Dimitris Nikoloudis^{1*}, Dimitrios Kountouras¹ and Asimina Hiona¹

2 accurate prediction of new Intensive Care Unit admissions

2 Dimitris Nikoloudis^{1*}, Dimitrios Kountouras¹ and Asimina Hiona¹

¹ Center for Preventive Medicine & Longevity, Bioiatriki Healthcare Group, 11525 Athe 2 accurate prediction of new Intensive Care Official Asimissions

2 Dimitris Nikoloudis^{1*}, Dimitrios Kountouras¹ and Asimina Hiona¹

¹ Center for Preventive Medicine & Longevity, Bioiatriki Healthcai

6 *Correspon 3 Dimitris Nikoloudis", Dimitrios Kountouras" and Asimina Hiona
1 ¹ Center for Preventive Medicine & Longevity, Bioiatriki Hea
5 Greece
* Corresponding author 1 Center for Preventive Medicine & Longevity, Biolatriki Healthcare Group, 11525 Athens,
5 Greece
6 *Corresponding author
7
Abstract

- 5 Greece
6 *Corres
7
8 **Abstra**
9 The posi
-

For a corresponding author

19 The positivity rate of testing

10 The evolution of the COVI 89012 9 The positivit
0 the evolutic
1 interpretation
2 metric, tern
3 Unit (ICU) a 9 The positivity rate of testing is currently at the position of the covid-19 pandemic. However, since the former is a prerequisite for the latter, its
1 interpretation is often conflicting. We propose as a benchmark for C Interpretation is often conflicting. We propose as a benchmark for COVID-19 testing effectiveness a new
Interpretation is often conflicting. We propose as a benchmark for COVID-19 testing effectiveness a new
Interpretation 12 metric, termed 'Severity Detection Rate' (SDR), that represents the daily needs for new Intensive Care
13 Unit (ICU) admissions, per 100 cases detected (t-i) days ago, per 10,000 tests performed (t-i) days ago.
14 Based Unit (ICU) admissions, per 100 cases detected (t-i) days ago, per 10,000 tests performed (t-i) days ago.

Based on the announced COVID-19 monitoring data in Greece from May 2020 until August 2021, we

show that beyond a c Based on the announced COVID-19 monitoring data in Greece from May 2020 until August 2021, we
show that beyond a certain threshold of daily tests, SDR reaches a plateau of very low variability that
begins to reflect testi 15 show that beyond a certain threshold of daily tests, SDR reaches a plateau of very low variability that
16 begins to reflect testing adequacy. Due to the stabilization of SDR, it was possible to predict with great
17 ac 16 begins to reflect testing adequacy. Due to the stabilization of SDR, it was possible to predict with great
17 accuracy the daily needs for new ICU admissions, 12 days ahead of each testing data point, over a period
18 17 accuracy the daily needs for new ICU admissions, 12 days ahead of each testing data point, over a period
18 of 10 months, with Pearson r = 0.98 (p = 10⁻¹⁹⁷), RMSE = 7,16. We strongly believe that this metric will
19 h 18 of 10 months, with Pearson $r = 0.98$ ($p = 10^{-197}$), RMSE = 7,16. We strongly believe that this metric will

19 help guide the timely decisions of both scientists and government officials to tackle pandemic spread

20 of 10 months, with Pearson r = 0.98 (p = 10 227), RMSE = 7,16. We strongly believe that this metric will
help guide the timely decisions of both scientists and government officials to tackle pandemic spread
and preven 19 and prevent ICU overload by setting effective testing requirements for accurate pandemic monitoring.

21 We propose further study of this novel metric with data from more countries to confirm the validity of

23 help cu 21 and prevent ICENTRIA, setting areas accurated by setting requirements for accurate pandemic monitoring.
22 We propose further study of this novel metric with data from more countries to confirm the validity of
22 decurr 22 the current findings.
23
23
25

-
-
- 23
24
25
26 --
24
25
26 25
26 --
26
|

It is made available under a CC-BY 4.0 International license.

