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ABSTRACT

Most diffusion MRI (dMRI) studies of disease rely on statistical comparisons between large groups
of patients and healthy controls to infer altered tissue state. Such studies often require data from a
significant number of patients before robust inferences can be made, and clinical heterogeneity
can greatly challenge their discriminative power. Moreover, for clinicians and researchers studying
small datasets, rare cases, or individual patients, this approach is clearly inappropriate. There is a
clear and unmet need to shift away from the current standard approach of group-wise comparisons
to methods with the sensitivity for detection of altered tissue states at the individual level. This
would ultimately enable the early detection and interpretation of microstructural abnormalities
in individual patients, an important step towards personalised-medicine in translational imaging.
To this end, Detect was developed to advance dMRI-based Tractometry towards single-subject
analysis. By: 1) operating on the manifold of white matter pathways; and 2) learning normative
microstructural features to better discriminate patients from controls, our framework captures
idiosyncrasies in patterns along brain white matter pathways in the individual. This novel approach
paves the way from traditional group-based comparisons to true personalised radiology, taking
microstructural imaging from the bench to the bedside.

Introduction
Tremendous progress has been made over the last decade in the non-invasive characterisation of
tissue microstructure using diffusion MRI (dMRI). In the brain, for example, information about
the structural architecture of the white matter (WM) can be obtained by probing the random mo-
tion of water molecules1 and acquiring multiple MR images with different diffusion-sensitisation
properties. The ability to derive semi-quantitative features such as fractional anisotropy (FA) or
mean diffusivity (MD)2 or to virtually reconstruct white matter pathways with tractography3 has
had a huge impact on the ability to distinguish between typical and atypical brain structure in vivo,
in health and disease4. However, prediction modeling (or case-control), in which a group of M
patients with the same disease is compared with a group of N matched controls, is not well suited to
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clinically-heterogeneous groups (e.g., autism spectrum disorder, neurological disorders5 and rare
cases). Despite decades of progress in the research domain, the primary clinical use of dMRI is in
emergencies (e.g., diagnosing acute ischaemic stroke or grading and monitoring of tumor invasion).
Several studies have shown success in identifying subtle but important microstructural changes at
the individual patient-level6, showcasing the potential of dMRI to be applied on a broad yet finer
scale. Yet, there is a scarcity of dMRI frameworks for single-subject analysis (i.e., 1 patient vs
N controls). We have therefore reached a hiatus in the characterisation of WM microstructure in
disease. There is an urgent yet unmet need for a paradigm shift from group-wise comparisons to
individualised diagnosis in computational neuroscience, i.e., detecting whether (and where) the
tissue microstructure of a single participant is abnormal7; not only would this greatly facilitate the
study of clinically-heterogeneous groups8, 9, it would also facilitate the study of rare diseases and
true clinical adoption (i.e., making a diagnosis/prognosis in an individual patient).

In comparing microstructural properties between groups, many computational pipelines adopt a
Tractometry approach10, 11, i.e., mapping measures along pathways reconstructed via tractography,
either by averaging along the whole tract12, or a segment thereof13–16. Along-tract profiling has
been applied previously to investigate various brain conditions10, 17–19. The main advantage here is
that image registration can be avoided as tractometry is performed in each subjects’ native space.
There are, however, some limitations. First, most analyses treat tractometry measures from specific
pathways as independent measures. This univariate approach has the potential to obscure key
relationships between different tracts. Focusing on any particular anatomical location therefore
increases the risk of losing the full picture. While individual pathways can appear normal in isolation,
by considering them as an ensemble (e.g., as part of a network), any such inter-tract relationships
could collectively help to identify outliers. Second, when analyzing multiple measures (even when
derived within the same tract), statistical analysis is hampered by: (i) the multiple comparisons
problem; and (ii) any covariance between measurements12, 20. Here multidimensional approaches
can increase statistical power by combining the sensitivity profiles of independent modalities20–22.

The unsupervised multivariate framework proposed here uses state-of-the-art machine learning
to approach high-dimensional data non-linearly and improve accuracy and precision over traditional
anomaly detection. Normative modeling is an emerging statistical framework that aims to capture
variability by comparing individuals to a normative population8. Current efforts to apply normative
modelling in neuroimaging, however, have so far relied on voxel-based methods, which are subopti-
mal for WM, whereas reconstructed tracts offer a more intuitive manifold. The framework described
here moves significantly beyond dMRI group-level analysis techniques, and uses data-driven norma-
tive modeling to identify and localise anomalous tract-profiles at the individual level.

