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ABSTRACT 

The coronavirus disease 2019 (COVID-19) has had a global impact that has been unevenly 

distributed amongst and, even within countries. Multiple demographic and environmental factors 

have been associated with the risk of COVID-19 spread and fatality, including age, gender, 

ethnicity, poverty, and air quality among others. However, specific contributions of these factors 

are yet to be understood. Here, we attempted to explain the variability in infection, death, and 

fatality rates by understanding the contributions of a few selected factors. We compared the 

incidence of COVID-19 in New York State (NYS) counties during the first wave of infection 

and analyzed how different demographic and environmental variables associate with the 

variation observed across the counties. We observed that the two important COVID-19 metrics 

of infection rates and death rates to be well correlated, and both metrics being highest in counties 

located near New York City, considered one of the epicenters of the infection in the US. In 

contrast, disease fatality was found to be highest in a different set of counties despite registering 

a low infection rate. To investigate this apparent discrepancy, we divided the counties into three 

clusters based on COVID-19 infection, death rate, or fatality, and compared the differences in 

the demographic and environmental variables such as ethnicity, age, population density, poverty, 

temperature, and air quality in each of these clusters. Furthermore, a regression model built on 

this data reveals PM2.5 and distance from the epicenter are significant risk factors for high 

infection rate, while disease fatality has a strong association with age and PM2.5. Our results 

demonstrate, for the NYS, distinct contributions of old age, PM2.5, ethnicity these factors to the 

overall COVID-19 burden and highlight the detrimental impact of poor air quality. These results 

could help design and direct location-specific control and mitigation strategies

1 Introduction 

The impact of the COVID-19 pandemic on global health and economy has exceeded well over 

the severity of any other communicable diseases in recent history (Baldwin and Di Mauro, 2020; 
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Sarkodie and Owusu, 2020a). The pandemic has also stimulated and significantly accelerated 

global research into coronaviruses, airborne disease transmissions, and development of new 

vaccines.  Within a short span of time, scientists have succeeded in obtaining critical information 

on the structure and genomic sequence of the virus pathogen SARS-CoV-2, mechanism of virus 

infection to host, modes of transmission, and injury to host organs induced by the virus. The 

research findings have accelerated the development of vaccine and established preventive 

measures such as the use of masks. Simultaneously, there has been a significant effort to 

understand the association of COVID-19 to demographic and environmental factors, to explain 

the geographical or seasonal variability in disease burden (Goldstein and Lee, 2020; Karmakar et 

al., 2021; Perone, 2021; Sorci et al., 2020).  

Among the demographic variables, age, gender, ethnicity, and population density are reported to 

have significant impact on COVID-19. Fatality from COVID-19 was shown to significantly 

increase with advanced age.  A study conducted on hospitalized patients in the NYC area found 

84% of the total deaths occurred in people aged above 60 years (Mesas et al., 2020; Richardson 

et al., 2020). Moreover, males were seen to be more susceptible to suffer from COVID-19 

complications and fatality (Pradhan and Olsson, 2020). Although the mechanism underlying 

such predisposition of age and sex is not completely understood, presence of preexisting health 

conditions and a lowered immunity associated with higher age are thought to be two major 

factors (Mesas et al., 2020; Pradhan and Olsson, 2020; Richardson et al., 2020). Chronic 

comorbidities such as hypertension, ischemic heart disease, diabetes, and chronic obstructive 

pulmonary disease (COPD) are more common in older age and poses risk for severe outcomes 

(Lusignan et al., 2020; Richardson et al., 2020). Studies focused on the impact of COVID-19 on 

the ethnic composition also revealed certain ethnicities’ vulnerabilities to the disease. In the US, 

a disproportionately higher number of COVID-19 infections and mortality are observed among 

African American and Hispanic American relative to their share of population (Martinez et al., 

2020; Yancy, 2020). Socioeconomic disparities leading to increased exposure and lower access 

to healthcare are thought to contribute to such vulnerability. High population density is reported 

to increase the risk of COVID-19 spread (Arif and Sengupta, 2020; Copiello and Grillenzoni, 

2020), although it is not the sole determining factor as many dense metropolitan cities in Japan, 

South Korea, China, and Singapore have observed a low infection rate (Lee et al., 2020; Rocklöv 

and Sjödin, 2020).  

