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ABSTRACT

Background and aims: Certain diets often used to manage functional gastrointestinal symptoms
in patients with irritable bowel syndrome (IBS). Personalized diet-induced microbiome modulation
is being preferred method for symptom improvement in IBS. Although personalized nutritional
therapies targeting gut microbiota using artificial intelligence (AI) promises a great potential, this
approach has not been studied in patients with IBS. Therefore, in this study we investigated the
efficacy of AI-based personalized microbiome diet in patients with IBS-Mix (M).
Methods: This study was designed as a pilot, open-labelled study. We enrolled consecutive IBS-M
patients (n=25, 19 females, 46.06 ± 13.11 years) according to Rome IV criteria. Fecal samples were
obtained from all patients twice (pre- and post-intervention) and high-througput 16S rRNA sequencing
was performed. Patients were divided into two groups based on age, gender and microbiome matched.
Six weeks of AI-based microbiome diet (n=14) for group 1 and standard IBS diet (Control group,
n=11) for group 2 were followed. AI-based diet was designed based on optimizing a personalized
nutritional strategy by an algorithm regarding individual gut microbiome features. An algorithm
assessing an IBS index score using microbiome composition attempted to design the optimized diets
based on modulating microbiome towards the healthy scores. Baseline and post-intervention IBS-SSS
(symptom severity scale) scores and fecal microbiome analyses were compared.
Results: The IBS-SSS evaluation for both pre- and post-intervention exhibited significant improve-
ment (p<0.02 and p<0.001 for the control and intervention groups, respectively). While the IBS-SSS
evaluation changed to moderate from severe in 82% (14 out of 17) of the intervention group, no such
change was observed in the control group. After 6-weeks of intervention, a major shift in microbiota
profiles in terms of alfa- or beta-diversity was not observed in both groups. A trend of decrease in
Ruminococcaceae family for the intervention group was observed (p=0.17). A statistically significant
increase in Faecalibacterium genus was observed in the intervention group (p = 0.04). Bacteroides
and putatively probiotic genus Propionibacterium were increased in the intervention group, however
Prevotella was increased in the control group. The change (delta) values in IBS-SSS scores (before-
after) intervention and control groups are significantly higher in the intervention group.
Conclusion: AI-based personalized microbiome modulation through diet significantly improves
IBS-related symptoms in patients with IBS-M. Further large scale, randomized placebo-controlled
trials with long-term follow-up (durability) are needed.
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1 Introduction

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder with negative impact on quality of life
and healthcare sources [1]. The exact causes of IBS remain largely unknown. These factors are multifactorial and varied
among patients. The pathophysiology of IBS is complex, but recent evidence suggests that the gut microbiome may play
an important role in the development, progression and severity of these symptoms [2]. The advent of next-generation
sequencing has increased investigations to identify changes in the gut microbiome related to IBS. Some investigators
reported increased levels of fecal Streptococcus [3], and Proteobacteria levels in the gut mucosa [4]. IBS severity was
also associated with lower alpha-diversity [5]. A recent systematic review of 24 studies performed prior to 2018 have
found that while there was some overlap, none of the studies reported the same differences in gut microbiota [6, 7].
This inconsistency can be as a result of unique microbiome composition for each patient and for each disease-state. In
other words, discovering disease biomarkers of IBS might be challenging due to diverse and heterogenous microbiome
compositions across populations. The second reason for this inconsistency might be due to the interpretation of data in
gut microbiome studies is complicated by the dynamic alterations of microbiome over time. For this reason, a snapshot
of observations from cross-sectional studies lacks the temporal resolution and do not reflect clinical features in IBS.
Diet is an interventional approach with increasing popularity for the treatment of IBS. There are certain evidence-based
diets used for IBS-symptom relief. The most popular and studied diet is the FODMAP diet [8]. Although FODMAP
diet induces rapid symptom-relief (especially for bloating/distension), it has detrimental effects on gut microbiota
(lowering microbiome diversity). Actually, the temporary symptom relief by the FODMAP diet is a consequence of
decreased gut abundance of bacterial population and it is not a healthy state for the host.

