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Abstract 
We describe age-gender unbiased COVID-19 subphenotypes regarding severity patterns including 
prognostic, ICU and morbimortality outcomes, from patterns in clinical phenotypes, habits and 
demographic features. We used the Mexican Government COVID-19 open data including 778692 SARS-
CoV-2 patient-level data as of September 2020. We applied a two-stage clustering approach combining 
dimensionality reduction and hierarchical clustering: 56 clusters from independent age-gender analyses 
supported 11 clinically distinguishable meta-clusters (MCs). MCs 1-3 showed high recovery rates (90.27-
95.22%), including healthy patients of all ages, children with comorbidities with priority in medical 
resources, and young obese, smoker patients. MCs 4-5 showed moderate recovery rates (81.3-82.81%): 
patients with hypertension or diabetes of all ages, and obese patients with pneumonia, hypertension and 
diabetes. MCs 6-11 showed low recovery rates (53.96-66.94%): immunosuppressed patients with high 
comorbidity rate, CKD patients with poor survival and recovery, elderly smokers with COPD, severe diabetic 
elderly with hypertension, and oldest obese smokers with COPD and mild cardiovascular disease. Group 
outcomes conformed to the recent literature on dedicated age-gender groups. Combination of unhealthy 
habits and comorbidities were associated with mortality in older patients. Centenarians tended to better 
outcomes.  Immunosuppression was not found as a relevant factor for severity alone but did when present 
along with CKD. Mexican states and type of clinical institution revealed relevant heterogeneity in severity, 
relevant for consideration in further studies. The resultant eleven MCs provide bases for a deep 
understanding of the epidemiological and phenotypical severity presentation of COVID-19 patients based 
on comorbidities, habits, demographic characteristics, and on patient provenance and type of clinical 
institutions, as well as revealing the correlations between the above characteristics to anticipate the 
possible clinical outcomes of each patient with a specific profile. These results can establish groups for 
automated stratification or triage towards personalized treatment enabling a personalized evaluation of 
the patient’s expected outcomes.  

Code available at: https://github.com/bdslab-upv/covid19-metaclustering 

Dynamic results visualization at: http://covid19sdetool.upv.es/?tab=mexicoGov 

Keywords: COVID-19, SARS-CoV-2, observational, heterogeneity, epidemiology, clustering, Mexico 

1 Introduction 
In Mexico, mid-January 2020 reported the first cases of COVID-19. In early March 2020, the novel severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was declared by the World Health Organization as 
a pandemic1. As of November 24, the Mexican nation already surpassed one million COVID-19 cases2.  

Medical institutions and researchers have been making a huge effort to describe specific COVID-19 risk 
factors and outcomes. Several studies have suggested potential COVID-19 subphenotypes, mainly within 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 3, 2021. ; https://doi.org/10.1101/2021.02.21.21252132doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/bdslab-upv/covid19-metaclustering
https://doi.org/10.1101/2021.02.21.21252132


specific comorbidities such as pulmonary diseases or diabetes3,4 or related to distinct genetic variants5. 
However, the Mexican population shows a particularly high prevalence of comorbidities, like hypertension, 
diabetes –a leading cause of death in 20206– and obesity, which is leading the population to particular and 
undesirable risks for severe coronavirus outcomes. It remains crucial an understanding of how severity 
patterns vary among Mexican patients to anticipate individuals' prognostic outcomes. 

This work describes the results of an unsupervised Machine Learning (ML) meta-clustering approach to 
identify potential subphenotypes of COVID-19 patients in Mexico from clinical phenotypes and 
demographic features. Stratification on gender and age groups was included to reduce potential 
confounding factors since age and gender are highly correlated with comorbidity, habits and mortality.  By 
using a large cohort of more than 700,000 patient-level cases, this is probably the largest cluster analysis 
about coronavirus patient-level cases to date. Other studies proposed unsupervised ML methods for 
aggregated population data7, CT image analyses8,9, molecular-level clustering10, or coronavirus-related 
scientific texts11. However, to our knowledge, few studies provided to date results from unsupervised ML 
on patient-level epidemiological data12,13,14. This work aims to describe age-gender unbiased COVID-19 
subphenotypes that can potentially establish target groups for automated stratification or triage systems 
to provide personalized therapies or treatments for the specific group severity patterns. 