For demonstration purposes, a deep autoencoder was trained to learn normative sets of features
derived from healthy tract-profiles in 3 independent datasets and 1 reproducibility dataset23. To assess
generalization, the framework was then applied to single participants with a range of neurological
and psychiatric disorders, including: children and adolescents with copy number variants (CNVs) at
high risk of neurodevelopmental and psychiatric disorders; patients with drug refractory epilepsy;
and patients with schizophrenia (SCHZ). We compared the performance of our new approach with 1)
a conventional Z-score distribution approach; and 2) PCA combined with the Mahalanobis distance
(a widely used approach in cluster analysis and classification techniques)16, 19, 22.
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Figure 1. Graphical representation of the proposed anomaly detection framework. The neural
network consist in a deep autoencoder symmetrically designed with five fully connected layers. The
input and output layers have exactly the same number of nodes as the number of input tracts
features (|x|). The goal of the network is to generate an output (x̂) similar to the input (x) by
minimising the reconstruction error (D). Here, the mean absolute error (MAE) was used as anomaly
score. MAE measures the average magnitude of the errors and is derived during testing by
computing the absolute differences between the reconstructed micro-structural features (x̂i) and the
raw input features (xi).

Results

White matter anomaly detection in CNV participants
Discriminating power
First, we investigate individual differences in WM microstructure in children with copy number
variants (CNVs) at high genetic risk of neurodevelopmental and psychiatric disorders24, which
are relatively rare and therefore challenging to recruit for research imaging studies25. For all four
microstructural metrics (FA, MD, RISH0 and RISH2 - see Methods), the autoencoder approach was
better at identifying CNV subjects as outliers, providing substantially higher sensitivity-specificity
trade-offs (Fig. 2, left) than the z-score and Mahalanobis-based approach. In particular, the RISH0
feature showed higher discriminating power (AUC: 0.86 ± 0.06) compared with mean univariate z-
score (AUC: 0.53 ± 0.06) and multivariate Mahalanobis distance (AUC: 0.61 ± 0.09). In comparing
the RISH0 group distributions, anomaly scores derived via the autoencoder were significantly
different (KS=0.62, p<0.003, Cohen’s d effect size: 1.39) between the CNV individuals and the
typically developing (TD) subjects. In particular, all CNV subjects had an anomaly score larger
than the TD mean and 50% of them were larger than the 95th percentile of the TD population. In
comparison, the difference between the anomaly scores was less pronounce with the PCA (KS=0.38,
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p=0.2, Cohen’s d = 0.9) and z-score (KS=0.34, p=0.3, Cohen’s d = 0.38) approaches.

Figure 2. The autoencoder network provides better discriminating power in terms of
sensitivity/specificity tradeoffs compared to traditional linear univariate and multivariate approaches
(left panel, average AUC over 100 iterations). The RISH0 features show higher reconstruction error
for the CNV compared to the HC (precision-recall AUC: 0.45. For comparison, a random classifier
would score 0.08). Right: From a group perspective, anomaly rates were mostly observed in the ILF
(inset bundles, lateral view), OR and SLF bundles. MD: Mean diffusivity, R0: RISH0.

Tract-specific deviations
A key advantage of using deep autoencoders for anomaly detection over traditional PCA-derived
approach is its unique ability to relate the anomaly back to the individual elements of the input data.
More specifically, the predicted data retains the same dimensionality as the input data and therefore,
it is possible to see which feature cannot be accurately recovered by the autoencoder. In contrast,
the Mahalanobis distance provides a single summary measure which hinders the interpretation.
With deep autoencoders, if a feature has a positive reconstruction error, then one can infer that the
network learned a smaller value for that feature than what was provided as input. In the context
of the CNV participants, multiple regions were highlighted (by positive reconstruction errors)
as deviants from the TD population. Fig 3 reveals a high anomaly rate for various association
bundles such as the bilateral inferior longitudinal fasciculus (ILF), optic radiations (OR), and the left
superior longitudinal fasciculus (SLF_II). This is in line with current literature where microstructural
differences are expected along association pathways, in agreement with psychotic symptoms26.