In order to overcome these microbiome-related inconsistencies in clinical studies, we need to personalize microbiota-
modifying therapies. This can be performed by specific personalized diets created by machine-learning approaches,
which can handle complex gut microbiome data harboring intrinsic correlations.

In this pilot study, we aimed to manipulate the gut microbiota of IBS patients with an individualized diet. The secondary
outcome is to measure the therapeutic effect of this diet on disease-specific parameters.

2 Materials and methods

Study cohorts

This study was designed as a pilot, open-labelled study. We enrolled consecutive IBS-M patients (n=25, 19 females,
46.06 ± 13.11 years) according to Rome IV criteria and a healthy control group (n=34) which were used to model
IBS classification models. Healthy group consisted of subjects without chronic diseases affecting microbiome and
antibiotic/probiotic consumption in the previous 6 week-period. IBS-M patients were excluded if they had severe
cardiac, liver, neurological, psychiatric diseases or a gastrointestinal disease other than IBS (eg celiac disease or
inflammatory bowel disease). The patients were not allowed or enrolled if they were following a restricted diet for any
purpose. Certain medications involving spasmolytics, antidepressants, etc were allowed if these were at stable doses for
the previous 4 weeks. Probiotics and antibiotics (including rifaximin) were not allowed for the previous 6 weeks. Paired
fecal samples were obtained (pre- and post-intervention) and high-througput 16S rRNA sequencing was performed
to reveal the microbiota compositions at the baseline and post-intervention. Patients were divided into two groups
based on age and gender. Moreover, baseline microbiota compositions were clustered to form subpopulations, and each
treatment group were populated to represent similar subpopulation diversity. Six weeks of personalized microbiome
diet (n=14) for group 1 and standard IBS diet (Control group, n=11) for group 2 were followed.

Fecal sampling and 16S ribosomal RNA gene sequencing

Fecal samples were collected using BBL culture swabs (Becton, Dickinson and Company, Sparks, MD) and transported
to the laboratory in DNA/RNA shield buffer medium. DNA was extracted directly from the stool samples using a
Qiagen Power Soil DNA Extraction Kit (Qiagen, Hilden, Germany). The final concentrations of extracted DNA were
measured using a NanoDrop (Shimazu). dsDNA quantification was done using the Qubit dsDNA HS Assay Kit and a
Qubit 2.0 Fluorimeter (Thermo Fisher Scientific, Waltham, MaA USA) and then they were stored at 20°C for further
analysis.

The sequencing of 16S rRNA was performed according to the protocol of the manufacturer (16S Metagenomic
Sequencing Library Preparation Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System) using
Illumina MiSeq (Illumina, San Diego, CA USA) system. In brief, 2-step PCR amplification were used to construct
sequencing library. The 1st step of PCR is to amplify the V4 hypervariable region. The full length of the primers was:
515F, forward 5’ GTGCCAGCMGCCGCGGTAA3’ and 806R, reverse ’GGACTACHVGGGTWTCTAAT3’ [9]. PCR
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amplification was performed using a 25L reaction volume that contained 12.5L of 2X KAPA HiFi HotStartReadyMix
(KAPA Biosystems, Wilmington, MA USA), 0.2M each of forward and reverse primer, and 100ng of the DNA template.
The reaction process was executed by raising the solution temperature to 95°C for 3min, then performing 25 cycles of
98°C for 20sec, 55°C for 30sec, and 72°C for 30sec, ending with the temperature held at 72°C for 5min. Amplicons
were purified using the AMPure XP PCR Purification Kit (Beckman Coulter Life Sciences, Indianapolis, IN USA). The
second step of PCR is to add the index adaptors using a 10-cycle PCR program. The PCR step adds the index 1 (i7),
index 2 (i5), sequencing, and common adapters (P5 and P7) and PCR amplification was performed on a 25L reaction
volume containing 12.5L of 2X KAPA HiFi HotStartReadyMix (KAPA Biosystems, Wilmington, MA USA), 0.2M of
each index adaptor (i5 and i7), and 2.5L of the first-PCR final product. The reaction process was executed by raising
the solution temperature to 95°C for 3min, then performing 10 cycles of 98°C for 20sec, 55°C for 30sec, and 72°C
for 30sec, ending with a 72°C hold for 5min. Amplicons were purified using the AMPure XP PCR Purification Kit
(Beckman Coulter Life Sciences, Indianapolis, IN USA).

