs, but this model 
was limited to classification of timepoints as either hypoxemic or not with a 5 minute time horizon, and 
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the total ROC-AUC was less than 0.75 (Erion et al., 2017). In contrast, other SpO2 prediction models 
have used complex, multifactorial data requiring extensive monitoring of patient vitals, demographic data, 
or ventilator settings (Ghazal et al., 2019; Lundberg et al., 2018). This limits their utility to only those 
patients for whom all of this data is readily available.  

Third, SWIFT predicts more than 80% of all hypoxemic events (sensitivity) with positive predictive 
value (PPV) above 94% in test-sets of critically ill patients, and more than 60% of all hypoxemic events 
with PPV above 98% in a test-set of COVID-19 patients, across all timepoints for both the 5 minute and 
30 minute time horizons. SWIFT also provides waveform predictions with an average mean squared 
error less than .0007 across all patient-stays. These results represent a marked improvement over 
recently published prediction algorithms.  Auto-regressive models with PPV >90% have been limited to 
prediction time horizons less than 60 seconds (Elmoaqet et al., 2014), and ensemble-based machine 
learning models to classify hypoxemic events 5 minutes in the future were estimated to capture only 30% 
of hypoxemic events (Lundberg et al., 2018). To our knowledge, no other study has demonstrated 
waveform prediction.  

Finally, SWIFT is highly generalizable. Though trained on only patients without COVID-19, it 
performs comparably on patients who received mechanical ventilation during their ICU stay and those 
who did not, and patients with and without a COVID-19 diagnosis. Other studies have been limited to 
specific groups such as pediatric patients on mechanical ventilation (Ghazal et al., 2019), orthopedic 
postoperative adult patients (Elmoaqet et al., 2014), or patients undergoing surgery in the operating room 
(Erion et al., 2017; Lundberg et al., 2018). 
 
Results: 
SWIFT is effective at predicting hypoxemia events (both occurrence and magnitude) across a variety of 
patient populations (Ventilated patients, non-ventilated patients, patients with COVID-19 diagnosis, 
critically ill patients without COVID-19 diagnosis). We show this through performance evaluation of 
SWIFT for prediction of hypoxemia at individual timepoints 5 and 30 minutes into the future, and 
evaluation of SWIFT for direct SpO2 waveform forecasting. 
 
SWIFT Overview. SWIFT utilizes an LSTM (Long Short-Term Memory) neural network architecture 
trained on the SpO2 waveforms from critically ill patients in the eICU database (Pollard et al., 2018) 
(Figure 1). The eICU database contains patients admitted to intensive care units across 208 United 
States hospitals in 2014 and 2015. We selected all unique ICU stays that include invasive ventilation at 
any point during the stay (1326 patient-stays), and then randomly sampled the same number of patient-
stays without any use of invasive ventilation. We split the selected patient-stays into training and test 
sets: approximately 75%-25% split: 2000 training set patients (1000 each from the ventilator and non-
ventilator groups) and 326 test set patients each in the ventilator group and non-ventilator group. Next, 
we excluded patient-stays with less than 5 hours of recorded vitals or entirely missing vitals. This left a 
total of 1837 training patient-stays (comprising both the ventilator and non-ventilator groups), and 310 
and 288 patient-stays in the eICU ventilator and non-ventilator test sets, respectively (Figure 1a). A 
similar data processing procedure was used to obtain a test-set of patients from the Johns Hopkins JH-
CROWN database, where all patients had COVID-19 (Figure 1b). We trained two different models, one 
which predicts hypoxemia 5 minutes in the future (SWIFT-5) and one which predicts hypoxemia 30 
minutes in the future (SWIFT-30) (Figure 1c). Both models were trained using the SpO2 waveform 
sampled at 5 minute intervals with a causal moving average filter with a window of 5 time points (4 
previous time points, plus current time point). For SWIFT-30, the data was down-sampled to an interval 
of 30 minutes before training. Both models take the two previous timepoints of data (10 minutes prior 
data for SWIFT-5, 60 minutes prior data for SWIFT-30) as inputs and predict SpO2 value for the next 
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time point. We used these predictions to forecast the exact SpO2 waveform, and to classify individual 
timepoints as hypoxic events based on a threshold of 92% SpO2.  