White matter anomaly detection in epilepsy
Focal cortical dysplasia (FCD), a malformation of cortical development, is the most common
etiology in drug-resistant neocortical partial epilepsies27. While complete resection is the main
predictor of seizure freedom following surgery, a significant proportion of FCDs may be missed with
standard clinical imaging protocols27 and the seizure generating network may extend far beyond
the visible dysplasia. Diffusion MRI contrast enhances the sensitivity of MRI to differences in the
brain, but has only been reported at the group level28. Here we demonstrate two key advantages
of the deep autoencoder approach in a clinical context. First, it succeeded in detecting white
matter anomalies that a conventional Z-score based approach has missed, potentially due to hidden
interactions between the features; second, detection of abnormal microstructural features away from
putative seizure onset zone, as demonstrated in the first example, may contribute to the mapping

4/18

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21252011doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252011
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3. Reconstructed tract profiles of a CNV subject (top) and TD subject (bottom) reveals
RISH0 discrepancies along various association bundles such as the arcuate fasciculus (AF), inferior
longitudinal fasciculus (ILF) and the superior longitudinal fasciculus (SLF). In particular, the input
features for that specific subject were significantly different (red highlighted regions, p < 0.01) than
the normal population. MAE: Mean absolute error.

of epileptogenic networks in individuals. Thus, while the examples shown here had radiological
changes detectable with T2-weighted sequences, the method could potentially be extended to cases
of "MRI-negative" partial epilepsy increasing the diagnostic yield.

Figure 4. Subject 1 overview. A) T2 hyperintense lesion located at the base of the skull in the
temporal lobe. Several pathways with anomalies interdigitate in the vicinity of the lesion. Although
the IFO signal did not extend beyond the shaded area (C, D, +/-1 z-score), the proposed anomaly
detection framework identified abnormalities in that region (B, pink areas, bold orange line: original
tract-profiles, dotted purple line: reconstructed representation learnt from the network).

Subject 1 is a young adult female with seizures described as a fuzzy painful sensation in the torso
rising up to the head associated with mumbling sounds, occurring 2-5 times per day. Scalp video-
EEG showed left temporal inter-ictal epileptiform discharges and left temporal EEG onset. Clinical
imaging demonstrated a small area of cortical-white matter junction blurring in the laterobasal left
temporal lobe associated with a transmantle area of T2 hyperintensity, suggestive of FCD type II29.
Neuropsychological assessment was concordant with a left temporal deficit, additionally revealing

5/18

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21252011doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252011
http://creativecommons.org/licenses/by-nd/4.0/


preserved mesial structures manifesting in relatively preserved verbal memory performance. Subse-
quent stereo-EEG (SEEG) implantation confirmed ictal onset and prominent interictal discharges
from neocortical contacts immediately behind the MRI lesion; in addition, neocortical discharges
were seen in SEEG contacts close to the temporal pole. Five tracts of possible relevance were
interrogated (Fig. 4). Microstructural anomalies were identified along the left inferior longitudinal
fasciculus (ILF) and optic radiation (OR) in the immediate proximity of the T2-weighted changes
corresponding to SEEG contacts with maximal ictal EEG changes. Anomalies in the temporal
portions of the left inferior fronto-occipital (IFO) and uncinate fasciculi (UF) pointed towards the
temporal pole corroborating the SEEG findings that despite normal clinical MRI this area was a part
of the seizure network. Based on the clinical findings, the patient proceeded to have resection with
histology consistent with FCD.

Subject 2 is an adult female with focal onset seizures since childhood occurring daily with
episodes of loss of contact, grimacing and limb stiffening hypermotor movements, including clutch-
ing at nearby object on the left side. Scalp video-EEG findings were consistent with frontal onset
seizure semiology. Clinical MRI showed blurring of the cortical-white matter junction between
the right posterior superior frontal gyrus and the adjacent precentral gyrus, and a transmantle sign
on T2/FLAIR from the cortex reaching all the way to the lateral ventricle, consistent with FCD
type II. Subsequent stereo-EEG recordings demonstrated spatial overlap between primary motor
areas and early ictal onset, and hence the patient did not proceed to surgery. Five tracts of possible
relevance were interrogated with our framework (Fig. 5). Anomalies were detected corresponding
to radiological and electrophysiological findings along the right corticospinal-tract (CST), primary
motor (CC4), and superior longitudinal fasciculus (SLF-I) beyond the visible lesion. No anomalies
were found along the right cingulum (Cg) and primary sensorimotor (CC5) regions.