All amplified products were then checked with 2% agarose gel electrophoresis then amplicons were purified using the
AMPure XP PCR Purification Kit (Beckman Coulter Genomics, Danvers, MA, USA) and quantified using the Qubit
dsDNA HS Assay Kit and a Qubit 2.0 Fluorimeter (Thermo Fisher Scientific, Waltham, MA USA). Approximately
15% PhiX Control library (v3) (Illumina, San Diego, CA USA) was combined with the final sequencing library. The
libraries were processed for cluster generation and sequencing on 250PE MiSeq runs, and generating at least 50.000
reads per sample.

Sequencing data were analyzed using QIIME pipeline [10] after filtering and trimming the reads for PHRED quality
score 30 via Trimmomatic tool [11]. Operational taxonomic unites were determined using Uclust method and the
units were assigned to taxonomic clades via PyNAST using Green Genes database [12] with open reference procedure.
Alpha- and beta-diversity statistics were assesed accordingly by QIIME pipeline scripts. The graph-based visualization
of the microbiota profiles was performed using tmap topological data analysis framework () with Bray-Curtis distance
metric.

IBS-index Scoring

The baseline group of IBS-M patients (n=25) and the healthy controls (n=34) were compared in terms of their microbiota
compositions. The detected microbiota profiles were used to characterize the disease in a classification setting. Based
on Gradient Boosted Trees (GBT) [13] classification algorithm, a stochastic gradient boosting classification model
(XGBoost, version 0.90 [14]) was used in dropouts meet multiple additive regression trees (DART) booster with binary
logistic regressor. 5-fold cross-validation, with 10 random seeding trials were used to observe the disease classification
performance. The logistic regression scores of XGBoost models were used as IBS-index scores. The dataset was
utilized to train the final IBS-index model. The hyperparameters of the XGBoost model were optimized using Bayesian
optimization tool Optuna [15] in 5-fold-cross validation setting.

The AI-based personalized nutrition model

Enbiosis personalized nutrition model estimates the optimal micronutrient compositions for a required microbiome
modulation. In this study, we computed the microbiome modulation needed for an IBS case, based on the IBS-indices
generated by the machine learning models. According to that, the baseline microbiome compositions are perturbed
randomly with a small probability p. Perturbed profiles are accepted with a probability proportional to the decrease in the
IBS-index as suggested by Metropolis sampling [16]. This Monte-Carlo random walk in the microbiome composition
space is expected to meet a low IBS-index microbiome composition nearby the baseline microbiome composition of
the patient with a minimal modulation. The personalized nutrition model, then, estimates the optimized nutritional
composition needed for this individual, expecting to drive the IBS-index to lower values.

Therefore, an algorithm assessing an IBS index score using microbiome composition attempted to design the optimized
diets based on modulating microbiome towards the healthy scores.

3 Results

Gut microbiota communities between IBS patients and Healthy Controls

The gut microbiome genus level abundance profile is shown in figure 1. The gut microbiome profile of the recruited
patients and the healthy controls showed significant differences in beta diversity. Based on unweighted UniFrac
dissimilarity measurement of microbiota sample pairs, the patient and the healthy control groups showed different
community profiles (p < 10−6, PERMANOVA test with 1,000,000 random permutations). The stratified profiles can
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Figure 1: Genus level abundance profiles.