The association of environmental factors such as air quality and meteorological parameters to the 

adverse effects of COVID-19 has been investigated in multiple studies. Air pollution is of 

particular interest as, chronic exposure to air pollutants is linked to multiple chronic respiratory 

and cardiovascular diseases such as COPD, ischemic heart disease, and hypertension—diseases 

which are known to increase COVID-19 fatality (Feng et al., 2016b; Guan et al., 2016; 

Wellenius et al., 2012). Additionally, air pollution substantially increases the risk of respiratory 

infections including viral infections (Chauhan and Johnston, 2003; Feng et al., 2016a). Fine 

particulate matter in the air, especially PM2.5 (particulate matter with aerodynamic diameter 2.5 

µm or less) have been linked to many of these pollution-mediated health effects (Brook et al., 

2010; Hopke et al., 2019; Xing et al., 2016). Early reports indicate a positive association of 

PM2.5 with both COVID-19 transmission and fatality (Gupta et al., 2020; Lolli et al., 2020; 

Pozzer et al., 2020; Wu et al., 2020). Analysis of meteorological factors based on the data from 
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30 Chinese cities revealed low temperature, less diurnal temperature variation, and low humidity 

favors the transmission of COVID-19 infection (Liu et al., 2020). This finding was supported by 

a larger scale study using data from the top 20 countries with infections, and further claimed low 

wind-speed, surface pressure, and precipitation to increase the risk of disease spread (Sarkodie 

and Owusu, 2020b). 

The impact of COVID-19 in infection or fatality shows a wide variation across countries or even 

between different regions within a country (Auger et al., 2020; Miller et al., 2020). The current 

body of research strongly suggests the influence of both demographic and meteorological factors 

underlying such differences; however, their relative contribution is not well understood. While 

the availability of such information will be extremely useful to develop preventive and 

mitigative strategies, wide variability in multiple other factors such as testing and screening 

strategies, healthcare infrastructure, and socio-cultural practices would play as confounding 

variables and hinder such analysis. Considering such limitations, in this work, we conducted our 

study using data from New York State (NYS). NYS offers a wide range of variation in its 

demographic and environmental landscapes with urban, population-dense, ethnically diverse 

counties near NYC to many rural, white-dominated, population-sparse counties located 

elsewhere. However, state-wide policies help to reduce the differences due to the confounding 

factors mentioned above. Using publicly available data, we grouped the counties into clusters 

based on COVID-19 infection, death, or fatality, and investigated their association with various 

demographic and environmental variables. Furthermore, regression models were built to 

understand the relative contribution of these risk variables on COVID-19 infection, death, and 

fatality. 

2 Methods 

2.1 Study Area, Data Source, and Variables 

For this study, we acquired the infection and death count from COVID-19 data for all 62 

counties in the NYS from publicly accessible information available at Syracuse.com. The data is 

from March 1, 2020 and May 16, 2020. The population estimates for each county were obtained 

from the 2018 US Census Bureau’s American Community Survey (ACS) website 

(https://www.census.gov/programssurveys/acs) (CDC and Team, 2020; Roser et al., 2020). 

Infection and mortality rates from COVID-19 were calculated by dividing the infection and 

death counts by the total population for the county, respectively, and expressed as number per 

100,000 population. The case fatality rate (CFR) was obtained by dividing the death count by 

infection count and presented as number of deaths per 10,000 infected population. In addition to 

the total population, the ACS census database was used to collect the following information for 

each county:(1) Area; (2) population with age ≥ 55 years; (3) poverty levels; (4) Hispanic 

American population (Martinez et al., 2020); and (5) African American population (Yancy, 

2020). From this information (1) population density (population/square mile), (2) proportion of 

population with ≥ 55 years (expressed as %), (3) proportion of Hispanic American (expressed as 