28

-
- 29

28
29
30
31 29
30
31
32

--
30
31
32
33 30 **Introduction**
31 Although
33 public health adn
34 that number. Eff
35 CoV-2 spread wit --
32
33
34
35
36 bublic health administrations to be confident that the daily testing performed is stably representative of

34 that number. Effective testing provides health professionals and officials with a clear picture of SARS-

35 Co 34 that number. Effective testing provides health professionals and officials with a clear picture of SARS-
35 CoV-2 spread within the community, as well as of the dynamics of COVID-19 pathology, and guides them
36 for pro

34 40 assessing the current spread of the virus^{1,2}. However, this dual usage presents an inherent drawback in 35 for prompt and adequate interventions towards containment of the pandemic at the local and national
37 levels.
38 The percentage of tests that return a positive result, also known as the "positivity rate", is an
39 impo 37 levels.
38 The percentage of tests that return a positive result, also known as the "positivity rate", is an
39 important outcome of testing that is used both as a benchmark for testing adequacy and as a metric for
30 a 38
39 import
40 assessi
41 entrus!
42 infecte 39 important outcome of testing that is used both as a benchmark for testing adequacy and as a metric for
30 assessing the current spread of the virus^{1,2}. However, this dual usage presents an inherent drawback in
31 entr 39 assessing the current spread of the virus^{1,2}. However, this dual usage presents an inherent drawback in
31 entrusting the metric in any one of two possible ways: is a high positivity rate due to a high number of
32 in assessing the current spread of the virus^{1,2}. However, this dual usage presents an inherent drawback in

entrusting the metric in any one of two possible ways: is a high positivity rate due to a high number of

infected 14 Infected individuals, or due to a low number of tests performed? A rule of thumb says that a positivity

143 Infected individuals, or due to a low number of tests performed? A rule of thumb says that a positivity

143 I Frame individuals, or due to a local minimide of tests performance in during the minimide performed.

44 a length of at least two weeks before officials decide to progressively reopen professional and social

44 a length o a length of at least two weeks before officials decide to progressively reopen professional and social
activities¹. Another evidence-based perception suggests that the positivity rate must remain below 3%
to ensure that activities¹. Another evidence-based perception suggests that the positivity rate must remain below 3%
to ensure that surveillance is broad and accurate enough². However, these rules may only cover either
the virus spre activities⁻. Another evidence-based perception suggests that the positivity rate must remain below 3%
to ensure that surveillance is broad and accurate enough². However, these rules may only cover either
the virus spre to ensure that surveillance is broad and accurate enough". However, these rules may only cover either
the virus spread surveillance criterion or that of testing adequacy, not both. Indeed, officials often
respond to a high 14 The virus spread surveillance criterion or that or testing and with measures to restrict virus
149 transmission, such as social distancing and soft or hard lockdowns. But by doing so, it is expectedly hard
150 to timely 49 transmission, such as social distancing and soft or hard lockdowns. But by doing so, it is expectedly hard
40 to timely assess the true rate of the virus spreading out, or being contained, as the new higher levels of
45 19 transmission, such a steam and any parameter and some transmission, such a steam in particular text of testing must be stabilized for a length of time before allowing again to reliably follow the pandemic dynamics. In s 51 testing must be stabilized for a length of time before allowing again to reliably follow the pandemic
52 dynamics. In such a scenario, if health officials rely only on the positivity rate metric, the timing of the
53 re 52 dynamics. In such a scenario, if health officials rely only on the positivity rate metric, the timing of the
53 response would lag and thus be almost invariably suboptimal.
54 Fundamentally, a metric that would serve as

Example a scenario of the such a scenario of the positions. In the position of the effectiveness of COVID-19
153 Eundamentally, a metric that would serve as a benchmark for the effectiveness of COVID-19
155 testing should 54 Fundamentally, a metric that would serve as a benced testing should not concurrently be used for assessing the evolution. testing should not concurrently be used for assessing the evolution of the pandemic, as the former is a $\frac{2}{3}$ 55 testing showld not concurrently be used for assessing the evolution of the pandemic, as the former is assessing to the former is assessing to the pandemic, as the former is assessing to the former is assessing to the

It is made available under a CC-BY 4.0 International license.

Example in the latter and interpretation the latter confliction of the pandministrations of a country should be conflident that a sufficient number of tests is performed to effectively track the virus spread. However, if s Example in the community of a countries of a confident that a sufficient of the pandemic in the community (e.g., number of deaths, number of ICU admissions, etc.), they could introduce by their more factual nature a link b 59 the pandemic in the community (e.g., number of deaths, number of ICU admissions, etc.), they could

50 introduce by their more factual nature a link between expectation and actuality, since the outcomes of

51 COVID-19 59 introduce by their more factual nature a link between expectation and actuality, since the outcomes of
59 COVID-19 are inherently tied to the virus's pathogenesis. Therefore, such a link could, in theory,
59 introduce a ED introduce a benchmarkable step of convergence towards a soft cap (threshold) that would, in theory,
62 introduce a benchmarkable step of convergence towards a soft cap (threshold) that would in turn reflect
63 testing a 62 introduce a benchmarkable step of convergence towards a soft cap (threshold) that would in turn reflect
63 testing adequacy, *e.g.*, usually a maximized or minimized value, or a state of minimized variation. In this
64 Example a besting adequacy, *e.g.*, usually a maximized or minimized value, or a state of minimized variation. In this report, we present an easy-to-implement metric that we developed while independently monitoring and ana France of testing adequacy, e.g., usually a maximized or minimized value, or a state or minimized variation. In this report, we present an easy-to-implement metric that we developed while independently monitoring and analy and analyzing COVID-19 pandemic evolution in Greece, which considers outcomes that are already

for monitored in most countries, such as the daily numbers of human losses, COVID-19 patients in the ICU