Table 1: IBS-SSS scores (mean ± standard deviation) before and after the interventions.

Pre-intervention Post-intervention P-value (paired t-test)

Personalized nutrition 357.1 ± 18.2 232.5 ± 61.5 < 0.001
Control 363.1 ± 16.7 331.8 ± 42.9 < 0.02

be observed in the tmap visualization in Figure 2. Clear subgroupings between the IBS-cases and the healthy controls
can be observed from these topological maps. When bacterial taxa are considered individually, the most significant
differences between the IBS and healthy control groups are observed in Ruminococcaceae (p = 0.014, Mann-Whitney
U-test) and Clostridiaceae (p = 0.022, Mann-Whitney U-test) families and Ruminococcus (p = 0.023, Mann-Whitney
U-test) and Faecalibacterium (p = 0.0005, Mann-Whitney U-test) genera (figure 3,4).

Disease classification and microbiome derived IBS index scores

A machine-learning (ML) based classifier trained and tested on pre-interventional microbiota profiles exhibited a
strong classification performance. Using 5-fold cross validation on the held-out XGBoost classifier models, an average
ROC-AUC of 0.964 and an average classification accuracy of 0.91 were determined. The microbiome-derived IBS
index scores, which is the inferred disease probability measurements obtained from XGBoost classification models
were significantly different (p < 10−5, Mann-Whitney U-test), which can be seen in Figure 5.

Evaluating the IBS-index scores on the held-out validation cohorts, we observed that the score distributions of the
IBS-patients and the healthy controls differ significantly (p = 0.001, Mann-Whitney U-test), implying that the
machine-learned IBS-index is a strong indicator of the disease.

Clinical Evaluation of Personalized nutrition vs. control groups

The IBS-SSS evaluation for both pre-intervention and post-intervention conducted for both groups exhibited significant
improvement (p<0.02 and p<0.001 for the control and the personalized nutrition interventions respectively). It was
observed that the score improvement for the personalized nutrition group was significantly greater than the control
group (Table 1, Figure 6).
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Figure 2: Two-dimensional network visualization of the microbiota profiles using tmap network analysis (constructed
by Bray-Curtis metric). Two major enterotypes (up: Bacteroides dominant, down: Preveotella Dominant) nearly form
different disease subgroups. Left: network nodes labelled by disease phenotype. Right: SAFE enrichment analysis of
the disease scores. Blue-to-red indicates lower to higher IBS scoring.

Figure 3: Ruminococcaceae family are observed in higher abundance in IBS group (p-value 0.014, Mann-Whitney
u-test), where Clostridiaceae family is decreased in IBS patients (p-value 0.022, Mann-Whitney u-test)
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Figure 4: Ruminococcus genus is observed more abundantly in IBS group (p-value 0.023, Mann-Whitney u-test), where
Faecalibacterium is observed in significantly lower abundances in IBS patients (p-value 0.0005, Mann-Whitney u-test).

Figure 5: The microbiome scores evaluated for the healthy controls and the IBS patients.
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Figure 6: a) IBS-SSS scores for personalized nutrition intervention and IBS-SSS scores for the control intervention. b)
IBS-SSS score categories for personalized nutrition pre- and post-intervention. c) IBS-SSS score categories for the
control treatment pre- and post-intervention.
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Table 2: IBS-SSS score categories (mean ± standard deviation) before and after the interventions.