2 Materials and methods 
2.1 Data 
We used the publicly available COVID-19 Open Data by the Mexican Government15. As of 2 November 2020, 
the dataset comprises a total of 2 414 882 cases including demographic, comorbidities, habits, and 
prognosis patient-level data, for both positive and non-positive cases.  

Figure 1 describes the study inclusion and exclusion criteria, as well as the Data Quality (DQ) assessment 
process outcomes in a CONSORT-like flowchart. The final sample included 778 692 positive cases. 

Figure 1. Dataset preprocessing flowchart. 
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We derived five outcome variables related with the prospective patient’s severity. First, the patient 
outcome, as deceased or not, from the date of death record. Second, the survival days since the date of 
symptoms. Third, the days from presenting symptoms to hospital admission. Lastly, we categorized the 
overall survival at 15 and 30 days after presenting symptoms.  

After assessment of potential temporal biases using temporal variability statistical methods16, and 
considering not significant temporal changes, we decided keeping the data from all the period of the study. 
The source variability assessment17 by comparing differences in data between Mexican states and the type 
of clinical institutions (TCIs) where patients received medical attention was left as a primary task for this 
study and is described in section 3.3.  

Table 1 shows the list of studied variables. The supplemental material, in sections 2 to 5, describes 
additional information on the DQ and variability analysis, the original dataset, as well as descriptive 
statistics of the sample and pregnancy influence in outcomes. 

Table 1. List of variables contained in the study case. Originally coded in Spanish, translated into English by the authors 
for this work.  

Variable Description Type (value/format) 
Sex Sex of the person Discrete (Male, Female) 
Age Age in years at the time of the admission Numerical Integer 

Pregnant Presence of pregnancy Discrete (Yes, No) 
Obesity Presence of obesity Discrete (Yes, No) 
Smoke Presence of smoking habit Discrete (Yes, No) 

Pneumonia Presence of pneumonia Discrete (Yes, No) 
Diabetes Presence of diabetes Discrete (Yes, No) 

COPD 
 

Presence of chronic obstructive pulmonary 
disease 

Discrete (Yes, No) 

Asthma Presence of asthma Discrete (Yes, No) 
INMUSUPR Presence of immunosuppression Discrete (Yes, No) 

Hypertension Presence of hypertension Discrete (Yes, No) 
CKD Presence of chronic kidney disease Discrete (Yes, No) 

Cardiovascular Presence of cardiovascular Discrete (Yes, No) 
Other disease Presence of other diseases Discrete (Yes, No) 
Hospitalized Whether a patient was hospitalized Discrete (Yes, No) 

Intubated Whether a patient was intubated Discrete (Yes, No) 
ICU 

 
Whether a patient had been in an intensive 

care unit 
Discrete (Yes, No) 

Other case contact Whether a patient was detected to have 
contacted with other coronavirus cases 

Discrete (Yes, No) 

Result_lab Coronavirus test result  Discrete (Positive SARS-
CoV-2, Non-Positive SARS-
CoV-2, Pending, Inadequate 
result, Not Applied) 

Admission_date The date when a patient was attended by 
the care unit (not necessarily hospitalized) 

Date (dd/mm/yyyy) 

Symptoms_date The date when a patient presented 
symptoms 

Date (dd/mm/yyyy) 

Death_date The date of death Date (dd/mm/yyyy) 
   

Entity_um The state where a patient received 
attention from medical unit 

Discrete 

Sector The type of institution of National Health 
System that provided medical care 

Discretea 

Outcomeb 

 
Death result of the patient (we used this to 

calculate mortality and recovery rate) 
Discrete (Deceased, Non-

Deceased) 
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Survival daysb 

 
The survival period for a patient from 
presenting symptoms to his/her death 

Numerical Integer 

Survival>15daysb 

 
Whether a patient survived more than 15 

days from presenting symptoms. 
Discrete (Yes, No) 

Survival>30days b 

 
Whether a patient survived more than 30 

days from presenting symptoms. 
Discrete (Yes, No) 

Survival>15days_deceasedb 

 
Whether a deceased patient survived more 

than 15 days from presenting symptoms. 
Discrete (Yes, No) 