(Intensive Care Unit monitored in most countries, such as the daily numbers of human losses, COVID-19 patients in the ICU

(Intensive Care Units), and patients who are being discharged from the ICU. In our example we show

that this metric dis (Intensive Care Units), and patients who are being discharged from the ICU. In our example we show
that this metric displays remarkable output stability when a certain threshold of daily testing is reached,
which to our vi From the Units), and patients who are being an
entity when a certain threshold of daily testing is reached,
which to our view clearly reflects testing adequacy. Furthermore, we validated its benchmarking
efficiency by fore which to our view clearly reflects testing adequacy. Furthermore, we validated its benchmarking

The efficiency by forecasting, not only with high accuracy but also great precision, the total daily needs for

The ICU admis 69 or the output of the our view control of the total daily needs for

Form the MCU admissions, roughly two weeks in advance, over a period of 10 months.
 Methods
 Methods 71 new ICU admissions, roughly two weeks in advance, over a period of 10 months.
72
73 **Methods** great precise precise precise precise of the total data data precise of the total data of the total data of the total data of

22 new ICU admissions, roughly two weeks in advances, over a period of 10 months.
23 **Methods**
25 The national monitoring data for the evolution of the COVID-19 par 73
74
75
76 73 **Methods**
74 The
76 retrieved fro
77 announceme
78 number of r 75
75
77
78
79 retrieved from the Hellenic National Public Health Organization³ and Greek Government's official daily

announcements⁴. Specifically, the daily official announcements included the following parameters: (a)

73 number o retrieved from the Hellenic National Public Health Organization³ and Greek Government's official daily
announcements⁴. Specifically, the daily official announcements included the following parameters: (a)
number of new announcements⁻. Specifically, the daily official announcements included the following parameters: (a)
number of new COVID-19 cases detected, (b) number of deaths due to COVID-19, (c) total number of
COVID-19 ICU patients 79 COVID-19 ICU patients, (d) total number of COVID-19 patients discharged from ICU, (e) total number of

SARS-CoV-2 PCR tests performed⁵, and (f) total number of SARS-CoV-2 rapid antigen tests performed⁶.

Based on t

SARS-CoV-2 PCR tests performed⁵, and (f) total number of SARS-CoV-2 rapid antigen tests performed⁶.

Based on the available data, we defined the daily needs for new COVID-19 ICU admissions as

number U:

U = (x₀ - x SARS-CoV-2 PCR tests performed³
Based on the available d
number U:
 $U = (x_0 - x_{t-1}) + d + e$
where: SARS-CoV-2 PCR tests performed", and (f) total number of SARS-CoV-2 rapid antigen tests performed".

81 . Based on the available data, we defined the daily needs for new COVID-19 ICU admissions

82 . umber U:

83 . U = (x based on the available data, we defined the daily heeds for new COVID-19 ICU durinssions as

82 number U:
 $U = (x_0 - x_{t-1}) + d + e$ (1)

84 where:

83 $U =$
84 where: 84 where:

Today's total number of COVID-19 ICU patients:

88 - Yesterday's total number of COVID-19 ICU patients:

89 This number U represents the actual daily new COVID-19 ICU admissions, plus th

90 in the community (not in ICU), Example 1888 - Yesterday's total number of COVID-19 ICU patients:

89 This number U represents the actual daily new COVID-19 ICU admissions, plus the

90 in the community (not in ICU), whom we theorize to have required IC This number U represents the actual daily new COVID-19 ICU admissions, plus those

in the community (not in ICU), whom we theorize to have required ICU admission,

of the daily needs for new COVID-19 ICU admissions.