Personalized nutrition
Pre-intervention Post-intervention P-value (paired t-test)

Abdominal pain 76.4 ± 6.4 53.2 ± 15.0 < 0.001
Abdominal pain frequency 62.1 ± 12.0 37.9 ± 18.2 < 0.001

Distension 75.4 ± 7.2 42.9 ± 19.9 < 0.001
Dissatisfaction with bowel habits 75.0 ± 9.3 53.6 ± 18.3 < 0.01

IBS-related quality of life 68.2 ± 10.3 45.0 ± 21.7 < 0.001
Control

Pre-intervention Post-intervention P-value (paired t-test)
Abdominal pain 77.3 ± 6.7 72.7 ± 6.2 0.043

Abdominal pain frequency 66.4 ± 12.3 57.3 ± 17.1 0.074
Distension 71.4 ± 9.6 59.1 ± 17.7 0.041

Dissatisfaction with bowel habits 74.1 ± 6.0 67.3 ± 18.6 0.246
IBS-related quality of life 74.1 ± 7.6 75.5 ± 7.5 0.391

Figure 7: Faecalibacterium relative abundances for the personalized nutrition group pre- and post-intervention.

Considering each 5 items of IBS-SSS evaluated, the personalized nutrition was observed to be effective on all,
whereas abdominal pain frequency, dissatisfaction with bowel habits, and IBS-related quality of life were not changed
significantly in the control group (Table 2).

Post-interventional changes in microbiota profiles

After 6-weeks of intervention, a major shift in microbiota profiles in terms of alfa- or beta-diversity was not observed in
both groups. A trend of decrease in Ruminococcaceae family for the personalized nutrition intervention group was
observed, however this change was not observed to be statistically significant (p = 0.17, paired t-test). A statistically
significant increase in Faecalibacterium genus was observed in the personalized nutrition group (p = 0.04), where no
meaningful change was reported for the control group (p = 0.63) (figure 7).

Both Bacteroides rich and Preveotella rich enterotypes were represented in both personalized nutrition and control
intervention groups without significantly different Bacteroides and Prevotella abundances (p = 0.34 for Bacteroides and
p = 0.36 for Prevotella, Mann-Whitney u-test). However, we have observed increase in Bacteroides for the personalized
nutrition group (p > 0.05) while an increase trend in Prevotella (p = 0.057) was noticeable in the control group. Along
with that a significant increase for the putatively probiotic genus Propionibacterium (p = 0.027) was apparent in the
personalized nutrition group where no such increase was observed in the control group.
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Figure 8: a. Microbiome scores for personalized nutrition intervention, b. Microbiome scores for the control intervention.

Table 3: Microbiome scores (mean ± standard deviation) before and after the interventions.

Pre-intervention Post-intervention P-value (paired t-test)

Personalized nutrition 0.89 ± 0.04 0.62 ± 0.18 < 0.001
Control 0.87 ± 0.05 0.79 ± 0.11 0.03

The evaluation of microbiome-derived IBS index scores

The microbiome derived IBS index scores both improved towards lower scores in both intervention groups. The
improvement in the personalized nutrition group was observed to be greater (Table 3, Figure 8). In order to observe the
correlation between microbiome derived IBS scores with the clinical evaluations (i.e. IBS-SSS), we have measured the
explained variance of IBS-SSS with respect to microbiome scores (Figure 9). Including the corresponding scores of
both intervention groups an R2 score of 0.652 was found, indicating that the microbiome scores contribute significantly
to the explaination of the clinical scores.

4 Discussion

Dietary habits constitute a strong driver of interpersonal variance in the gut microbiome composition, and its influence
prevails over that of genetics by most estimates [17]. In our study, we investigated the therapeutic effect of the
personalized diet on individual gut microbiome and the disease specific symptoms. The majority of IBS patients regard
diet as an important trigger for their gastrointestinal symptoms. Based on the subjective correlation with diet and
IBS symptoms, there many attempts to design specific diets for the relief of IBS-related complaints. Recent studies
indicate that low FODMAP diet relieves some of the IBS symptoms, such as abdominal gas, bloating, distension
and even abdominal pain [18]. Elimination of fermentable oligosaccharides, disaccharides, monosaccharides and
polyols (FODMAPs) is also recommended by the guidelines [19]. FODMAPs are sugars that ferment in the gut due to
inadequate digestion; common ones are lactose, fructose, fructans, and sorbitol. Foods containing FODMAPs include
wheat, some fruits and vegetables, corn syrup, and onions. Initial positive study of low FODMAP diet was performed
in IBS patients with a positive fructose breath test and without a control group [20]. Another randomized controlled
study compared low FODMAP diet with a typical Australian diet and they have found a 30% decrease in IBS-symptom
severity [21]. However, subsequent randomized trials failed to detect significant clinical differences between classical
IBS diets and low FODMAP diet. All the diets were nearly 50% effective in relieving IBS symptoms and low FODMAP
diet is not an exception [22].