Survival>30days_deceasedb 

 
Whether a deceased patient survived more 

than 30 days from presenting symptoms. 
Discrete (Yes, No) 

From Symptom to Hospital daysb 

 
The days that took for a patient from 

presenting symptoms to the hospitalization 
Numerical Integer 

aIMSS, SSA, ISSSTE, PRIVATE, PEMEX, STATE, SEMAR, SEDENA, IMSS-BIENESTAR, UNIVERSITARY, MUNICIPAL, RED CROSS, DIF. 
bVariables that were created by combining or transform other variables in the original dataset. See explanations in the “materials 
and method” section. See section 3 of supplemental material for the original dataset description. 
 

2.2 Methodology 
We applied a two-stage subgroup discovery approach. In the first-stage, we applied individual clustering 
analyses at stratified groups according to gender and age (<18, 18-49, 50-64, and >64 years) to reduce 
potential confounding factors –since age and gender are highly correlated with comorbidity, habits and 
mortality– followed by a Principal Component Analysis18  (PCA) and a locally estimated scatterplot 
smoothing19 (LOESS) model on the clusters features to explain their correlations and severity relationships. 
In the second-stage, in a wider perspective, we performed a clustering analysis on the resultant clusters 
from the first level by aggregating their clinical phenotypes and demographic features.  

Subgroup discovery was performed through a hierarchical clustering algorithm –using Ward’s minimum 
variance method with Euclidean squared distance20– fed by a dimensionality reduction algorithm  taking 
as input variables: obesity, smoking habit, pneumonia, diabetes, COPD, asthma, INMUSUPR, hypertension, 
CKD, cardiovascular, and other diseases. Dimensionality reduction is known to help in the process of 
clustering by compressing information into a smaller number of variables, making unsupervised learning 
less prone to overfitting21, as well as to facilitate further visual analytics. For each subgroup analyses, we 
implemented cluster analyses from 2 through 12 clusters. The proper number of subgroups were obtained 
by combining a quantitative approach using Silhouette Coefficient22 –which measures the tightness and 
separation of the objects within clusters, reflecting how similar an object is to its own cluster compared to 
other clusters– and a qualitative cluster analysis audited by the authors of this work, including medical, 
health informatics and ML experts from Spain and Mexico. We first selected the group of clusters that 
showed relatively better Silhouette Coefficient values, then adjusted the number for the most reasonable 
and clinically distinguishable groups regarding clinical phenotypes and demographic features. This process 
was supported by the pipelines and exploratory tool we developed in previous work23. Figure 2 summarizes 
the full methodology. 

The data processing and analyses were performed using RStudio (version 3.6) and Python (version 3.8). 
Temporal and source variability –DQ analyses– were performed using the EHRtemporalVariability16 and 
EHRsourceVariability17,24,25 packages. The methods developed in this work are available in our GitHub 
repository https://github.com/bdslab-upv/covid19-metaclustering. 
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Figure 2. Research methodology flowchart. 
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3 Results 
3.1 Meta-clustering analysis 
After evaluating the stratified clustering results, we selected the following number of clusters (k) for each 
specific age-gender group: <18-Male: k=5, <18-Female: k=4, 18-49-Male: k=7, 18-49-Female: k=7, 50-64-
Male: k=9, 50-64-Female: k=8, >64-Male: k=8, >64-Female: k=8. This led to a total number of 56 age gender 
clusters. By taking the features of each group and performing the second-stage meta-clustering analysis 
we established 11 clinically distinguishable meta-clusters (MCs). Section 6 of supplemental material 
describes the number of individuals for each age-gender cluster. 

Figure 3 describes the relationships between the features of the original 56 age-gender clusters through 
their principal components (Figure 3A), and provides the correspondence to their assigned meta-clusters 
(Figure 3B) and their LOESS delineations for the distinct severity outcomes (Figure 3C to 3H). 

The 56 clusters PCA analysis uncovered remarkable patterns and heterogeneity among clusters of different 
ages in both genders. Young adults showed prone to asthma and smoking habit; whereas elderly was prone 
to hypertension, diabetes, obesity, COPD, pneumonia, and CKD. The results also show that obesity and 
smoking habit –both positively correlated– are strongly separated from immunosuppression and other 
diseases –both positively correlated–, implying these two pairs of features are negatively correlated in the 
studied data subgroups. 