%), and (4) proportion of African American (expressed as %) population was calculated for each 

county. All factors except population density and distance from the epicenter were converted to 

percentages by county. The nursing home locations across the NYS counties were obtained from 

the Department of Health and Human Services. The data was retrieved through ArcGIS Map 
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10.7.1 (Monmonier and Giordano, 1998). The distances of a county from Manhattan (considered 

as the disease epicenter) were calculated by measuring the distance between the centroids of two 

locations using ArcGIS Map 10.7.1 software. The temperature and Air Quality Index (AQI) 

information obtained from Environmental Protection Agency (EPA) measurements available 

through the United States EPA website (http://www.epa.gov/ttn/airs/aqsdatamart). The monthly 

average PM2.5 estimates over the entire US were made at 0.1o X 0.1o grid resolution through a 

combination of satellite-derived estimates, ground based measurements, and their statistical 

fusion through a geographically weighted regression model (Donkelaar et al., 2019). This data 

was further aggregated to the geographical confinement of a county and temporally averaged for 

the years 2000 – 2016 (Wu et al., 2020). This county-specific, temporally averaged PM2.5 data 

was used in this study. 

 

Table 1. Publicly available data sources used in this study. 

 

Data  Source 

Covid-19 cases & deaths Coronavirus in NY: Cases, maps, charts, and resources  

(https://www.syracuse.com/coronavirus-ny/) 

Population estimates & 

demographics 2018 

US Census Bureau’s American Community Survey (ACS) 

 (https://www.census.gov/programs-surveys/acs) 

Temperature & air quality 

index 

EPA (http://www.epa.gov/ttn/airs/aqsdatamart) 

Nursing homes locations The Department of Health and Human Services (HHS)  

(https://www.arcgis.com/home/item.html?id=b3813b2d3a054c378247bf3

2bcd8d203)  

Satellite PM2.5 estimates Air pollution and COVID-19 mortality in the United States, Harvard 

University 

(http://github.com/wxwx1993/PM_COVID) 

 

2.2 Statistical Analyses 

2.2.1 K-Means Clustering:  

The counties of NYS were classified into categories using k-means clustering technique. They 

were partitioned into three disjoint clusters based on their infection and mortality rate to identify 

any common pattern among the counties within a cluster. For the implementation of clustering 

algorithm, the value of k was set in advance along with the assignment of initial centroid 

positions for the clusters (Fahim et al., 2006). The algorithm started with the random 

initialization of the positions of centroids and was followed by two steps. The first step assigned 

each sample to its nearest centroid. The second step created a new centroid by taking the mean 

value of all the samples assigned to each previous centroid. The difference between the old and 

the new centroids were computed, and the algorithm repeated these last two steps until this 

difference was less than a threshold. The model used Euclidean distance for the calculation of 
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the distance and the threshold considered was 0.0001. In the end, the centroids were fixed, did 

not move anymore, signifying the convergence criterion for clustering and resulted in three 

distinct clusters. For the fatality group, cumulative positive cases and cumulative deaths were 

collected from each county until 16th May 2020. The number of positive cases per 100K 

population and number of deaths per 10,000 positive cases were used in k-means clustering 

technique, considering them as two dimensions. Three distinct clusters were identified in the 

CFR group. 
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Figure 1. Infection and death from COVID-19 in NYS counties (data till May 16, 2020). (A-B) 

Infection rates (A) and death rates (B) rates of individual counties are shown; counties are 

further grouped into three clusters using k-means clustering technique. (C) Maps of NYS 

showing the locations of counties included in each of the clusters.  

 

2.2.2 Tests for Significance:  

The descriptive analysis was performed for all the parameters considered in this study. Statistical 

comparisons between the demographic and environmental variables in clusters were performed 

using Kruskal-Wallis (KW) test, a non-parametric equivalent of one-way analysis of variance 

(ANOVA), since the variables were non-normally distributed. Once the KW test statistic was 

found to be significant, multiple comparisons were conducted using Mann-Whitney U test after 

making the Bonferroni corrections. All analyses used 2-sided statistical tests and P < 0.10 was 

considered as significant. 