92 89 This in the community (not in ICU), whom we theorize to have required ICU admission, hence the definition
81 of the daily needs for new COVID-19 ICU admissions.
82 Next, we defined as the Severity Detection Rate with a

91 of the daily needs for new COVID-19 ICU admissions.
92
93 Next, we defined as the Severity Detection Rate with a time lag (t-i) (SDR_I), a metric that
94 represents the percentage of patients who require ICU admission, 92 Next, we defined as the Severity Detectio
94 Next, we defined as the Severity Detectio
95 ago, per 10,000 tests, performed (t-i) days ago:
96 SDP, = $(11*100/c_0)/(n_0/10,000)$ => SDP. --
93
94
95
96 represents the percentage of patients who require ICU admission, per new cases, detected (t-i) days
ago, per 10,000 tests, performed (t-i) days ago:
 $SDR_i = (U^*100/c_{t-i})/(n_{t-i}/10,000)$ => $SDR_i = U^*1,000,000/(c_{t-i} * n_{t-i})$ (2)
wh 95 ago, per 10,000 tests, performed (t-i) days ago:

96 SDR_i = (U*100/c_{t-i})/(n_{t-i}/10,000) => SDR_i = U*1,000,000/(c_{t-i}* n_{t-i}) (2)

97 where:

98 - Today's rolling 7-day average of new daily needs for COVID-19 I

96
$$
SDR_i = (U^*100/c_{t-i})/(n_{t-i}/10,000) \Rightarrow SDR_i = U^*1,000,000/(c_{t-i} * n_{t-i})
$$
 (2)

99 - Rolling 7-day average of detected COVID-19 cases, (t-i) days ago:

- Rolling 7-day average of total number of COVID-19 tests, (t-i) days ago:

101 Tests in Greece were performed freely by any individual who wanted to - Rolling 7-day average of total number of COVID-19 tests, (t-i) days ago: n_{t-}
01
CO2 Tests in Greece were performed freely by any individual who wanted to go
03 hospitals, or in most private diagnostic centers and clini - Rolling 7-day average of total number of COVID-19 tests, (t-i) days agos in
101 Tests in Greece were performed freely by any individual who wanted to ge
103 hospitals, or in most private diagnostic centers and clinics, o ---
102
103
104
105
106 103 hospitals, or in most private diagnostic centers and clinics, or in mobile testing hubs, dispatched by the
104 public healthcare administration. Also, an individual may get tested in regular intervals (*e.g.*, up to tw public healthcare administration. Also, an individual may get tested in regular intervals (e.g., up to twice
105 per week), as requested by their employer or the administration, due to the nature of their profession.
106 T public healthcare administration. Also, an individual may get tested in regular intervals (e.g., up to twice
105 per week), as requested by their employer or the administration, due to the nature of their profession.
106 T 105 To the best of our knowledge, only one swab is taken from the individual per test, in Greece.

107 Furthermore, the reported COVID-19 cases detected, and daily tests performed, are used for the official

108 calculatio Furthermore, the reported COVID-19 cases detected, and daily tests performed, are used for the official

108 calculation of positivity rate, announced routinely by the country's healthcare administration³; if

109 multip 108 calculation of positivity rate, announced routinely by the country's healthcare administration³; if
109 multiple tests per individual were simply added to the total daily number, this would constitute a
110 systemati calculation of positivity rate, announced routinely by the country's healthcare administration"; if
109 in multiple tests per individual were simply added to the total daily number, this would constitute a
110 systematic e 110 systematic error in the calculation of positivity rate. Therefore, for the reasons explained above, for this
111 analysis, the daily number of tests reported publicly is presumed to represent unique individuals.
4 analysis, the daily number of tests reported publicly is presumed to represent unique individuals.
analysis, the daily number of tests reported publicly is presumed to represent unique individuals. 111 analysis, the daily number of tests reported publicly is presumed to represent unique individuals.
The daily is present unique individuals to represent unique individuals. The daily is present unique individual

It is made available under a CC-BY 4.0 International license.

which means that the current day's critical outcomes of COVID-19 (*i.e.*, ICU admission or death in the community) were attributed to COVID-19 cases detected 14 days ago. For the identification of the optimal lag point be 113 which means that the current day's entited values of COVID-19 (i.e., ICO admission or death in the
114 community) were attributed to COVID-19 cases detected 14 days ago. For the identification of the
115 optimal lag p optimal lag point between the critical outcomes of COVID-19 and the detected cases, we searched

within an interval between 7 to 21 days, in the period 17/10/20 to 31/1/21 of the dataset, for the most

stable correlation within an interval between 7 to 21 days, in the period 17/10/20 to 31/1/21 of the dataset, for the most
stable correlation between the numerator (number U) and the denominators ([cases_{t-i} * tests_{t-i}]) of the
netrics s 117 stable correlation between the numerator (number U) and the denominators ([cases_{t-1}* tests_{t-1}]) of the
118 metrics studied. The best correlation was obtained for a lag of 12 days (i=12) (see Discussion section)
11 118 metrics studied. The best correlation was obtained for a lag of 12 days (i=12) (see Discussion section)
119 and therefore, for consistency, all charts and tables reflect this optimal time lag (i=12).
120 Finally, for c

119 and therefore, for consistency, all charts and tables reflect this optimal time lag (i=12).