Another important but neglected issue about these IBS diets is the diet-related gut microbial changes. In the last
decade, there are tremendous amount of studies on gut microbiome in IBS patients [23, 24, 25, 26, 27]. A recent
systematic review analyzed 24 studies mostly from Europe and North America. They have found that Bifidobacterium,
Faecalibacterium genus are decreased and Lactobacillaceae, Bacteroides, Enterobactericeae family are increased in
IBS [28]. In order to overcome the decreased levels of Bifidobacteria, prebiotic or sometimes probiotic supplements
might be advised to the IBS patients on low FODMAP diet. While this increases the abundance of Bifidobacteria, it has
some deleterious effects gut health in animal studies by disruption of mucosal barrier, increasing mucosal inflammation
and visceral hypersensitivity [29]. Rapid colonic fermentation is central to the identified mechanisms that include
injury from high luminal concentrations of short-chain fatty acids and low pH, and inflammatory effects of increased
endotoxin load and glycation of macromolecules [29].
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Figure 9: The plot shows the scatter and the marginal histograms of IBS-SSS and microbiome derived IBS scores. The
positive correlation is represented by the linear regression line.

Today the optimal diet for the treatment of IBS patients is lacking. The ideal diet should be effective on (at least) most
of the symptoms in IBS and maintain an eubiotic (or so said healthy) state of gut microbiome. It should be sustainable
and personalized.

Our study is the first attempt to reach these therapeutic goals in IBS. We used machine-learning for determining
personalized diet to modulate the IBS microbiota to an individually similar “healthy” state. In other words, we tried to
formulate a personalized microbiome modulating diet for patients with IBS-M. The gut microbiome genus level IBS and
healthy controls showed significant differences in beta diversity. When we look at the bacterial taxa, the most significant
differences between the IBS and healthy control groups were observed in Ruminococcaceae and Clostridiaceae families.
Ruminococcaceae was increased and Clostridiaceae was decreased in IBS group. In the genera level, Ruminococcus
was increased and Faecalibacterium was decreased in IBS group. In a recent systematic review, Ruminococcaceae
family and Faecalibacterium genus were not different in IBS vs healthy groups [28]. Although there are inconsistencies
between literature and our results, these differences might stem from geographic, cultural and dietary habits of patients.

The IBS-index scores on the held-out validation cohorts were different between IBS-patients and the healthy controls.
This implies that the machine-learned IBS-index is a strong indicator of the presence of disease. We detected significant
improvement in IBS-SSS values for both pre- and post-intervention periods. The score improvement for the personalized
diet group of IBS patients was greater than the control group (Table 1 , figure 6). Each of the 5 items of IBS-SSS
evaluated, the personalized diet group showed significant improvement on all parameters. However, the control group
showed no improvement in abdominal pain frequency, dissatisfaction with bowel habits, and IBS-related quality of life
parameters. Böhn et al reported that low FODMAP and standard IBS diet were similar for relieving IBS-symptoms.
Abdominal pain frequency and IBS-related quality of life parameters were improved with low FODMAP diet in their
study, but the dissatisfaction with bowel habits did not improve [22]. They have noticed a nearly 50% response rate to
both diets. This study concluded that low FODMAP diet shows similar clinical benefit with standard IBS diets.
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The post-intervention gut microbiome changes were also different between groups. After 6-weeks of intervention, a
major shift in microbiota profiles in terms of alfa- or beta-diversity was not observed in both groups. A statistically
significant increase in Faecalibacterium genus was observed in the personalized nutrition group (p = 0.04), where no
meaningful change was reported for the control group (p = 0.63). Peter J et al. investigated the role of microbiome in
IBS-related psychological distress and found that depression was negatively associated with Lachnospiraceae abundance,
the distress, anxiety, depression, and stress perception were associated with higher abundances of Proteobacteria. And
the feeling of anxiety was characterized by elevated Bacteroidaceae [30]. In our study, we have observed an increase
in Bacteroides for the personalized nutrition group (p > 0.05) while an increase trend in Prevotella (p = 0.057) was
noticeable in the control group. The increase in Bacteroides group might affected the anxiety status of our IBS patients
in the intervention group and the improvement in the quality of life scores in IBS-SSS evaluation.