The results are promising, with the tool identifying anomalies in concordance with clinical
hypothesis in a single-subject analysis paradigm, testifying to its utility for clinical evaluation. Its
additional value is highlighted by its sensitivity to outlying tract segments not detected with the
conventional Z-score approach. The N=1 approach to detect deep white matter anomalies illustrated
here will facilitate the identification of individualised therapy most appropriate to that patient,
suggesting additional targets for diagnostic evaluation and possible surgical treatment.

Linking brain heterogeneity with epidemiological findings in schizophrenia
The extent to which individual clinical variability in schizophrenia relates to microstructural vari-
ability remains a key challenge in neuropsychiatry30, with most findings being at the group level.
Here, the autoencoder approach was better at identifying single SCHZ subjects as outliers (AUC:
0.64 ± 0.06) when compared with PCA (AUC: 0.47 ± 0.08) or z-score (AUC: 0.39 ± 0.06). In
comparing these group distributions, anomaly scores derived from the autoencoder were found to be
significantly different (t = -2.48, p=0.01, Cohen’s d = 0.47) between the SCHZ individuals and the
healthy controls (HC). In particular, 31 of the 43 SCHZ subjects had a anomaly score larger than the
HC mean and 9 of them were larger than the 95th percentile of the HC population. In comparison,
the difference between the anomaly scores was less pronounced with the PCA (t = 1.01, p=0.3,
Cohen’s d = 0.18) and z-score (t = 2.05, p=0.04, Cohen’s d = 0.33) approaches. Furthermore, the
above chance-level detection rates of the proposed deep autoencoder in SCHZ suggest a successful
application of the tractometry-based framework in unsupervised anomaly detection. The significance
of these results are even more pronounced considering the challenging task at hand: i.e., where even
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Figure 5. S2 overview. A) The lesion is located anterior to the right primary motor cortex in the
supplementary motor area (hyperintense signal on the FLAIR image, hypointense on the RISH
map). Tractography show tracts traversing the area (CC4). B) Anomalies were identified in the right
CC4, CST, and SLF-Ibundles (top right, pink areas). The bold orange line represents the original
tract-profiles whereas the dotted purple line represents the reconstructedrepresentation learned from
the network. The z-score approach shows less focused anomaly patterns along the tracts (shaded
area: +/- 1 Z).

a supervised support vector machine classifier provides similar accuracy (AUC: 0.65 ± 0.13). We
also found that anomaly scores derived from the autoencoder showed higher correlation with the
Hopkins anxiety index (Hopkins Symptom Checklist), a widely used screening instrument to study
mental illness, than the anomaly scores derived from PCA and Z-score (Spearman’s ρ 0.38, p=0.01
vs ρ 0.16, p=0.31 and ρ -0.12, p=0.45 respectively, Fig. 6).

Repeatability of anomaly scores and tract-profiles
Using a test-retest dataset (6 subjects, 5 time points), we assessed the repeatability of 1) the input
RISH0 tract profiles and 2) the generated anomaly scores by calculating the intra-class correlation
coefficient (ICC, two-way mixed, absolute agreement) and the coefficient of variation (CoV).
Supplementary Fig. A.1 shows the repeatability of the tract profiles, with the optic radiations (OR)
being the most reproducible bundles (mean ICC: 0.95, CoV: 0.03) and the left cingulum being
the least reproducible (ICC: 0.66, CoV: 0.06). In terms of anomaly scores, the proposed anomaly
detection framework shows reconstruction errors that are reproducible across sessions with an ICC
of 0.96 (95% CI: 0.88, 0.99) and a CoV of 0.06.

Discussion
Individual characterisation of white matter microstructure and clinical relevance
The framework enabled subject- and tract-specific characterisation of WM microstructure. By
training only on healthy data, our findings revealed that clinical cases (CNVs) were classified as
outliers, but not unseen TDs. The framework also outperformed traditional outlier detection mostly
due to its ability to handle high-dimensional data non-linearly. This extends the possibility of using
anomaly detection in extremely rare cases (as little as n = 1), where group comparisons are otherwise
impossible. However, further exploration of input features and hyper-parameters of the model
remains to assess the generalizability of the framework and its application to other pathology. We
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Figure 6. Schizophrenia cohort. a) The autoencoder provides a better discriminating power
compared to traditional linear univariate and multivariate approaches with an AUC of 0.64 (bar
graph). In addition, the anomaly scores derived from the autoencoder showed higher correlation
with the Hopkins anxiety score than the PCA and Z-score correlations. b) The RISH0 features show
higher reconstruction error (100 averages) for the SCHZ than the HC (t = -2.48, p < 0.01, Cohen’s d
= 0.47).

believe that our Tractometry-based anomaly detection framework paves the way to progress from
the traditional paradigm of group-based comparison of patients against controls, to a personalised
medicine approach, and takes us a step closer in transitioning microstructural MRI from the bench
to the beside.