2.2.3 Autoregressive Integrated Moving Average (ARIMA) Model:  

An ARIMA model was used to analyze the multi-year time-series data of temperature and AQI 

to reduce noise and obtain better estimates. In ARIMA model, future value of a variable is 

predicted by a linear combination of past values and errors (Hyndman and Athanasopoulos, 

2018). The model is often expressed as ARIMA (p, d, q), where p, d, and q represent the order of 

auto-regression, the degree of trend difference, and the order of moving average, respectively. 

The model is essentially a combination of three parts: (1) The first part is the auto-regressive 

model, which uses the linear combination of past values of the variable to forecast the next value 

and referred as an AR(p) model, an autoregressive model of order p. (2) The second part is the 

integrated (I), which is computed by taking the difference between the consecutive observations 

to make the data stationary. (3) The third part is the moving average (MA) model, referred as 

MA(q) and equivalent to a regression model that involves past forecast errors as predictors.  

Augmented Dickey-Fuller (ADF) unit-root test was used to estimate the stationarity of each time 

series data that is the absence of fluctuation or periodicity with time. To build ARIMA models 

for temperature and AQI, data collected by EPA over a span of 5 years (2015-2019) were used. 

Outdoor temperature recorded hourly and AQI recorded daily were first converted into weekly 

data. ARIMA model requires stationary time series meaning the time series shows no fluctuation 

or periodicity with time. To this effect, stationarity of the data was confirmed by ADF test prior 

to use for model building. Three models using each of three rates were created with 95% 

confidence bands for each of the three clusters defined in this study. The model goodness of fit 

was evaluated by calculating the Akaike information criterion (AIC) for each model. 

2.2.4 Regression Models:  

Variables for the regression models were first evaluated for normality of distribution by visual 

inspection of histograms followed by the Shapiro-Wilks test for normality. The univariate 

method of outlier detection was used to eliminate outliers in the predictors. Correlation between 

variables was examined by constructing correlation matrices  
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Figure 2. (A) Scatter plot showing the relationship between COVID-19 infection and death 

rates in NYS counties. (B) Fatality rate is plotted against infection rate for each county; the 

counties are further grouped into 3 clusters using two-dimensional k-means clustering method. 

(C) Distribution of counties from each cluster when sorted by fatality rate (left) and their 

location in the NYS map (right). Locations of nursing homes are also depicted in the map. 

 

and evaluating Pearson’s correlation coefficients between the predictors. Multicollinearity 

between the independent variables was assessed using the variance inflation factor (VIF), which 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.22.21252262doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.22.21252262


   
 

8 
 

measures the inflation in the variances of the parameter estimates due to multicollinearity. An 

upper cut-off value of VIF for predictor variables was set as 5 to minimize the contribution of  

multicollinearity in our model (Chatterjee and Simonoff, 2013). A stepwise forward selection 

procedure was implemented to evaluate the relative contribution of predictor variables for 

infection, death, and fatality from COVID-19. The forward selection algorithm for stepwise 

regression starts with an empty model, and one variable is added at a time along with the 

measurement of its accuracy. This process is repeated until all variables are incorporated into the 

model. The goodness of the model is interpreted by the adjusted R2 value and the contribution of 

an individual variable is assessed from the order the variable was entered in the model. The 

residuals of the regression models were checked for model adequacy and outliers were removed 

when needed.  

All analyses were performed using version 3.6.9 of the Python programming language.  

3 Results 

3.1 Distribution of COVID-19 in NYS counties 

The infections and deaths from COVID-19 between March 1, 2020 and May 16, 2020 for all 62 

counties in the NYS were included in the analysis. This time window roughly corresponds to the 

first COVID-19 wave observed in NYS. The counties were classified into three distinct clusters 

based on infection and death rates calculated for each of those counties using k-means clustering 

technique. Cluster 1 includes counties with a high infection or mortality rate, cluster 3 

incorporates counties with a low rate, and cluster 2 being the intermediate between the other two 

(Figure 1A, 1B). We observed that the cluster 1 for infection rate, where the infection ranged 

2,500-4,000 per 100,000 population, consisted of 8 counties (Rockland, Westchester, Bronx, 