 
Figure 1: Schematic illustrating data processing for (a) eICU patients and (b) JH-CROWN patients, and 

(c) model training and testing pipelines 

 
We considered 92% SpO2 to be the threshold for hypoxemia, as SpO2 below 92% has been 

shown to be associated with adverse events in a broad population of outpatient adults with pneumonia 
(Majumdar et al., 2011), and is the low end of the National Institutes of Health’s recommended SpO2 
target range for COVID-19 patients (Shenoy et al., 2020). Moreover, 92% SpO2 is between the World 
Health Organization’s hypoxemia treatment threshold (94%) and clinical emergency threshold (90%) 
(World Health Organization, 2011), and has been used as the hypoxemia cut-off in other prediction 
studies (Ghazal et al., 2019; Lundberg et al., 2018). 

We demonstrate the SpO2 waveform and hypoxemia prediction capabilities of SWIFT on three 
different test sets of patient-stays: patient-stays with and without the use of invasive ventilation at any 
point in the stay from the eICU database, and a test set of critically ill COVID-19 patients from the JH-
CROWN database. While the eICU database consists of critically ill patients with a variety of diagnoses, 
the JH-CROWN database consists of patients specifically diagnosed with and admitted to hospital for 
COVID-19 at a single academic center and its affiliated hospitals in 2020.  

We hypothesized that patients requiring invasive ventilation at some point in their ICU stay would 
have different profiles with respect to hypoxemia than those never requiring invasive ventilation. A chi-
squared test of independence between use of mechanical ventilation and number of hypoxemic time-
points in the dataset was statistically significant for all groups (eICU 30 minute time-series, p=1.4e-303; 
eICU 5 minute time-series, p=0.0), hence motivating our treatment of eICU patient-stays utilizing invasive 
ventilation at any point as a distinct test set from those patient-stays never utilizing invasive ventilation. 
We did not split the JH-CROWN test-set into ventilator and non-ventilator test-sets since all patients had 
the same diagnosis and the overwhelming majority were on ventilators, in contrast to the patients in the 
eICU database. Importantly, the different patient populations studied vary dramatically with respect to 
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frequency of hypoxic events, duration of available time-series data, and reason for hospital admission 
(Table 1), yet our models are effective at recapitulating the patient’s SpO2 waveform over time and 
predicting hypoxemic events across these diverse patient populations.  
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Table 1: Summary of patient characteristics used in model testing.  

(Note: Demographic information on age, gender, and race only available for 294 of 298 patients in the 

JH-CROWN dataset) 

Characteristics eICU 

Ventilator – 

30 minutes 

eICU non-

Ventilator – 

30 minutes 

JH 

CROWN– 

30 minutes 

eICU 

Ventilator – 5 

minutes 

eICU non-

Ventilator – 5 

minutes 

JH 

CROWN– 5 

minutes 

# Patient Stays 310 288 298 310 288 298 

Median Hypoxic 

events/patient stay 

9 1 79.5 55 4 481 

Number patient-stays 

with No Hypoxic 

events 

64 138 10 53 123 10 

Number patient-stays 

with all Hypoxic events 

4 1 1 3 0 1 

Median number of 

timepoints per patient-

stay 

133 79.5 1083 798 477 6497 

Median Age at patient-

stay 

62.0 (on 

admission) 

65.0 (on 

admission) 

60.98 (on 

Dec 15, 

2020 

assuming  

365 

days/year) 

62.0 (on 

admission) 

65.0 (on 

admission) 

60.98 (on 

Dec 15, 

2020 

assuming  

365 

days/year) 

% patient-stays with 

Female patients 

42.9% 49.3% 41.2% 42.9% 49.3% 41.2% 

% patient-stays with 

White/Caucasian 

patients 

81.3% 76.7% 26.2% 81.3% 76.7% 26.2% 

Admissions Diagnosis Top 3: 