In addition, in an unsupervised novelty detection scenario, the proposed method identifies psychi-
atric patients from healthy individuals more accurately than mass-univariate normative modeling and
a supervised support vector machine classifier. In other words, our approach trained only on healthy
participants performs better at detecting abnormal samples than a supervised approach that has full
access to the diagnostic labels (as done by31). We emphasize that the model has no access to the diag-
nostic labels during the training phase and thus our anomaly detection approach is fully unsupervised.

In summary, diffusion MRI offers great promise to detect subtle differences in tissue microstruc-
ture when applied at the group level. However, the goal of clinical neuroimaging is to be applicable
at the individual level. The single case approach proposed here will facilitate the identification of
individualised therapy most appropriate to that patient, forming a baseline biomarker for subsequent
monitoring through a therapeutic process.

Generalization of the framework
The key problem in biomarker research is the need for individual prediction/diagnosis. Indeed,
advancing knowledge of brain pathology and related cognitive impairment at the individual level
is essential for early detection and intervention. Normative models show that, if groups are too
heterogeneous, it can be a challenging task to learn characteristics from a given population using
supervised approaches, hence the need for unsupervised learning8. While the amount of data we
can employ in imaging studies is relatively small in comparison with population-based studies, the
framework provides a principled method to detect individual differences in tissue microstructure.
With the ever-growing amount of dMRI data being acquired, the framework will make less conser-
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vative inferences as the number of data points increases. In addition, the framework theoretically
can accommodate features beyond and complementary to dMRI. For example, these inputs could
include time series from functional MRI (fMRI) and cortical thickness derived from structural
T1 imaging. Other applications of the framework include the characterization of microstructural
changes in neurological disorders without gross pathology.

Limitations
Single-subject analysis relies on defining a normative brain8, which requires significant amounts
of healthy-control data. Combining multi-site or multi-scanner dMRI datasets can greatly increase
the statistical power of neuroimaging studies32 but cross-scanner and cross-protocol variability
challenges joint analysis, hence the need for data harmonisation33, 34. In addition, tractography
still faces significant challenges in the field35, 36 and most commonly-available tools can only track
reliably within normal-appearing WM. This therefore limits along-tract profiling approaches to core
WM bundles only. Providentially, recent ML approaches have shown promise in reproducible tract
segmentation across subjects37, renewing hope of analysing dMRI data for group studies.

Novelty
Autoencoders can capture non-linear interactions between the input features and achieve im-
proved feature extraction compared to Principal Component Analysis (PCA) by learning a self-
representation of their inputs through a low-dimensional layer (Fig. 1); the goal is to generate an
output (x̂) similar to the input (x) by minimising the reconstruction error. This same representation
can be exploited for anomaly detection by analysing deviations in the reconstruction. Once trained,
the network is then presented with unseen healthy tract profiles (for testing) and subsequently
exposed to tract-profiles from individuals diagnosed with neurological/psychiatric brain conditions.
Our deep learning approach also provides advantages over other statistical approaches for outlier
detection as it was recently shown (using fMRI data31) that deep unsupervised approaches improve
identification of psychiatric patients compared to mass-univariate normative modeling.