120

121 Finally, for completeness of the study, we also defined as ICU admission Rate with a time lag (t-i)

122 (henceforth 120
121 Finally, for completeness of the study, we also defined as ICU admission Rate w
122 (henceforth "ICU Rate", IR_i), a metric that represents the percentage of patients
123 admission, per new cases, detected (t-i) ---
121
122
123
124 (henceforth "ICU Rate", IR_I), a metric that represents the percentage of patients who require ICU

admission, per new cases, detected (t-i) days ago:

124 IR_I = U*100/C_{t-i} (3)

125 where:

Today's ralling 7 day aver

127 - Rolling 7-day average of detected COVID-19 cases, (t-i) days ago: C_{t-i}
128 IR metric is essentially a simpler form of the SDR metric, which doesn't take into ac
130 daily tests performed. As we wanted to also evalu - Rolling 7-day average of detected COVID-19 cases, (trip days ago: covid-19
129 R metric is essentially a simpler form of the SDR metric, which doesn't take into a
130 daily tests performed. As we wanted to also evaluate ---
129
130
131
132
133 daily tests performed. As we wanted to also evaluate its predictive performance, we doubled every

131 piece of analysis performed on the SDR metric, on the IR metric as well. The related charts and tables

132 are not par piece of analysis performed on the SDR metric, on the IR metric as well. The related charts and tables
are not part of the Results section in favor of clarity for the main metric presented (SDR), but are,
nonetheless, com are not part than yet performed on the SDR metric as well. The IR metric as well.

132 are not part of the Results section in favor of clarity for the main metric presented (SDR), but are,

133 nonetheless, commented upon 133 nonetheless, commented upon in the Discussion section.
134
135 The dataset was locked on August 8^{th} 2021.
136

134
135 The dataset was locked on August 8th 2021.
136
137 135
136
137
138 135 The dataset was locked on August 8th 2021.
136
137
138

137
138 ---
138

It is made available under a CC-BY 4.0 International license.

143 For observation, the daily evolution of SDR₁₂, from the 7th 0f May 2020 onwards, was traced on

144 the same chart versus the observed number of daily ICU needs, the positivity rate and the corresponding g

145 number of testing samples (Figure 1).

- 146
- 147
-
- 148

It is made available under a CC-BY 4.0 International license.

150 Figure 1. Comparison of trendmes of Severity Detection Rate, Daily needs for new ICO damissions,
151 Positivity rate, and number of Daily Tests, in the period from 7/5/2020 to 8/8/2021. The Daily needs for
152 new ICU 151 Positivity rate, and number of Daily Tests, in the period from 7/5/2020 to 8/8/2021. The Daily needs for
152 new ICU admissions and the number of Daily Tests represent rolling 7-day averages. Severity Detection
153 Rat new ICU admissions and the number of Daily Tests represent rolling 7-day averages. Severity Detection
153 Rates and Positivity Rates were calculated from the rolling 7-day averages of their components. All
154 numbers were

numbers were normalized by their maximum value in the rolling 7-day dverages of their components. All
154 In numbers were normalized by their maximum value in the examined period.
155 Compared to the other quantities, the 154 Indifferent formalized by their maximum value in the examined period.
155
156 Compared to the other quantities, the SDR metric shows a remarkable sta
157 on approximately 20/8/2020, which also corresponds to the attain ---
156
157
158
159
160 157 on approximately 20/8/2020, which also corresponds to the attainment of an average daily testing
158 number of 10,000/day. From that point forward, the observed daily ICU needs, the positivity rate and
159 the testing 158 number of 10,000/day. From that point forward, the observed daily ICU needs, the positivity rate and
159 the testing rate continue to fluctuate independently and considerably, but without accordingly
161
162 159 the testing rate continue to fluctuate independently and considerably, but without accordingly
160 perturbing SDR stabilization.
161
162 The rate of daily testing in Greece has been scaled up significantly on four occa

160 perturbing SDR stabilization.
161
163 The rate of daily testing in Greece has been scaled up significantly on four occasions,
164 approximately (a) on 38/7/2020 (b) on 17/10/2020 (c) on 1/2/2021 and (d) on 11/7/2021 As 160 perturbing SDR stabilization. ---
162
163
164
165
166 ---
163
164
165
166
167 approximately (a) on 29/7/2020, (b) on 17/10/2020, (c) on 1/2/2021 and (d) on 11/7/2021. As the new
testing levels were preserved after each scale-up, it is possible to define 5 distinct periods of testing
intensity thus 165 testing levels were preserved after each scale-up, it is possible to define 5 distinct periods of testing
166 intensity thus far during the COVID-19 pandemic in Greece. Interestingly, a sixth distinct period is noted
1 166 intensity thus far during the COVID-19 pandemic in Greece. Interestingly, a sixth distinct period is noted
167 between 1/5/2021 and 10/7/2021, where, inversely, a steady reduction in the number of daily tests is
168 ob 167 between 1/5/2021 and 10/7/2021, where, inversely, a steady reduction in the number of daily tests is

168 observed, although the daily average number of tests is preserved from the immediately previous

169 period. We 168 observed, although the daily average number of tests is preserved from the immediately previous

169 period. We qualified this behavior as noteworthy and chose to study the respective period separately.