Nassau, Suffolk, Staten Island, Orange, and Queens), all located within close proximity in the 

downstate NY (Figure 1C). Cluster 2 was formed by 6 nearby counties, namely Ulster, Dutchess, 

Putnam, Manhattan, Sullivan, and Brooklyn (Figure 1C). The counties of upstate NY fell in the 

cluster 3 where the infection rate was <500 per 100,000 population, well below the other two 

clusters. The clusters for death rate showed a similar distribution across the NY states. Four 

counties in downstate NY, namely Bronx, Queens, Rockland, and Brooklyn were included in the 

cluster 1 with death rate ranging from 175 to 200 per 100,000 population (Figure 1B, 1C). Of the 

remaining counties, 6 neighboring counties belonged to cluster 2, and the rest of upstate counties 

were included in the cluster 3 with a death rate <50 per 100,000 population. Visual inspection 

revealed higher COVID-19 death rates are from the counties located in downstate NY (Figure 

1C). 

A similar pattern in the distribution of COVID-19 infection and death rates among NYS counties 

suggests an association between these two variables, which was confirmed from the scatter plot 

(Figure 2A) and a strong positive correlation (Pearson’s correlation; r = 0.92, P < 0.0001). The 

observation suggests that the number of infections in a county is a key factor influencing the 

number of COVID-19 deaths.  
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Figure 3. Association of demographic variables with COVID-19. For infection, death, and 

fatality from COVID-19, (A) population density, (B) age (> 55 yr), (C) African American 

population, (D) Hispanic American population, (E) population below poverty line, and (F) 

distance from epicenter were compared among three clusters. Horizontal bars represent 

medians. ***P < 0.01, **P < 0.05, *P < 0.10, NS not significant (Kruskal-Wallis test followed 

by Mann-Whitney U test with Bonferroni corrections). 

 

Even though we observed a strong correlation between the infection and death rates, this data 

does not provide information about the disease fatality, defined as the proportion of deaths 

occurring from infections. When the fatality rate (expressed as deaths per 10,000 infections) was 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 24, 2021. ; https://doi.org/10.1101/2021.02.22.21252262doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.22.21252262


   
 

10 
 

calculated for all counties and plotted against the infection rate, a distinct pattern of relationship 

between these two variables was found (Figure 2B). We observed that the counties with a high 

fatality rate had a relatively low infection rate while the counties with a high infection rate had a 

relatively low fatality rate. In accordance, when the counties were divided into three clusters on 

the basis of infection and fatality rate using a two-dimensional k-means clustering method, we 

obtained clusters with the following features: (1) High fatality and low infection rate (cluster 1); 

(2) high infection and low fatality rate (cluster 2); (3) low infection and low fatality rate (cluster 

3). Interestingly, the locations of the counties included in cluster 1 (Hamilton, Steuben, Tioga, 

Yates, Orleans, and Warren) were distributed across the NYS (Figure 2C). The counties in 

cluster 2 were all in proximity and located near NY city, although in term of fatality rate, they 

were interspersed with cluster 3 (Figure 2C). These results suggest that various risk factors for 

COVID-19 have a differential contribution on infection and fatality. 

3.2 Impact of demographic factors on COVID-19  

Multiple studies have shown the association of demographic variables with COVID-19 infection 

and outcome (Goldstein and Lee, 2020; Karmakar et al., 2021; Perone, 2021; Sorci et al., 2020). 

We selected five well-known demographic risk factors namely, population density, age 

(percentage of people with age above 55 yr), ethnicity (percentage of African American and 

Hispanic American population), and poverty (percentage with below poverty line) to study how 

these variables varied across NYS counties. Additionally, we considered the distance from the 

disease epicenter, measured as the distance of a county from Manhattan. Figure 3 shows these 

variables plotted against counties organized in three clusters as described in the previous section. 

Each variable demonstrated a characteristic pattern of distribution among the clusters. KW test 

followed by multiple comparison was further performed for statistical difference.  