Browser-based applications are becoming increasingly popular amongst the computational
neuroscience community due to their ease of use16. Here, we developed Detect, an open source
tool to promote data exploration through interactive visualizations in the browser. This framework
enables the detection of abnormalities in clinically-heterogeneous groups or rare cases and ulti-
mately improve diagnosis of neurological and neuropsychiatric disorders. Our aim was to develop
and distribute an open-source framework characterize microstructural white matter changes at the
individual level. This enables the detection of abnormalities To the best of our knowledge, other
tools like AFQ Browser16 compare individuals using a linear approach (z-score) that considers each
tract-segment independently and ignores potential complex interactions between the features. Those
tract-segment are then statistically tested in an univariate manner, and as such the correction for
multiple comparisons - required by the typical high dimensionality of dMRI data - will hamper the
discriminating power of the analysis20. Recently, PCA was employed to acknowledge the multivari-
ate nature of dMRI data20–22, but this approach still relies on linear assumptions thereby ignoring
possible complex interactions between the features. We believe strongly that the proposed deep
autoencoder approach goes hand-in-hand with existing browser-based dMRI analysis frameworks in
encouraging reproducible research and data-driven discoveries. We also encourage future users to
experiment and tailor the tool to their needs.
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Methods
Data acquisition & preprocessing
CNV dataset
Diffusion MRI data were acquired from 90 typically developing (TD, age 8-18 years) and 8 children
with copy-number variants at high risk of neurodevelopmental and psychiatric disorders (CNVs,
2x 15q13.3 deletion, 2x 16p11.2 deletion, 3x 22q.11.2 deletion and 1x Prader-Willi syndrome)
and no apparent WM lesions (age 8-15 years). Data collection procedures for the TD and CNV
groups were approved by the Cardiff University School of Psychology and School of Medicine
Ethics Committees, respectively. Written informed consent was obtained from all participants and
legal guardians. Images were acquired using a Siemens 3T Connectom MRI scanner with 14 b0
images, 30 directions at b = 500, 1200 s/mm2, 60 directions at b = 2400, 4000, 6000 s/mm2 and
2×2×2mm3 voxels (TE/TR = 59/3000 ms, ∆/δ : 24/7 ms). Each dataset was denoised38 and cor-
rected for signal drift39, motion and distortion40, 41, gradient non-linearities42, and Gibbs ringing43.
Next, rotationally-invariant spherical harmonics (RISH) features33 were derived for each subject
using the b = 6000 s/mm2 shell to maximise sensitivity to the intra-axonal signal44 (0th and 2nd

orders only, RISH0 and RISH2 respectively). In addition, diffusion tensors were generated using an
in-house non-linear least squares fitting routine using only the b ≤ 1200 s/mm2 data, followed by
the derivation of fractional anisotropy (FA) and mean diffusivity (MD) maps.

Epilepsy dataset
Diffusion MRI data from 2 epilepsy patients with focal cortical dysplasia (FCD) were acquired
on a Siemens 3T Connectom MRI scanner with 60 directions at b = 1200, 3000 and 5000 s/mm2

and 1.2×1.2×1.2mm3 voxels (TE/TR: 68/5400 ms, ∆/δ : 31.1/8.5 ms). In addition, 15 healthy
controls (HC) 1 (age 21-41 years) from the computational diffusion MRI harmonization database
were used32. Data collection procedures for the HC and FCD groups were approved by the Cardiff
University School of Psychology and School of Medicine Ethics Committees, respectively. Written
informed consent was obtained from all subjects. Each dataset were corrected for Gibbs ringing43,
signal drift39, motion and distortion40, 41, and gradient non-linearities42, Next, RISH features33 were
derived for each subject using the b = 5000 s/mm2 shell.

Schizophrenia dataset
Diffusion MRI data from the UCLA Consortium for Neuropsychiatric Phenomics46 was down-
loaded from the OpenNeuro platform openneuro.org/datasets/ds000030/versions/
00016, which also contains demographic, behavioral and clinical data. Although more focused
on fMRI, the dataset contains dMRI data from 123 healthy controls (HC) and 49 individuals with
schizophrenia (SCHZ) amongst other psychiatric disorders. Data were acquired on a Siemens
3T Tim Trio MRI scanner with 1 b0 image, 64 directions at b = 1000 s/mm2 and 2×2×2mm3

voxels. Data quality assessment was first performed, resulting in the exclusion of datasets with
reduced field-of-view (preventing the reconstruction of white matter bundles in the inferior temporal
lobes) and those with significant slice dropout (impacting estimation of diffusion metrics). A total
number of 109 HC (age 21-50 years) and 43 SCHZ (age 22-49 years) subjects were used for further
analysis. Diffusion data were denoised38, corrected for subject motion40 and distortion using the

1A four-fold data augmentation was applied to the HC tract-profiles using a Synthetic Minority Over-sampling
TEchnique (SMOTE45) resulting in 75 HC.
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anatomical T1-weighted image as reference. Next, RISH features (RISH0, RISH2) were derived for
each subject. Finally, diffusion tensors were generated using iteratively weighted least squares in
MRtrix47 followed by the derivation of FA and MD maps.