(1) CABG 

alone, 

coronary 

artery 

bypass 

grafting 

(42 

stays) 

(2) Cardiac 

arrest 

(24 

stays) 

(3) Emphyse

ma/bron

chitis (15 

stays) 

Top 3: 

(1) Not 

recorded 

(15 

stays) 

(2) Sepsis, 

pulmona

ry (14 

stays) 

(3) Rhythm 

disturba

nce (13 

stays) 

All patients 

with 

COVID-19 

Top 3: 

(1) CABG 

alone, 

coronary 

artery 

bypass 

grafting 

(42 

stays) 

(2) Cardiac 

arrest 

(24 

stays) 

(3) Emphyse

ma/bron

chitis (15 

stays) 

Top 3: 

(1) Not 

recorded 

(15 stays) 

(2) Sepsis, 

pulmonary 

(14 stays) 

(3) Rhythm 

disturbance 

(13 stays) 

All 

patients 

with 

COVID-19 

 
 



Prediction of Hypoxemic Events                          8 

 

  



Prediction of Hypoxemic Events                          9 

 

SWIFT effectively predicts hypoxic events 5 and 30 minutes in the future. We used SWIFT on the 
SpO2 time-series of each patient-stay in the three test sets to predict, based on the prior two time points,  
whether each time-point was expected to be a hypoxemic event or not. Averaging across the value for 
each patient-stay, SWIFT-5 and SWIFT-30 both achieved mean accuracy greater than 96% for both the 
eICU and JH-CROWN patient-stays (Figure 2a), mean sensitivity greater than 73% for eICU patient-
stays and greater than 59% for JH-CROWN patient-stays (Figure 2b), mean specificity greater than 99% 
for both the eICU and JH-CROWN patient-stays (Figure 2c) and mean PPV greater than 84% for eICU-
patient stays and greater than 97% for JH-CROWN patient-stays (Figure 2d). The quality of predictions 
made for COVID patients is comparable to that of the predictions made on patients without COVID, 
which is notable given that SWIFT was trained exclusively on non-COVID patients. Interestingly, SWIFT-
30 demonstrates performance comparable to SWIFT-5, despite the much larger prediction time horizon. 
While there are a few patient-stays for whom sensitivity and PPV are low (<50%), by and large these 
models predict hypoxemic events effectively. In particular, the high PPV achieved illustrates the utility of 
these models for identifying true hypoxemic events.  

 
Figure 2: (a) Accuracy, (b) Sensitivity, (c) Specificity, and (d) PPV for SWIFT-5 and SWIFT-30 
tested on eICU patients with and without ventilators, and JH-CROWN patients with COVID-19. In 
each box-and-whisker plot, the individual datapoints come from evaluation of the model on each of the 
test-set patients. The box extends from Q1 to Q3. The orange line represents the median value and the 
green triangle represents the mean value. The upper whisker extends to the highest value below 
Q3+1.5*(Q3-Q1), and the lower whisker extends to the lowest value below Q1-1.5*(Q3-Q1). Points 
beyond the whiskers are considered outliers. 
 

(a)
(b)

(c) (d)
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Moreover, when all timepoints are aggregated across patient-stays, SWIFT classifies hypoxic 
events with remarkable success (Figure 3). Across all time-points in all test-sets for both SWIFT-5 and 
SWIFT-30 the False Positive rate is less than 0.65% and the False Negative Rate is less than 4%. While 
the datasets are imbalanced with far less hypoxic timepoints than non-hypoxic events, the high PPV and 
sensitivity demonstrate that SWIFT accurately classifies hypoxic timepoints. Both SWIFT-5 and SWIFT-
30 represent a substantial improvement over the current state-of-the art method, Prescience, which uses 
machine learning to predict hypoxic events in a 5 minute window, with a binary classifier (Lundberg et al., 
2018). Prescience predicts 44% of hypoxic events (recall or sensitivity) with a precision (or PPV) of 30%. 
For a PPV of 70%, Prescience’s sensitivity falls to 9%. In contrast, SWIFT uses a waveform forecasting 
approach to achieve PPV above 94% and sensitivity above 80% across all timepoints in the eICU test 
sets, and PPV above 98% and sensitivity above 60% across all timepoints in the JH-CROWN test set.  