The trends for most demographic variables followed a similar pattern for infection and death 

clusters except for poverty. For population density and ethnicity (African American or Hispanic 

American) median values showed a decreasing trend from cluster 1 to cluster 3, while for age 

and the distance from epicenter an opposite trend was observed (Figure 3). Furthermore, the 

difference between clusters 1 and 2 was not significant for these variables but their difference 

with cluster 3 was found to be significant (except between clusters 2 and 3 for age). 

Interestingly, for the percentage of the population below the poverty line, the highest median 

value is observed in cluster 2 for the infection group, and in cluster 1 for the death group. The 

median values in cluster 3 was intermediate both infection and death groups, suggesting a more 

complex role of poverty on COVID-19 infection and mortality than other demographic 

variables.  

The clusters in the fatality group demonstrated a different pattern of association with 

demographic variables. For all variables (except poverty), the median values of cluster 2 were 

more distant than both clusters 1 and 2, with the values being significantly higher for population 

density and ethnicity, and significantly lower for age and the distance from epicenter (Figure 3). 

While most of these variables’ median values were in proximity for clusters 1 and 2, percentage 

of population with age over 55 yr was significantly higher in cluster 1 than cluster 2 (36.55 vs. 

33.71), conforming with the existing literature that older age contributes to higher disease 
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fatality. Overall, this analysis suggests the role of demographic structure towards the extent of 

observed infection, death, and fatality from COVID-19. 

 

Figure 4. ARIMA time series analysis of temperature (A) and air AQI (B) from weekly EPA 

data (2015-2019). Predicted values with 95% confidence band for one year, starting from 

January are shown in the plots. EPA sites for the clusters were located in representative 

counties for each cluster. Abbreviations: ARIMA, autoregressive integrated moving average; 

AQI, air quality index. 

 

3.3 Impact of environmental factors on COVID-19  

Several recent studies indicated environmental factors such as air pollution and temperature can 

play a role on COVID-19 transmission and severity (Li et al., 2020; Wu et al., 2020). Therefore, 

we investigated if temperature and air pollution have any association to the differences observed 

in COVID-19 landscape across the NYS counties. Temperature and AQI data were collected for 

the years 2015-2019 from one EPA site representative for each cluster. To better understand the 

differences of these variables between the clusters, ARIMA models were constructed from time 

series data. Figure 4 shows ARIMA models of predicted values with 95% confidence bands for 

temperature and AQI, with the plots comparing models for clusters based on infection, death, or 

fatality. The low and comparable AIC values for all conditions (Table S1 and S2) confirm the 

model robustness. Although the model predicted temperature for cluster 3 was lower than other 

two clusters, considerable overlap of the confidence bands prevented inferring an association 

with temperature (Figure 4A). Similarly, the confidence bands of the models for temperature in 

fatality clusters also demonstrated a substantial overlap. The AQI models showed a larger 

separation of cluster 3 from clusters 1 and 2 for infection and death groups with predicted AQI 

values for cluster 3 was substantially lower than that of the other two clusters. The AQI values in 

the clusters for fatality group also demonstrated a broad separation with values for cluster 1 was 
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found to be intermediate between clusters 2 and 3. Thus, the analyses of data from EPA suggest 

COVID-19 in NYS is linked to poor air quality but not with outdoor temperature.   

 

Figure 5. Average PM2.5 values of NYS counties estimated from satellite data (2000-

2016) are  compared between the clusters based on COVID-19 infection, death, and 

fatality rates. Horizontal lines represent median values. ***P < 0.01, **P < 0.05, *P < 

0.10, NS not significant (Mann-Whitney U test with Bonferroni corrections). 

EPA sites provide accurate measurement of air quality, however, there are relatively few 

sampling sites across NYS. To understand the variability of air quality among counties, we used 

PM2.5 values estimated from satellite data over a time period of 2000-2016 (Wu et al., 2020). The 

findings from satellite data overall corroborate well with the observations from EPA data. PM2.5 

of cluster 3 was significantly lower than both clusters 1 and 2 for COVID-19 infection and 

death, with no significant difference between the latter two. For the fatality group, the PM2.5 of 

cluster 1 (high fatality, low infection) was similar to cluster 3 (low fatality, low infection), both 

being significantly lower than cluster 2, which includes counties with high infection but lower 

fatality rate.           