Repeatability dataset
To assess repeatability, we employed the microstructural image compilation with repeated acquisi-
tions dataset (MICRA,23), which comprises 5 repeated sets of microstructural imaging in 6 healthy
human participants (3 female, age 24-30 years). Each participant was scanned five times in the
span of two weeks on a 3.0T Siemens Connectom system with ultra-strong (300 mT/m) gradients.
Multi-shell dMRI data were collected (TE/TR = 59/3000 ms; voxel size = 2×2×2 mm3; bvalues=
0 (14 vols), 200;500 (20 dirs), 1200 (30 dirs), and 2400;4000;6000(60 dirs) s/mm2). The same
preprocessing as the CNV dataset was applied. Data collection was approved by the Cardiff Univer-
sity School of Psychology Ethic Committee and written informed consent was obtained from all
subjects.

Tractometry
For each dataset, automated white matter tract segmentation was performed using TractSeg37 using
multi-shell constrained spherical deconvolution (MSMT-CSD,48). For each bundle, 2000 streamlines
were generated. Tractometry11 was performed (sampling FA, MD, RISH0 and RISH2 at 20 locations
along the tracts14, 18, 20) using a Nextflow architecture provided by SCILPY 2. Specifically, individual
streamlines were re-ordered for all subjects to ensure consistency using the following order: left-
to-right for commissural tracts, anterior-to-posterior for association pathways and top-to-bottom
for projection pathways. Next, a core streamline was generated and microstructural metrics at each
vertex of the bundle were projected to the closest point along the core. The resulting tract profiles
were concatenated to form a feature vector (x).

Artificial neural network
Our autoencoder implementation consists of a symmetric design of five fully connected layers. The
input and output layers have exactly the same number of nodes as the number of input tracts features.
The inner layers consecutively apply a compression ratio of 2 by reducing the number of nodes by
half, up to the bottleneck hidden layer. Rectified linear units (ReLU) activation was used between the
layers to promote sparse activation and tanh for the last layer. Using different activation functions in
different layers aims at balancing the advantages and disadvantages of the two activation functions.
To promote sparsity and reduce overfitting, an activation penalty was imposed to the bottleneck
layer using `1-regularization (10e-5). This is especially best suited for models that explicitly seek
an efficient learned representation. 10% of the healthy control data is held out for testing during
the training phase (epochs: 25, batch size = 24, learning rate: 1.0e-3, optimiser: Adam, loss: mean
squared error). The goal is to generate an output (x̂) similar to the input (x) by minimising the
reconstruction error. Here, the mean absolute error (MAE) was used as anomaly score and is defined
as:

MAE =
1
n

n

∑
j=1
|xi− x̂i|, (1)

MAE measures the average magnitude of the errors and is derived during testing by computing
the absolute differences between the reconstructed micro-structural features (x̂i) and the raw input

2github.com/scilus/scilpy
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features (xi). Due to the heavily-imbalanced group ratio between HCs and patients (i.e., CNV and
epilepsy), a bootstrap was implemented to draw random samples of equal sizes from each group.
Specifically, a validation set was generated and held-out by combining the patients with a matching
random subset of HCs. The rest of the HC data was used to establish a normative distribution. Age
regression49 and feature normalization (min-max) were performed on the normative training set and
subsequently applied to the validation set using a nested approach to prevent information leakage.
To derive conservative estimates and assess variations within the model, we repeated this process
100 times and report the mean MAE for each subject. Finally, we compared the sensitivity versus
specificity of the anomaly scores using the mean receiver operating characteristic (ROC) area under
the curve (AUC) across iterations, and standard deviations used as uncertainties.

Univariate approach
The z-score (or standard score z = x−µ)/σ ) is a way of describing a data point as deviance from
distribution, in terms of standard deviations from the mean of the Normal distribution. Here, z-scores
were computed for each segment and averaged to derive a subject-specific anomaly score at each
iteration (described above). The mean over all iterations was retained as anomaly scores for all
subjects.