 
Figure 3: Confusion matrices aggregated across all timepoints for all patients for (a) eICU Ventilator – 

30 minute, (b) eICU No ventilator – 30 minute, (c) JH-CROWN – 30 minute, (d) eICU Ventilator – 5 

minute, (e) eICU No ventilator – 5 minute, (f) JH-CROWN– 5 minute 

 
SWIFT effectively predicts the SpO2 waveform for individual patients: We used SWIFT to predict 
the SpO2 time-series of each patient-stay in the three test sets in order to determine the magnitude of 
potential hypoxic events and the overall time-evolution of transient hypoxic events. On average across all 
patient-stays, SWIFT-5 and SWIFT-30 both achieved mean-squared-error (MSE) from the true patient 
time-series of less than .0007 (Figure 4a), and a Pearson correlation coefficient with the true patient 
time-series of greater than .95 (Figure 4b). This indicates that the waveform predictions used to predict 
hypoxic events are extremely close to the true waveforms. Figure 5 shows examples of SWIFT-30’s best 
and worst by waveform predictions by MSE (Figure S1 contains the same information for SWIFT-5), 
qualitatively demonstrating the accuracy with which SWIFT recapitulates SpO2 waveform. 

(d) (e) (f)

(a) (b) (c)

Sensitivity = 67.22% 

PPV = 98.14%

Sensitivity = 63.95% 

PPV = 98.68%

Sensitivity = 85.79%

PPV = 95.04%

Sensitivity = 81.20%

PPV = 96.97%

Sensitivity = 85.58%

PPV = 94.81%

Sensitivity = 81.76%

PPV = 96.41%
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This waveform prediction allows for the forecasting of the magnitude of hypoxic events rather 
than their occurrence alone. This may have implications for patient management, especially in the 
context of limited ICU beds and shortages of ventilation machinery during the COVID-19 pandemic (Dar 
et al., 2020).  
 
 

 
Figure 4: (a) Mean-Squared Error and (b) Pearson Correlation Coefficient for waveform predictions for 

eICU and JH-CROWN patients. In each box-and-whisker plot, the box extends from Q1 to Q3. The 
orange line represents the median value and the green triangle represents the mean value. The upper 
whisker extends to the highest value below Q3+1.5*(Q3-Q1), and the lower whisker extends to the 
lowest value below Q1-1.5*(Q3-Q1). Points beyond the whiskers are considered outliers. 

(a)

(b)
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Figure 5: Examples of the best and worst fits by MSE for SWIFT-30 model tested on (a) eICU Ventilated 

patients – best fit, (b) eICU Ventilated patients – worst fit, (c) eICU Non-Ventilated patients – best fit, 

(d) eICU Non-Ventilated patients – worst fit, (e) JH-CROWN patients – best fit, (f) JH-CROWN patients 

– worst fit 

 
Discussion: 

SWIFT is a Long Short-Term Memory neural network model capable of predicting the magnitude 
and occurrence of hypoxemic events 5 and 30 minutes in the future, using only prior SpO2 values. We 
tested SWIFT on three different test sets of ICU patient-stays, including patients both requiring and not 
requiring mechanical ventilation during their ICU stay, and patients with and without COVID-19. Across 
all time points in these test-sets, SWIFT predicts more than 80% of all hypoxemic events (sensitivity) with 
PPV above 94% in test-sets of critically ill patients, and more than 60% of all hypoxemic events with PPV 
above 98% in test-sets of COVID-19 patients, for both the 5 minute and 30 minute time horizons. 
Additionally, SWIFT-5 and SWIFT-30 accurately predicted SpO2 waveforms for each patient-stay with an 
average MSE below .0007 and an average Pearson’s correlation coefficient greater than .95.   