3.4 Relative contributions of risk factors on COVID-19 infection, death, and fatality  

Since clustering of counties based on COVID-19 infection, death, or fatality demonstrated a 

distinct pattern of association with demographic or environmental risk factors, we wanted to 

further elucidate the role of these variables on the specific aspects of COVID-19 burden.  Six 

risk factors namely, age above 55 yr, ethnicity (African American and Hispanic American 

population), poverty, population density, distance from the epicenter, and PM2.5 were considered 

as predictor variables and multivariate regression model with forward “stepwise” selection was 

used for analysis. Three separate models were constructed using infection, death, and fatality 

rate as dependent variables to understand the relative contribution of the risk factors for each of 

these outcomes. Rockland county was excluded from the models as it was identified as an outlier 

while performing residual analyses of the regression output. 

Multicollinearity among the predictor variables was tested before their incorporation in the 

regression model. Ethnicity and PM2.5 were found to have strong positive correlation (r = 0.81, P 
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< 0.001, Figure 6A). Further, VIF calculated for risk variables showed ethnicity to have a value 

higher than the acceptable cut-off value of 5 for infection and death rates, and thus not included 

in the final models. The models revealed distinct contributions of the risk factors to infection, 

death, and fatality rates (Figure 6B). PM2.5 and distance from the epicenter were found to be the 

two most important predictors for infection and death.  For infection rate, distance from the 

epicenter was the strongest predictor with an adjusted R2 value of the model was 0.60 when 

considered as a sole contributor, with the value increased to 0.71 upon adding PM2.5 as a 

predictor variable (Figure 6B, C). Similarly, PM2.5 was the strongest predictor for death rate with 

an adjusted R2 value of 0.69 considered alone and the value increased to 0.73 following the 

inclusion of distance from the epicenter. Adding population density, age, and poverty to the 

regression model only minimally increased the adjusted R2 value, with the final values being 

0.74 and 0.73 for infection and death rates, respectively.  

 

 

Figure 6. Regression analysis to assess relative contribution of risk factors on COVID-19. (A) 

Correlation matrices between demographic risk variables and PM2.5 for infection, death, and 

fatality. Pearson’s correlations coefficients between the variables are shown with 

corresponding P values are mentioned in the parentheses. (B) Stepwise regression model with 

forward selection after removal of the risk factors having strong multicollinearity. (C) Table 

showing the P values of the regression coefficients from the analysis. Abbreviations used: 

Density, population density (per mi2); Ethnicity, African American and Hispanic American 

(%); Poverty, population below poverty line (%); Distance, distance from the epicenter (mi). 
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In contrast to infection and death rates, in the regression model for fatality rate, age over 55 was 

found to be the strongest predictor, followed by PM2.5, and distance from the epicenter (Figure 

6C). However, the adjusted R2 value for the final model was 0.26, suggesting the goodness of 

model fit for fatality rate is much lower than for infection and death rate. Together, the 

regression analysis helped to understand the relative impact of various risk factors on different 

aspects of COVID-19 burden. 

4 Discussion 

Our analysis has shown a wide heterogeneity in the infection, death, and fatality rates from 

COVID-19 among the counties in the NYS during the first pandemic wave. Infection was found 

to be strongly correlated with death but not with fatality. We observed that infection, death, and 

fatality rates have a significant association with air quality and various demographic factors. 

Furthermore, regression analysis study has revealed a differential contribution of these factors on 

the infection, death, and fatality rates. These results could help to better understand the impact of 

environmental and demographic factors on COVID-19 in NYS.   

An association of PM2.5 with infection, death, and fatality rates is observed in our analysis. This 

finding is in agreement with studies focused on the role of outdoor air pollution on COVID-19 

transmission and health outcomes (Benmarhnia, 2020; Gupta et al., 2020; Lolli et al., 2020; 

Pozzer et al., 2020; Wu et al., 2020). PM2.5 has been reported to be positively correlated with 

both increased COVID-19 transmission and mortality rates. The effect on mortality is attributed 

to chronic exposure to higher PM2.5, which can lead to multiple respiratory and cardiovascular 

illnesses (Benmarhnia, 2020; Pozzer et al., 2020; Wu et al., 2020). While increased virus 

transmission can be partly attributed to the higher susceptibility to infection due to the presence 

of comorbid conditions, acute lung inflammation because of air pollution could also play a role. 