The LOESS models show that children took fewer days from presenting symptoms to hospitalization, 
showing higher ICU, intubation, and hospitalization rates than adults with similar conditions (Figure 3D, E, 
G, H). In contrast, meta-cluster 3 (MC3) –young obese cluster with moderate asthma and smoke rates– 
behaved inversely, showing that children, under similar clinical conditions, may receive priority regarding 
medical attention. 

Inspecting the relationship between the PCA and LOESS models shows that CKD decreases survival length 
significantly among deceased patients and increases intubation rates (Figure 3E, D). Mortality constantly 
increases from children to the elderly, but the most severe zones are inclined toward pneumonia, CKD, and 
COPD (Figure 3C) independently of the age groups. 

Figure 4 describes and quantifies the features of the 56 age-gender clusters and relates them to their MC, 
and highlights relevant patterns through simultaneously ordering rows and columns through a biclustering 
technique26. We confirm the children have a faster time from symptoms to hospitalization and are prone 
to ICU admission despite presenting similar clinical condition than adults (e.g., cluster <18M3 versus 50-
64F5). Regarding gender discrepancy, females showed a better Recovery Rate (RR) despite presenting 
similar clinical conditions than males (e.g., >64M1 versus >64F1). 

The phenotypes, demographic features and outcomes of each cluster group can be fully explored at 
http://covid19sdetool.upv.es/?tab=mexicoGov. 
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Figure 3. Principal component analysis (PCA) of the 56 age-gender clusters, meta-clustering results and LOESS-based 
severity delineations. (A) PCA from 56 age-gender stratified clusters; (B) scatterplot of the eleven MCs defined from 
the 56 clusters. (C-H) LOESS scatterplots regarding the severity of the eleven MCs among the 56 computed clusters. 
The LOESS models delineate seven severity ranges for each outcome including (C) mortality, (D) ICU admission, (E) 
intubation, (F) survival at 15 days among deceased patients, (G) hospitalization, and (H) days from symptoms to 
hospitalization. All the scatter plots share coordinates. Each subgroup is denoted using the following abbreviation: 
[AgeGroup][Gender][ClusterID]. 
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Figure 4. Heatmap showing the quantified characteristics among 56 of each age-gender specific cluster of the eleven 
MCs, the size of each cluster (n) was categorized into 6 categories as shown in Table 3. 
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3.2 Epidemiological description of the 11 meta-clusters 
Table 3 summarizes their main features of the 11 resultant meta-clusters. Next, we describe the clinically 
distinguishable main epidemiological findings for each group. All the results and supporting descriptive 
statistics for each group are available in the supplemental material, section 7. 
 
Table 3. Main features of the 11 age-gender unbiased resultant meta-clusters, sorted by recovery. The thresholds for 
the different severity outcomes and input variable categories are displayed below.  

 

Meta-
cluster ID Recovery ICU Intubation Age Group Habit Comorbidity Pneumonia 

1 Very high Low Low All Healthy Healthy No 

2 Very high Very high Moderate Children & 
Young Healthy 

Some w/ INMUSUPR, 
cardiovascular or 

other disease. 
Yes 

3 Very high Low Low Young 
adults 

Obesity 
Smoke 

Some w/ asthma No 

4 High Moderate Moderate All Healthy 
Diabetes 

Hypertension Yes 

5 High High Moderate 
Young 
adults Obesity 

Diabetes 
Hypertension Yes 

6 Moderate Moderate High Older adults Healthy 

Diabetes 
Hypertension 
INMUSUPR 

Other disease 
Some w/ CKD 

Yes 

8 Moderate Moderate High Elderly Smoke 

Hypertension 
COPD 

Some w/ diabetes or 
asthma 

Yes 

9 Moderate High High Older adults 
& Elderly 

Healthy All Diabetes 
All Hypertension 

Yes 

10 Moderate High High Elderly 
Obesity 
Smoke 

COPD 
Hypertension 

Diabetes 
Some w/ asthma or 

cardiovascular. 

Yes 

7 Low Moderate Very High Older adults 
& Elderly 

Healthy 

Diabetes 
Hypertension 

CKD 
Other disease 

Some w/ 
cardiovascular. 