SWIFT may be especially useful in the context of the COVID-19 pandemic or future similar 
pandemics with high numbers of patients experiencing hypoxemia and limited supplies of ventilators and 
ICU beds. Strategies to reduce the demand for mechanical ventilation have been identified as a priority 
for resource management during the pandemic (Dar et al., 2020). To this end, SWIFT can help identify 
patients likely to experience imminent hypoxemic events versus patients likely to remain stable and offer 
insights into the magnitude of the potential hypoxemic event. This can enable the increased 

(e) (f)

(a) (b)

(d)(c)
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management of patients off of ventilators, and if needed, offer another data point to be used in the 
triaging of patients for therapy. 

Beyond the COVID-19 pandemic, SWIFT could be easily deployed in real time, in low-resource 
settings without access to complex clinical informatics or large amounts of memory storage. Since 
SWIFT’s only model inputs are two previous values of SpO2, the barriers to use are minimal. SpO2 can 
be assessed using simple, non-invasive pulse oximeters. Pulse oximetry is nearly ubiquitous in hospitals 
and critical care units in the developed world, and substantial effort has been dedicated to increasing the 
use of pulse oximetry in low resource settings (Herbert & Wilson, 2012). Given the existing need for 
hypoxemia monitoring in low and middle income countries and challenges in access to oxygen therapy, 
SWIFT’s predictive capabilities can play a crucial role in identifying patients likely to experience 
hypoxemic events and in informing resource allocation decisions (Lam et al., 2020). 

Moreover, SWIFT provides benefits by waveform prediction of SpO2 rather than only binary 
classification of events as provided by other existing models (Erion et al., 2017; Ghazal et al., 2019; 
Lundberg et al., 2018). Studies have demonstrated that pulse oximetry has high levels of false alarms, 
often for clinically insignificant reasons such as patient movement or skin condition, which can contribute 
to alarm fatigue (Nguyen et al., 2018; Winters et al., 2018). Alarm fatigue may lead to slower or absent 
responses to truly dangerous events (Sendelbach & Funk, 2013). Since SWIFT provides a prediction of 
SpO2 magnitude as much as 30 minutes in the future, minor anticipated hypoxemic events can be 
distinguished from more severe ones, with sufficient time horizon to allow for decision making on this 
basis. While SWIFT cannot correct for errors in SpO2 readings caused by the pulse oximetry device, it 
can anticipate transient dips hence preventing unnecessary response to transient SpO2 dips that may 
occur for clinically insignificant reasons. This may have a beneficial effect on controlling the phenomena 
of alarm fatigue. 

Importantly, SWIFT generalizes well across patient groups. We did not observe substantial 
differences in model performance between SWIFT-5 and SWIFT-30, nor between predictions made on 
ventilated vs. non-ventilated patients and COVID-19 vs. generally critically ill patients. The one exception 
was sensitivity, when aggregated across all timepoints – in the eICU test sets, more than 80% of 
hypoxemic events were detected as compared to more than 60% in the JH-CROWN test sets. This is 
unsurprising given that SWIFT was trained exclusively on non-COVID-19 patients, and the JH-CROWN 
database consists only of COVID-19 patients. Notably, the lung damage from SARS CoV-2 infection 
appears more severe than that from Acute Respiratory Distress Syndrome (ARDS) secondary to most 
other etiologies, and we are still in the early stages of understanding COVID-19 disease mechanistically. 
This difference in degree of lung damage may contribute to the performance differences.   

Moreover, these predictions appear to be generalizable across hospitals and dates (the eICU 
database comprises patient-stays from 208 ICUs in 2014 and 2015, whereas the JH-CROWN database 
consists of patients from one medical center in 2020). Our test-sets contained male and female patients 
in roughly equal proportions, a range of admissions diagnoses, and substantial numbers of patients with 
non-white ethnicities (Table 1). 