171 between t 169 period. We qualified this behavior as noteworthy and chose to study the respective period separately.

170 We therefore characterized the SDR number and the rates of testing for each of the following time

171 interva 170 We therefore characterized the SDR number and the rates of testing for each of the following time

171 intervals: (i) 1/5/2020 - 28/7/2020, (ii) 29/7/2020 - 16/10/2020, (iii) 17/10/2020 - 31/1/2021, (iv),

172 1/2/202 171 intervals: (i) 1/5/2020 - 28/7/2020, (ii) 29/7/2020 - 16/10/2020, (iii) 17/10/2020 - 31/1/2021, (iv),
172 1/2/2021 - 30/4/2021, (v) 1/5/2021 - 10/7/2021, and (vi) 11/7/2021 - 8/8/2021 (Table 1).
173
174 172 1/2/2021 - 30/4/2021, (v) 1/5/2021 - 10/7/2021, and (vi) 11/7/2021 - 8/8/2021 (Table 1).
173
174 173
174
175
176

-
-
-
- 174
175
176
177 175
176
177 ---
176
177

177 177

It is made available under a CC-BY 4.0 International license.

- 179
- 180
-
- 179
180
181
182 180
181
182
183 ---
181
182
183

184

185

--
185
186
187
188
189 186
187
188
189
190 187 Iower average value of SDR (20.1% / 2.7% ~ 7.4), with a remarkable 20-fold decrease (19.6% / 1%) in the
188 Standard Deviation (SD) of SDR, and a concomitant 3-fold decrease in the CV (Coefficient of Variation) of
189 38 Standard Deviation (SD) of SDR, and a concomitant 3-fold decrease in the CV (Coefficient of Variation) of

189 SDR (0.97/0.36 ~ 2.7). Further doubling of the average daily number of tests (from 12 K to 24 K) in the

19 189 SDR (0.97/0.36 ~ 2.7). Further doubling of the average daily number of tests (from 12 K to 24 K) in the
190 third (iii) interval again brought an equivalent decrease in the SDR SD (1.0% / 0.4% = 2.5) although the
191 199 third (iii) interval again brought an equivalent decrease in the SDR SD (1.0% / 0.4% = 2.5) although the
191 average value of SDR was now only moderately diminished by approximately 30% (2.7% / 2.1% ~ 1.29),
192 indica 191 average value of SDR was now only moderately diminished by approximately 30% (2.7% / 2.1% ~ 1.29),
192 indicating a tendency towards stabilization of the SDR value and a continuous reduction of the Standard
192 indica 192 indicating a tendency towards stabilization of the SDR value and a continuous reduction of the Standard 80% (2.7% $\frac{1}{2}$.1% $\frac{1}{2}$.1% 192 indicating a tendency towards stabilization of the SDR value and a continuous reduction of the SDR value a
8

It is made available under a CC-BY 4.0 International license.

193 drop consistently in all 6 periods.

193 We then traced the values of SDR metric against the daily number of tests. The SDR values display a

197 strong correlation with the daily number of tests, employing power regre 195
196 We then traced the values of SD
197 strong correlation with the daily
198 10^{-167} , N = 451) and suggest that b
199 stabilized (Figure 2); for Greece, ---
196
197
198
200 197 strong correlation with the daily number of tests, employing power regression (Spearman r = -0.90, p = 10^{-167} , N = 451) and suggest that beyond a threshold of daily tests performed, SDR becomes significantly stabil 198 10^{-167} , N = 451) and suggest that beyond a threshold of daily tests performed, SDR becomes significantly

199 stabilized (Figure 2); for Greece, this stabilization begins once the number of daily tests exceeds the
 10-167

201

202
203
204
205 202 **Figure 2.** Correlation between the Severity Detection Rate and rolling 7-day averages by the number of
203 daily tests, with Spearman r = -0.90, p = 10⁻¹⁶⁷, N = 451. Numbers of daily tests derived from the period
2 daily tests, with Spearman $r = -0.90$, $p = 10^{-167}$, N = 451. Numbers of daily tests derived from the period

203 and the period of the state of the same of the starting period of the next step was to study the correlation between the numerator (number U) and the denominator ([cases_{t-1} * tests_{t-1}]) of SDR metric, for the peri 204 from 15/5/2020 to 8/8/2021.