Yes 

11 Low High High Elderly Smoke 

Hypertension 
All COPD 

Some w/ diabetes, 
asthma or 

cardiovascular. 

Yes 
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MC1 includes the two healthiest clusters per each age-gender group, with a very high RR (90%). Most 
deceased patients in MC1 with pneumonia are older patients (Figure 4). MC2 includes children and young 
individuals (mean age 18) with healthy habits and little incidence of relevant diseases (13% 
immunosuppression, 17% cardiovascular disease, 4% CKD), albeit RR is very high (91%). MC2 holds the 
highest ICU admission rate (9%), driven by three children clusters whose ICU rate vary from 13.41% to 
18.45%. MC3 includes young adults (mean age 40) with significant obesity, smoking, a little incidence of 
other diseases; and very high RR (95%). Despite the similarly high RRs in MC1 to 3, while MC1 and MC3 
show a low incidence of pneumonia, MC2 has 1/3 of pneumonia patients.  

MC4 includes individuals of all ages with healthy habits but, unlike MC1, most patients in MC4 have 
hypertension (41%) or diabetes (39%), but not both simultaneously. MC5 includes young adults with 
obesity (75%), diabetes (57%) and/or hypertension (69%). Both MCs still have high RRs, of approximately 
80%. From MC4 onwards, all MCs have from 40 to 50% incidence of pneumonia as of case reporting; what 
does not exclude the possibility that some patients developed pneumonia days after. Noteworthy, in 
groups 4 to 11 more than 70% of deceased patients were diagnosed with pneumonia. 

The RRs from MC6 and 8-10 are similar (64-67%). MC6 includes older adults with no obesity nor smoking, 
but with frequent diseases including diabetes, hypertension, immunosuppression or other. MC8 includes 
elderly with smoking habit, plus hypertension (34%) and/or COPD (44%), two smoking-related diseases. 
Similarly, MC10 includes elderly with obesity (50%) or smoking habit (42%), who also suffer from COPD 
(37%), but with a much higher incidence of diabetes (61%) and hypertension (78%). MC9 contains older 
adults and elderly with both diabetes (95%) and hypertension (96%).  

MC7 and 11 hold the lowest RRs (54% and 56%). MC7 includes older adults and elderly with common 
diseases –diabetes, hypertension and cardiovascular disease– plus CKD (81%). CKD stands out as the 
differential factor with similar MCs with low RRs, such as 6 or 9. MC11 is similar to 8 and 10; the key 
differences are the higher prevalence of smoking (78%, which doubles the former) and COPD (almost all 
patients, 91%), and a mean age eight years older (76 vs. 68 years). Consequently, MCs including older obese 
patients with smoking habits –MC8, 10, and 11– have significantly higher COPD and cardiovascular 
incidence, which does not occur with the young smoker –MC3.  
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3.3 Variability among states and type of clinical institutions 
Regarding state variability, half of the states tended to a higher probability in healthy clusters with better 
RR, lower hospitalization, ICU, and Intubation rates among each age-gender group (Figure 5A, e.g., 18F2, 
18M1, 18-49F1, 18-49M1, 50-64F1) and meta-clusters (Figure 5C), whereas another half behave inversely. 
Hidalgo, Baja California and Morelos represent healthier groups compared with Oaxaca, Coahuila de 
Zaragoza and Durango, representing the less healthy. Surprisingly, Mexico City showed significantly higher 
probability in healthier clusters than State of Mexico, albeit the population of their main urban areas are 
close, and both have similar resources and economic development level.  

Regarding TCI variability (Figure 5B, D), SSA, DIF, Private and Red Cross are prone to healthier young 
patients. This pattern occurred inversely in other TCIs, especially the Mexican Petroleum Institution, whose 
severe cluster probabilities are generally higher. The clinical institutions of the armed forces (SEMAR, 
SEDENA) were mostly healthy, intuitively with a higher probability of male patients. Interestingly, among 
the three primary TCIs in Mexico, the public health system (SSA) is prone to mild-comorbidity and have 
relatively higher probabilities in healthy clusters among each age-gender groups, mostly in MC1 (57%) and 
3 (16%); whereas in the two main social security systems (IMSS, ISSSTE) the situation is opposite.  