The microbiome derived IBS index scores both improved towards lower scores in both intervention groups. The
improvement in the personalized nutrition group was observed to be greater. IBS severity is also correlated with gut
microbiome features. Tap J et al. investigated the correlation between gut microbiota signatures and IBS severity.
They found that IBS symptom severity to be associated negatively with microbial richness, exhaled CH4, presence
of methanogens, and enterotypes enriched with Clostridiales or Prevotella species. This microbiota signature could
not be explained by differences in diet or use of medications [31]. In our study, post-interventional analysis showed a
increasing trend of Prevotella species (although statistically insignificant) in the control group.

As a result, our study is the first trial in the literature comparing the therapeutic effect of AI-based personalized diet for
patients with IBS-M. We had limited clinical and gut microbiome-related benefits after 6-weeks of intervention. Further
larger randomized controlled trials are needed to determine the safety, effectiveness and durability of this treatment.

References

[1] A Spinelli. Irritable bowel syndrome. Clinical Drug Investigation, 27(1):15–33, 2007.

[2] HL Dupont. evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on
therapeutic targets. Alimentary pharmacology & therapeutics, 39(10):1033–1042, 2014.

[3] Ian M Carroll, Tamar Ringel-Kulka, Jennica P Siddle, and Yehuda Ringel. Alterations in composition and diversity
of the intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterology
& Motility, 24(6):521–e248, 2012.

[4] Xiaojun Zhuang, Zhenyi Tian, Li Li, Zhirong Zeng, Minhu Chen, and Lishou Xiong. Fecal microbiota alterations
associated with diarrhea-predominant irritable bowel syndrome. Frontiers in microbiology, 9:1600, 2018.

[5] Ruben AT Mars, Mary Frith, and Purna C Kashyap. Functional gastrointestinal disorders and the microbiome:
What is the best strategy for moving microbiome-based therapies for functional gastrointestinal disorders into the
clinic? Gastroenterology, 2020.

[6] Mélanie Deschasaux, Kristien E Bouter, Andrei Prodan, Evgeni Levin, Albert K Groen, Hilde Herrema, Valentina
Tremaroli, Guido J Bakker, Ilias Attaye, Sara-Joan Pinto-Sietsma, et al. Depicting the composition of gut
microbiota in a population with varied ethnic origins but shared geography. Nature medicine, 24(10):1526–1531,
2018.

[7] Luisa W Hugerth, Anna Andreasson, Nicholas J Talley, Anna M Forsberg, Lars Kjellström, Peter Thelin Schmidt,
Lars Agreus, and Lars Engstrand. No distinct microbiome signature of irritable bowel syndrome found in a
swedish random population. Gut, 69(6):1076–1084, 2020.

[8] Heidi M Staudacher, Matthias Scholz, Miranda CE Lomer, Frances S Ralph, Peter M Irving, James O Lindsay,
Francesca Fava, Kieran Tuohy, and Kevin Whelan. Gut microbiota associations with diet in irritable bowel
syndrome and the effect of low fodmap diet and probiotics. Clinical Nutrition, 2020.