However, one limitation of SWIFT is that it was trained and tested primarily on older, critically ill 
patients. The median age of patients in each test-set was between 60 and 65 years old, and all data 
came from critically ill patients. Hypoxemia is a consideration in much younger patients as well, and 
future work will be needed to evaluate SWIFT-5 and SWIFT-30 on younger patients, or to train new 
models with additional data. A second limitation is that we did not train race-specific models. Recent 
work has shown that occult hypoxemia (low arterial oxygen saturation despite a pulse oximetry 
measurement between 92% and 96%) occurs far more frequently in Black patients than White patients 
(Sjoding et al., 2020). For this reason, there is racial bias in interpretation of SpO2 values, which may not 
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be well captured by our models (though our test sets are racially diverse; the JH-CROWN test sets have 
~75% non-White patients). Regardless, SWIFT currently demonstrates high potential utility for simple, 
real-time prediction of hypoxemic events (occurrence and magnitude) 5 and 30 minutes in the future 
without the use of complex clinical informatics. As part of a clinical decision support system, SWIFT has 
the potential to inform the management of critically ill patients at risk for hypoxemia, including COVID-19 
patients. 

 
Methods: 
Data Selection: First, we selected all patient ICU stays with mechanical ventilation at some point during 
the ICU stay from the eICU database (n=1326) (Pollard et al., 2018). The eICU database consists of 
critically ill patients treated in 208 intensive care units across the United States in 2014 and 2015. We 
defined ICU stays with mechanical ventilation as distinct patientUnitStayID identifiers for which a 
respiratory chart entry included phrases similar to ET TUBE, ETT, Endotracheal, Trach, or 
Tracheostomy. Then, we randomly selected 1326 patientUnitStayID identifiers from those without 
indication of mechanical ventilation. We partitioned the first 1000 patientUnitStayID identifiers from the 
mechanical ventilation and no mechanical ventilation groups into a training set (n=2000), and the last 
326 from each group into two eICU test sets (eICU mechanical ventilation n=326, eICU no mechanical 
ventilation n=326). Then, we queried the vital signs time-series for each of these ICU stays, and 
excluded any ICU stays without corresponding SpO2 data recorded. This left 1933 stays in the training 
set, 326 stays in the mechanical ventilation test set, and 311 stays in the no mechanical ventilation test 
set. Since it is possible for a patient in the eICU database to have multiple ICU stays, we took the 
additional step of removing all ICU stays from the test sets for which that patient had a different ICU stay 
in the training set. This ensured that there was no overlap in patients between the train and test sets 
despite being unique ICU stays. This left 1933 stays (corresponding to 1859 patients) in the training set, 
317 stays (corresponding to 285 patients) in the mechanical ventilation test set, and 311 stays 
(corresponding to 306 patients) in the no mechanical ventilation test set. 

Second, all patient stays from the JH-CROWN database up to December 15, 2020 were selected 
(n=301). The JH-CROWN database consists of COVID-19 patients seen in any Johns Hopkins Medical 
Institution facility with confirmed or suspected COVID-19. Each patient-stay in the JH-CROWN database 
corresponds to a unique patient (n=301). Data extraction was performed using PostgreSQL, and the 
Python libraries psycopg2 and pandas (McKinney, 2010). 

Finally, those patients with entirely blank values for SpO2 were excluded. The eICU database 
contains vital signs recorded at 5 minute intervals, whereas the JH-CROWN database records vital signs 
at variable frequency. Therefore, the data in the JH-CROWN database was interpolated to 5 minute 
intervals by replacing blank values of SpO2 with the last valid observation. In the patients selected from 
the JH-CROWN database, the median time between observations was 25 minutes. If the first SpO2 value 
was missing, it was backfilled with the first available SpO2 value. Finally, those time series with less than 
61 datapoints (5 hours) were excluded. This left 1837 patient-stays for model training, and 310, 288 ,and 
298 patient-stays in the eICU Mechanical Ventilation, eICU No Mechanical Ventilation and JH-CROWN 
test sets respectively (Fig S2, S3).  
 