Figure 5. Heatmaps of the probability distribution of the 56 age-gender specific clusters (A, B) and eleven MCs (C, D) 
for each Mexican state where patients received the treatment or medical attention (A, C) and each type of clinical 
institution (TCI) (B, D), among. Rows represent the clusters and columns represent the states and TCI. Columns are 
arranged according to a hierarchical clustering on their values. Note that we compared the clusters' distribution within 
each age range to circumvent any correlation or association with comorbidities and habits. 
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4 Discussion 
To date, only few reports have used cluster analysis to describe heterogeneity in COVID-19 patient-level 
epidemiological or EHR data12,13,14. To our knowledge, none used such a large dataset (778 692 patients) to 
find potential patient subphenotypes through cluster analysis on age-gender controlled patient strata. Age-
gender unbiased COVID-19 characterization is crucial for a deeper understanding of the inter-patient 
disease patterns to anticipate their risk, susceptibility for viral infection, and morbimortality.  

Our results uncovered 11 clinically distinguishable MCs among 56 age-gender clusters. Each of the 11 MCs 
shows clinical consistency: their group outcomes can be potentially predicted from the proposed input 
variables, according to the literature published up to date. From an outcome perspective, a dividing line 
can be clearly drawn between MCs 1-5 and 6-11. While the former group has RRs always over 80%, the 
overall survival of the latter never exceeds 70%. Several factors can explain these findings, mainly the age, 
habits and comorbidity. Since all MCs contain 30-60% of women within their input age-gender clusters, 
gender does not seem to be a significant factor among MCs. However, statistical analysis and age-gender 
cluster analysis showed less severity in females including in pneumonia and mortality rate (Odds Ratio [OR]: 
1.58 [95%CI; 1.56-1.60] and 1.76 [95%CI; 1.74-1.79] respectively, male vs female). Thus, we discuss our 
results according to both MCs and age-gender clusters and relate them with supporting literature. 

4.1 Age 
Two groups with very high RRs are MC2 and MC3, which contain children and young adults. Age may play 
a protective role against the disease for two reasons. First, as proven by MC3 versus all single-aged groups 
(MC6-11), pneumonia incidence is lower in young healthy groups; hence, good recovery could be 
attributable to mild SARS-CoV-2 disease. Second, as shown by good RRs in MC2 –children with severe 
disease, response to treatment is probably also better at younger ages.  

Notably, MC6 to 11 are exclusively composed of older adults and elderly; only MC6 contains less than one 
third (28.57%) of young adults. However, as described in literature27,28, older age is not necessarily linked 
to higher mortality. MC1 and 4 support this fact since, despite containing the same number of groups of 
each age, they show similar RR (MC1 90.27%, MC4 82.81%) to those RR of groups composed only of young 
adults with little incidence of previous disease (MC2 91.37%, MC3 95.22%) and those groups made of young 
adults with some frequent diseases, such as diabetes and hypertension (MC5 81.30%).  

Children –MC2– showed to receive priority regarding medical attention, taking fewer days from symptoms 
to hospitalization, and with significantly higher ICU admission, intubation, and hospitalization rates than 
adults with similar clinical conditions. After discussion with Mexican clinicians, a potential reason behind 
this fact seems to be that in early ages the decompensation or deterioration caused by a pulmonary disease 
is faster than in adults, and with a higher risk that can result in death. While in adults there is often some 
time margin to evaluate the patient condition evolution before intubation or ICU admission, it is not the 
case for children. Supported by recent literature, a study with a small cohort from Madrid,29 found 10% of 
41 children with SARS-CoV-2 infection required ICU admission. Other study30 showed that severe COVID-
19 can also happen in small children and adolescents, where risk factors for ICU admission included age 
younger than one-month, male sex, presence of lower respiratory tract infection signs and presence of a 
pre-existing medical condition. Within MC6 to 11, overall survival cannot be explained only by age neither. 
While MC11 shows the highest mortality and mean age, MC7 shows a similar RR with a mean age 
approximately ten years younger, similarly to those groups with better RRs.  