[9] J Gregory Caporaso, Christian L Lauber, William A Walters, Donna Berg-Lyons, Catherine A Lozupone, Peter J
Turnbaugh, Noah Fierer, and Rob Knight. Global patterns of 16s rrna diversity at a depth of millions of sequences
per sample. Proceedings of the national academy of sciences, 108(Supplement 1):4516–4522, 2011.

[10] J Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D Bushman, Elizabeth K
Costello, Noah Fierer, Antonio Gonzalez Pena, Julia K Goodrich, Jeffrey I Gordon, et al. Qiime allows analysis of
high-throughput community sequencing data. Nature methods, 7(5):335–336, 2010.

[11] Anthony Bolger and F Giorgi. Trimmomatic: a flexible read trimming tool for illumina ngs data. Bioinformatics,
30(15):2114–2120, 2014.

11

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21251434doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21251434
http://creativecommons.org/licenses/by-nc/4.0/


A PREPRINT - FEBRUARY 9, 2021

[12] Daniel McDonald, Morgan N Price, Julia Goodrich, Eric P Nawrocki, Todd Z DeSantis, Alexander Probst,
Gary L Andersen, Rob Knight, and Philip Hugenholtz. An improved greengenes taxonomy with explicit ranks for
ecological and evolutionary analyses of bacteria and archaea. The ISME journal, 6(3):610–618, 2012.

[13] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. Stochastic gradient boosted distributed decision trees.
In Proceedings of the 18th ACM conference on Information and knowledge management, pages 2061–2064, 2009.

[14] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining, pages 785–794, 2016.

[15] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 2623–2631, 2019.

[16] Isabel Beichl and Francis Sullivan. The metropolis algorithm. Computing in Science & Engineering, 2(1):65–69,
2000.

[17] Avner Leshem, Eran Segal, and Eran Elinav. The gut microbiome and individual-specific responses to diet.
Msystems, 5(5), 2020.

[18] Heidi M Staudacher and Kevin Whelan. The low fodmap diet: recent advances in understanding its mechanisms
and efficacy in ibs. Gut, 66(8):1517–1527, 2017.

[19] William D Chey, Jacob Kurlander, and Shanti Eswaran. Irritable bowel syndrome: a clinical review. Jama,
313(9):949–958, 2015.

[20] Susan J Shepherd and Peter R Gibson. Fructose malabsorption and symptoms of irritable bowel syndrome:
guidelines for effective dietary management. Journal of the American Dietetic Association, 106(10):1631–1639,
2006.

[21] Emma P Halmos, Victoria A Power, Susan J Shepherd, Peter R Gibson, and Jane G Muir. A diet low in fodmaps
reduces symptoms of irritable bowel syndrome. Gastroenterology, 146(1):67–75, 2014.

[22] Lena Böhn, Stine Störsrud, Therese Liljebo, Lena Collin, Perjohan Lindfors, Hans Törnblom, and Magnus Simrén.
Diet low in fodmaps reduces symptoms of irritable bowel syndrome as well as traditional dietary advice: a
randomized controlled trial. Gastroenterology, 149(6):1399–1407, 2015.

[23] Ana Durbán, Juan J Abellán, Nuria Jiménez-Hernández, Patricia Salgado, Marta Ponce, Julio Ponce, Vicente
Garrigues, Amparo Latorre, and Andrés Moya. Structural alterations of faecal and mucosa-associated bacterial
communities in irritable bowel syndrome. Environmental Microbiology Reports, 4(2):242–247, 2012.

[24] Simone Maccaferri, Marco Candela, Silvia Turroni, Manuela Centanni, Marco Severgnini, Clarissa Consolandi,
Piero Cavina, and Patrizia Brigidi. Ibs-associated phylogenetic unbalances of the intestinal microbiota are not
reverted by probiotic supplementation. Gut Microbes, 3(5):406–413, 2012.
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