Data Preparation: 
All SpO2 values were transformed using the following equation: 

� �  1 �  ��� �	
�2 � 100
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This transformed value was chosen to magnify differences between SpO2 values close to 100%. Next, a 
causal moving average filter with a window of 5 was applied to each patient’s transformed SpO2 
waveform (ie, the SpO2 values at the previous 4 timepoints and the current timepoint were averaged 
together). We chose this data smoothing technique since it is causal, meaning that it can be applied in 
real time, and it reduces transient noise hence providing a less noisy signal more suitable for clinical 
decision making. Other studies of hypoxemia prediction have also applied averaging filters to time-series 
data prior to prediction (Elmoaqet et al., 2014; Lundberg et al., 2018). The time series for each patient 
was then down-sampled to 30 minute frequency for use with SWIFT-30 model which predicts SpO2 30 
minutes in the future. For SWIFT-5, which predicts SpO2 5 minutes in the future, no changes were made.  

Finally, the smoothed time series data for each patient was rearranged into an input vector X, and 
output vector Y where �� is SpO2 at timestep n: 
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Finally, in the training set, all X vectors were concatenated and all Y vectors were concatenated to create 
one training set input vector and one training set output vector to be used in model training. In the 4 test 
sets, the patient-level input and output vectors were maintained to be used for model testing. Data 
preparation was performed in Python using standard data science libraries (Harris et al., 2020; 
McKinney, 2010; Pedregosa et al., 2011). 
 
Model Training: A 3-fold cross validation procedure was used for hyperparameter optimization on the 
training data to evaluate 2 different LSTM model architectures (a deep architecture with 5 LSTM hidden 
layers and a shallow architecture with 2 LSTM hidden layers; both models had a Batch Normalization 
input layer and a Dense 1 neuron output layer and contained Dropout layers to prevent overfitting) and 3 
different learning rates (ADAM optimizer with learning rates .001, .01 and .1). For both SWIFT-5 and 
SWIFT-30, the shallow architecture with learning rate .001 demonstrated the lowest average MSE across 
folds. This architecture was then used to re-train the final models on the full training set. The models 
were trained for 100 epochs with a random 10% validation set at each epoch. To prevent overfitting, the 
model weights at the epoch with lowest validation loss were used for the final SWIFT-5 and SWIFT-30 
models. All model training was performed using the TensorFlow and Keras libraries in Python (Abadi et 
al., n.d.; Chollet, 2015). 
 
Model Testing: SWIFT-5 and SWIFT-30 were used to predict the transformed SpO2 waveform for each 
individual patient-stay in each of the three test sets. Then, the mean-squared-error and Pearson’s 
correlation coefficient were calculated between the true and predicted waveform for each patient-stay. 
Pearson’s correlation coefficient could not be calculated for 1 patient-stay in the JH-CROWN test set 
since the time series was constant and the correlation coefficient was undefined. Next, each time point 
was classified as hypoxemic or not based on a threshold of SpO2 92% (transformed SpO2 .55067). Each 
prediction was also checked against the same threshold, and the sensitivity, specificity, accuracy, and 
PPV were calculated for each patient-stay time series. Sensitivity was not calculated for those patient-
stays with no hypoxic events; Specificity was not calculated for those patient-stays with all hypoxic 
events; PPV was not calculated for those patient-stays for which no predictions were positive for 
hypoxemia, since these values are undefined in these cases. Finally, all timepoints in each test set were 
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aggregated, and the false positive, true positive, false negative, and true negative rates were calculated 
for each test set. 
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Figure S1: Examples of the best and worst fits by MSE for SWIFT-5 model tested on (a) eICU Ventilated 

patients – best fit, (b) eICU Ventilated patients – worst fit, (c) eICU Non-Ventilated patients – best fit, 

(d) eICU Non-Ventilated patients – worst fit, (e) JH-CROWN patients – best fit, (f) JH-CROWN patients 

– worst fit 
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Fig S2: Inclusion/Exclusion Diagram for patient-stays from eICU Database 
 
 

 
Fig S3: Inclusion/Exclusion Diagram for patient-stays from JH-CROWN Database 
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