These findings support the idea that, while a young age predisposes to mild disease28,31, habits and 
comorbidities may play a key role in predicting mortality in older patients with SARS-CoV-2 infection. 
Interestingly, the clustering for the individual age-gender groups with age >65 years, revealed that 
centenarians –individuals of over 100 years of age– repeatedly fell in the groups with better outcomes. 
This fact conforms with the well-studied good health and low frailty scores32 of this subpopulation. 
Therefore, age is a key factor to explain the dividing line between “high” and “moderate” RRs, as well as 
the low RR in MC11 (56%) compared to MC8 and 10 (64 and 66%), all of which share “hypertension”, “COPD” 
and “smoke” as only inputs, differing in mean age (76 years for MC11 versus 66-64 years for MC8 and 10). 
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4.2 Habits 
The role of obesity and smoking as risk factors for severe disease are complex, since they are both 
associated with the development of many conditions (e.g. COPD33 or cardiovascular34).  In our study, the 
influence of obesity is clearly seen by comparing MC4 and 5. Both MCs show diabetes, hypertension and 
moderate RRs (81-82%), however, whereas MC4 includes patients of all ages (25%) without obesity, MC5 
contains mostly young adults (66.7%) who suffer from obesity. This suggests that obese young adults may 
behave as “older”, implying higher mortality28,35. However, we found the opposite in young individuals 
without previous conditions: MC2 and 3 have similar RRs albeit MC3 contains a significant number (59.27%) 
of obese patients or smokers. These findings suggest the role of habits cannot be considered alone, but 
always along with age and duration of unhealthy habits. Our results confirm that smoking and obesity are 
simultaneously risk factors for severe COPD and cardiovascular, especially in older patients –MC8, 10, 11. 
It results reasonable that the longer the time as a smoker, the greater the incidence of severe disease. 
However, the evidence of smoking’s negative influence is not so straightforward. Some reviews have 
presented current smoking as a protective factor versus former smoking, while it is clearly a risk factor 
versus never smoking36. Our results show that groups gathering young smokers have RRs which are not 
inferior to age-matched non-smoking groups, as proven by the RR of MC3 (95.22%, 34% smokers) versus 
MC2 (91.37%, 9.7% smokers). In older individuals, the influence of tobacco, inevitably linked to the 
development of COPD, results harder to evaluate.  

Regarding obesity, its influence is not so clear in older groups, having these 20% of obese individuals. Still, 
in young obese patients without comorbidity (18-49M5 and 18-49F2), obesity seems unrelated to mortality. 
In conclusion, when evaluating habits, the patient’s age and time since diagnosis may help establish more 
useful correlations. 

4.3 Comorbidities 
Diabetes and hypertension showed the highest prevalence among the recorded comorbidities. Their 
prevalence seems to explain the decrease in RRs rates from over 90% in MCs 1-3 to 81% in MCs 4-5, all of 
which are young adult groups. In older MCs (6-11), both diseases are present in nearly every group, not 
specifically characterizing any cluster; in particular, MC9 represents older patients with both diseases 
simultaneously (>95%). According to current literature, both diabetes and hypertension are independent 
risk factors for severe disease28,37,38. 

Immunosuppressed patients fall mostly on MC6 –older adults with diabetes, hypertension, 
immunosuppression and other disease. Surprisingly, immunosuppressed patients were not the clusters 
with the lowest RRs. Yet, immunosuppression has not been confirmed as a relevant factor for disease 
severity, except for cancer patients39,40.  MC6 also holds few CKD patients, a factor which has been widely 
studied as a key factor for disease progression41,42 and it may be the cause for the immunosuppression in 
this group (OR 9.65 95%CI [9.05-10.28]) according to the prevalence of immunosuppression of CKD patients 
vs non-CKD patients.  

MC7 is characterised by the high prevalence of CKD and other disease. RR decreases here on almost 10% 
compared with other severe subgroups. Our data showed CKD is highly correlated with mortality and 
shortens survival length among deceased patients. This conforms with a study from Mexico at which CKD 
was the factor that best explained mortality43.  

MC8 is similar to 10 and 11, and these can be explained through COPD, MC11 gathering more than 90% 
COPD. According to several reviews, COPD patients have increased risk of severe pneumonia and poor 
outcomes when they develop COVID-1944,45. 