205 The next step was the denominator ($[cases_{t,i} * tests_{t}$

208 starting period was chosen to 206
207
208 207 denominator ($[cases_{t}^{*} tests_{t}]]$) of SDR metric, for the period 17/10/2020 to 8/8/2021 (Figure 3). The starting period was chosen to be the same as the start of testing period (iii) (Table 1). Before that date, 207 denominator ([cases_{t]}, *casest-ing, constructing, for the period 27/2021 (Figure 47/2021 (Figure 3)*. The
208 starting period was chosen to be the same as the start of testing period (iii) (Table 1). Before that date 208 starting period was chosen to be the same as the start of testing period (iii) (Table 1). Before that date,

It is made available under a CC-BY 4.0 International license.

-
-
-

214
215
216
217 214 **Figure 3.** Correlation of the numerator and denominator of SDR, i.e., number O versus the product
215 (cases_{t-12}* tests_{t-12}), with a lag of 12 days. Numbers of daily tests and detected cases were derived from
216 215 (cases_{t-12} resist-12), with a lag of 12 days. Numbers of daily tests and detected cases were derived from
216 the period from 17/10/2020 to 8/8/2021.
218 216 the period from 17710/2020 to 8/8/2021.
217
218

218

medRxiv preprint doi: [https://doi.org/10.1101/2021.02.20.21252138;](https://doi.org/10.1101/2021.02.20.21252138) this version posted November 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

It is made available under a CC-BY 4.0 International license.

219

220

medRxiv preprint doi: [https://doi.org/10.1101/2021.02.20.21252138;](https://doi.org/10.1101/2021.02.20.21252138) this version posted November 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

It is made available under a CC-BY 4.0 International license.

It is made available under a CC-BY 4.0 International license.

250

250
251
252
253
254
255 251 **Figure 4.** (A) Correlation between observed and predicted daily needs for new ICO damissions for the
252 period between 17/10/2020 and 8/8/2021 employing Severity Detection Rate regression equations, with
253 Pearson 252 period between 17/10/2020 and 8/8/2021 employing Severity Detection Rate regression equations, with
253 Pearson r = 0.98, p = 10^{-197} , RMSE = 7.16; with n = 296, observed U[max] = 125, U[average] = 51. (*B) The*
254 253 Pearson r = 0.98, p = 10⁻²⁷, RMSE = 7.16; with n = 296, observed U[max] = 125, U[average] = 51. *(B) The*
254 respective time-series plots for visual inspection of the fit.
255
256 **Discussion** 254 respective time-series plots for visual inspection of the fit.
255
256
258

-
-

256
257
258
259 257
258
259
260 257 Discussion
258 We ha
260 displays very
261 Greece, a cour ---
259
260
262
263 displays very low variation. This threshold appears roughly around the 10,000 daily samples mark in
261 Greece, a country of approximately 11 million people, but this number is expected to vary greatly from
262 country to 261 Greece, a country of approximately 11 million people, but this number is expected to vary greatly from
262 country to country depending on the total population, rural density, societal particularities, population
263 i 262 country to country depending on the total population, rural density, societal particularities, population
263 immune profile, and sampling strategies⁷. Reaching that threshold should not mean that there is no
264 nee 263 immune profile, and sampling strategies⁷. Reaching that threshold should not mean that there is no
264 need for further increase in the number of daily tests, as it is strongly suggestive that the more tests a
265 co immune profile, and sampling strategies'. Reaching that threshold should not mean that there is no
264 need for further increase in the number of daily tests, as it is strongly suggestive that the more tests a
265 country 265 country performs, the more informative the results are about the actual viral spread in the community,
266 and consequently health administrations are in better position to respond accordingly. In terms of the
267 SDR 266 and consequently health administrations are in better position to respond accordingly. In terms of the
267 SDR metric, more daily tests appear to further decrease its variation (Table 1). The weaker its variation,
268 267 SDR metric, more daily tests appear to further decrease its variation (Table 1). The weaker its variation,
268 the stronger the correlation coefficient between *the numerator and denominator of SDR, i.e., number U*
26 268 the stronger the correlation coefficient between the numerator and denominator of SDR, i.e., number U
269 versus the product (cases_{ti}* tests_{ti}), and therefore, the more accurately we can predict the number of
270 268 the stronger the correlation coefficient between the numerator and denominator of 3DR, i.e., number 6
268 versus the product (cases_{t-i}* tests_{t-i}), and therefore, the more accurately we can predict the number of
27 270 daily needs for new ICU admissions, t+i days in advance. In the studied example, predictions were highly
271 daily needs for new ICU admissions, t+i days in advance. In the studied example, predictions were highly
271 271 accurate with an average daily number of tests as high as 24,000 (Table 1), which resulted in a SD of the
272 SDR of 0.4%. As the SD of the SDR showed a consistent decrease over a period of 15 months in our
273 studied 272 SDR of 0.4%. As the SD of the SDR showed a consistent decrease over a period of 15 months in our studied example (Table 1), we propose it can possibly act as an actual numerical threshold that denotes the attainment of