Multivariate linear approach
Principal Component Analysis (PCA) was applied to the set of features by restricting the dimension-
ality to k = 3 components. Next, the Mahalanobis Distance (M, a multi-dimensional generalization
of the z-score that accounts for the relationships between the WM bundles) was used to derive an
anomaly score defined as:

M(x) =
√

(x−µ)′˙C−1(̇x−µ), (2)

where x represents the feature vector of a given subject, µ is the vector of mean microstructural
metrics for each tract location s, and C−1 is the inverse covariance matrix of the input features. The
problem of anomaly detection can be seen as a one-class classification problem and therefore, our
training data only contains healthy controls to calculate C. an M score was then derived for all unseen
subjects in relation to the healthy control distribution. The same dataset split as aforementioned was
used to derive a bootstrapped estimate of M for each subject, which was subsequently analysed.

Support Vector Machine comparison
A supervised support vector machine (SVM) classifier was used for comparisons on the SCHZ
dataset. Class weights were set to account for the class imbalance between HCs and patients. The
classifier was validated using a repeated (10 times) stratified, 5-fold cross-validation approach in
scikit-learn50. Optimized parameters were derived for each cross-validation fold using a grid-search
approach. Those included the choice of kernel ([radial basis function, linear]), regularization ([1, 10,
100, 1000]) and gamma parameters ([10−3, 10−2, 10−1, 1, 101, 102, 103]).

Detect interactive interface
Detect is a user-facing tool built upon the Streamlit framework (www.streamlit.io). Users of
Detect will input demographic data that consists of comma-separated values (.csv) where each row
represents a subject (ID). Example demographics columns include: group, age, gender or clinical
scores. The microstructural tractometry data format consist of a .xlsx spreadsheet, where each sheet
represents a dMRI metric (e.g., FA, MD, etc.). As per the demographic data, subjects are stacked
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individually on each rows. The first column denotes the ID of each subject. The remaining columns
follow the following convention: bundle_hemi_section where bundle is the white matter bundle
of interest, hemi is the hemisphere (i.e., left or right and void for commissural tracts), and section
is the along-tract portion (e.g., from 1 to 20). The framework offers three main script: Detect,
Inspect and Relate. Detect allows for group comparisons using cross-validated AUCs computed
over N iterations, by means of Z-score, PCA or AE (see Supplementary Fig. A.2). The output is a
bootstrapped anomaly score for each subject. On the other hand, Inspect allows the user to select
a single subject and to compare it with the rest of the population. Here, anomalies in the features
are highlighted using a leave-one-out cross-validation approach. In addition, both scripts allow the
visualization of tract profiles. Finally, Relate is a simple visual interface to correlate the anomaly
scores obtained by the previous commands with clinical scores.

Data availability
Detect is an open-source anomaly detection framework for neuroimaging data and will be made
available through Github at github.com/chamberm/Detect. The framework is powered by
Streamlit www.streamlit.io, an open-source app framework for machine learning and data
science. The repository will be regularly updated via continuous integration to contain example
data (tract-profiles), a Wiki section as well as Jupyter Notebooks with the Python code used to
generate the figures in this study. A stable release will also be uploaded to the Python Package
Index. The MICRA repeatability dataset is available at osf.io/z3mkn/. TractSeg is available
at github.com/MIC-DKFZ/TractSeg. MRtrix is available at www.mrtrix.org. SCILPY
is available at github.com/scilus/scilpy. FiberNavigator is available at github.com/
chamberm/fibernavigator.
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A Supplementary material

Figure A.1. Tract-profile repeatability of RISH0. Repeatability was assessed using the intra-class
correlation coefficient (ICC, two-way mixed, absolute agreement) computed over 6 subjects (5 time
points). Most of the bundles show excellent repeatability (mean ICC: 0.86, mean CoV: 0.03). In
particular, the left and right optic radiations ranked amongst the most reproducible bundles, whereas
the splenium and left cingulum show the lowest scores. The along-tract ICC profiles revealed
anatomical locations where the ICC was lower in those bundles. a) Optic radiation (right), b) Optic
radiation (left), c) Splenium (CC_7), d) Cingulum (left).
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Figure A.2. Overview of the proposed interactive application in the browser. The user has access
to various setting on the left panel, including the choice of the diffusion metric, the anomaly method,
and the number of iterations. The main display updates in real-time during computation (after each
iteration), showing the training loss, the distribution of anomaly scores and the ROC results. At the
end, a final report with the computed anomaly scores for each subject is saved for further analysis.
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