Cardiovascular disease is homogeneously distributed among groups, particularly on MC7, 10 and 11. 
Nowadays, cardiovascular disease may be a double-edged factor, since the disease itself is a proven risk 
factor for COVID-19 severity, but some of the treatments used, such as ACE inhibitors, have also proved to 
protect against severe infections from SARS-CoV-246,47.  
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4.4 State and Type of Clinical Institution 
To date, variability between Mexican states and TCIs regarding severity are rarely reported48,49,50, nor 
assessed for variability independently from age and gender. As an example, one state (e.g., Morelos) may 
show higher severity if it includes more elderly and male patients, but when we compare age-gender groups 
the results show that no severity difference exists in terms of probability within age-gender groups of the 
same age range.  

The inter-state and TCI variability we found may be influenced from many factors such as the number and 
type –urban/rural– of population, the quantity of medical institutions and availability of resources and 
virus transmission level. Some states are more industrialized, have the greater cities and have more 
economical resources (e.g., Mexico City, Jalisco, the State of Mexico) than others (e.g., Oaxaca, Chiapas, 
Guerrero). The differences found between Mexico City and State of Mexico regarding healthy clusters 
distribution hare hard to explain due their proximity and similarities in the type of population and 
availability to medical resources. 

One possible explanation for the differences in severity between two main social security institutions (IMSS 
and ISSSTE) and local public hospitals (SSA) is that SSA are administrated by the local states, and the 
resources among states often differ. This phenomenon could influence these institutions' quality and 
resources to attend their populations. Another possible explanation is that when SSA receives severe 
patients and have insufficient medical resources, these patients can be transferred to the IMSS COVID-19 
facilities. Consequently, this may saturate IMSS and deplete more resources due to an increasing number 
of patients, making the distribution of resources harder. These results conform with previous studies 
showing that the risk of death for an average patient attending IMSS and ISSSTE is twice the national 
average and 3 times higher relative to the private sector48. 

The complex correlation between severity and state/TCI implies a crucial population and source-inequality. 
Thus, both considering state and TCI combined with MCs and age-gender clusters may help lead a better 
classification of patients. 

 

4.5 Limitations 
As a possible limitation, we excluded patients confirmed after September 30 to avoid possible analysis 
disturbance on survival outcomes, what impeded us using the most recent data whose epidemiological 
characteristics could have changed to some degree. Furthermore, the dataset did not include additional 
relevant information about the patients who were discharged, readmissions or the duration of 
comorbidities and unhealthy habits. Further studies about severity patterns among discharged patients 
who received post-surveillance or were readmitted is highly needed. 

5 Conclusion 
The analysis of COVID-19 subphenotypes from the proposed two-stage cluster analysis produced 
compelling models with discriminative severity patterns and explainability over age and gender. The 
resultant eleven MCs provide bases for a deep understanding of the epidemiological and phenotypical 
severity presentation of COVID-19 patients based on comorbidities, habits, demographic characteristics, 
and on patient provenance and type of clinical institutions, as well as revealing the correlations between 
the above characteristics to anticipate the possible clinical outcomes of each patient with a specific profile. 
These subphenotypes can establish target groups for automated stratification or triage systems to provide 
personalized therapies or treatments.  For example, an older obese patient who smokes could be classified 
into subgroups –MC8, 10, 11– distinguished by pervasive differences in severity and comorbid patterns, 
and then compared with their inner age-gender groups whose characteristics coincide the most with our 
patient, enabling a personalized evaluation the patient’s expected outcomes.  

While our findings are informative for designing a novel data-driven model for stratification of COVID-19 
patients in Mexico, these may be restricted by limited follow-up systems and the availability of additional 
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relevant data including the duration of the comorbidities and unhealthy habits. We facilitate further 
replicability of the study and generalization to other countries data by making available our experiments 
code. 

Availability of supporting data and materials 
The used data is publicly available from the Mexico Government at 
https://www.gob.mx/salud/documentos/datos-abiertos-152127. The English version of the studied data 
sample, and the experiments code are available in our GitHub Repository https://github.com/bdslab-
upv/covid19-metaclustering. The cluster analysis results can be dynamically explored at:  
http://covid19sdetool.upv.es/?tab=mexicoGov. 
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