It is to be noted that the average air quality across NYS is good, with the average PM2.5 values 

meeting the safe limit (< 12 µg/m3) set by EPA, the association with adverse effects of COVID-

19 can be clearly discerned. Although outdoor air temperature is also reported to have an 

association with COVID-19 transmission (Lolli et al., 2020), such association was not evident in 

NYS data.   

Interestingly, we observed a strong correlation between PM2.5 and the percentage of the 

population belonging to African American or Hispanic American ethnicity, indicating they are 

exposed to a higher level of PM2.5 than the average population. Multiple studies have reported 

that these two ethnicities in the US are at disproportionately higher risk to be affected by 

COVID-19 (Cordes and Castro, 2020; Li et al., 2020; Martinez et al., 2020; Yancy, 2020). 

Factors related to socioeconomic inequities such as the greater risk of virus exposure from 

professional demand or living in crowded accommodation, higher prevalence of chronic 

comorbidity, and restricted access to healthcare are thought to underlie such differences (Patel et 

al., 2020). Our results suggest that exposure to air pollution could be a contributor to further 

increase this disparity. Interestingly, low socioeconomic status is known to pose a greater risk 

for COVID-19 exposure; however, for NYS, we observed counties in cluster 3 for infection and 

death rates to have a higher proportion of people living below the poverty line than the other two 

counties. That cluster 3 counties have a relatively lower risk from other demographic and 

environmental variables could explain this apparent discrepancy. Indeed, when considering the 
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population of NYC alone, poverty and COVID-19 are found to be positively correlated (Cordes 

and Castro, 2020).      

Two demographic variables—distance from the epicenter and age above 55 years—have 

demonstrated substantial relative contribution in our regression models. However, their 

influences are distinct. The distance of counties from the disease epicenter is inversely 

associated with COVID-19 infection and death rate. This finding is not unusual as the disease 

spread would be facilitated by the population mobility with the highest effect on the neighboring 

regions. On the other hand, in the regression model of fatality, age over 55 years plays is found 

to be the most significant independent variable. Fatality from COVID-19 depends on the health 

of patients where age plays a crucial role. Increased risk of the aged population to complications 

and death from COVID-19 is observed across the world, and multiple factors including the 

existence of chronic comorbid conditions and a weaker immune system are thought to underlie 

such vulnerability.  

Grouping the counties into clusters not only helped to visualize how NYS counties are impacted 

by specific COVID-19 adversities but also allowed easier comparison of their association with 

various demographic and environmental risk variables. While the regression models have further 

helped to understand the relative contribution of these risk variables on the disease, it should also 

be noted that the adjusted R2 value of the regression model for fatality rate is substantially lower 

than the models for infection and death rate (0.26 vs. 0.74 and 0.73). This difference suggests the 

need to include additional variables in our model that might be critical in determining COVID-

19 fatality. Such variables could be measures pertaining to the outcome of an infected individual, 

including the availability and access to healthcare resources for advanced COVID-19 

management and public awareness for early diagnosis and treatment.  

Conclusions 

We have analyzed here the impact of contextual factors on COVID-19 in NYS during the first 

pandemic wave. Air pollution and multiple demographic factors are found to have a conspicuous 

but distinct association with the variability of COVID-19 burden observed across the counties. 

Exposure to a higher level of PM2.5 demonstrated association with all COVID-19 estimates 

considered, while the distance from the epicenter and increased age are predominantly related to 

disease transmission and severity of health outcome, respectively. The regression model helped 

to estimate the relative contribution of these factors in infection. Understanding the interplay of 

these risk variables would help in better assessment of the disease impact in the population and 

in developing preventative or mitigative measures to contain infection.  
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