273 studied example (Table 1), we propose it can possibly act as an actual numerical threshold that denotes
274 the attainment of the SDR plateau.
275 As a direct consequence of this potential predictability, when SDR esta 274 the attainment of the SDR plateau.

275 As a direct consequence of this potential predictability, when SDR establishes a plateau, we

276 consider that the bulk of daily tests is returning a set of positive cases that 275 As a direct consequence of
276 consider that the bulk of daily tests
277 current spread of the virus. Therefore 276 Consider that the bulk of daily tests is returning a set of positive cases that is stably representative of the
277 Current spread of the virus. Therefore, the SDR metric constitutes a benchmark of testing effectivenes 277 current spread of the virus. Therefore, the SDR metric constitutes a benchmark of testing effectiveness.
277 current spread of the virus. Therefore, the SDR metric constitutes a benchmark of testing effectiveness. 2777 current spread of the virus. The SDR metric constitutes a benchmark of testing effectiveness.

It is made available under a CC-BY 4.0 International license.

Ine metric is potentially efficient at a local level as well, it cases that require delocalization, e.g., due to

lack of available ICU locally, are effectively tracked and taken into account. As the full segmentation of
 280 the necessary data was not available at a local level for the present study, it was not possible to evaluate
281 the effects of viral spread uniformity across the country and, more specifically, the metric's behavior
2 281 the effects of viral spread uniformity across the country and, more specifically, the metric's behavior
282 due to disproportionate testing intensities locally, e.g., higher number of tests in districts with lower
283 282 due to disproportionate testing intensities locally, e.g., higher number of tests in districts with lower
283 viral load, and relatively lower numbers of daily tests in districts with higher true viral load. In such a

283 viral load, and relatively lower numbers of daily tests in districts with higher true viral load. In such a
284 case, it would be helpful to apply the SDR monitoring at a local level.
285 The metric's median value is e 284 case, it would be helpful to apply the SDR monitoring at a local level.

285 The metric's median value is expected to decrease monotonically and with decreasing variation

286 as daily tests increase, or due to the gra 285 The metric's median value is expected to decrease monoton
286 as daily tests increase, or due to the gradual containment of the virt
287 thanks to an efficient vaccination program, improvement of ther
288 number of ver 286 as daily tests increase, or due to the gradual containment of the virus, immunization of the population,
287 thanks to an efficient vaccination program, improvement of therapeutic protocols that reduce the
288 number 287 thanks to an efficient vaccination program, improvement of therapeutic protocols that reduce the
288 number of very severe cases, or even a significant reduction in the average age of infected individuals
290 due to t 288 number of very severe cases, or even a significant reduction in the average age of infected individuals
289 due to the efficient protection of the elderly. Conversely, the metric's median value may increase
290 (interr 289 due to the efficient protection of the elderly. Conversely, the metric's median value may increase

290 (interrupting the plateau) if the viral spread becomes greatly enhanced with time, *e.g.*, due to the

291 preval 280 (interrupting the plateau) if the viral spread becomes greatly enhanced with time, e.g., due to the
291 prevalence of a new more infectious variant^{8,9,10}, without the testing levels catching up. In such a case
292 th

prevalence of a new more infectious variant^{8,9,10}, without the testing levels catching up. In such a case
292 the SDR's median will increase disproportionately and beyond its expected variability.
293 In order to compreh prevalence of a new more infectious variant^{9,9,10}, without the testing levels catching up. In such a case
the SDR's median will increase disproportionately and beyond its expected variability.
In order to comprehend the 293 In order to comprehend the nontrivial nature of the plateau attainment and
294 In order to comprehend the nontrivial nature of the plateau attainment and
295 In order of the SDR metric. For instance, if it was possible plot of SDR versus the number of daily tests (Figure 2), it is useful to look more carefully at some notable

295 boundaries of the SDR metric. For instance, if it was possible to test the entire population every day for
 295 boundaries of the SDR metric. For instance, if it was possible to test the entire population every day for
296 newly infected individuals (minus the individuals that are already known to be infected), then the
297 "dis 296 newly infected individuals (minus the individuals that are already known to be infected), then the "discovery" of every new infection case would be guaranteed (assuming 100% accurate tests). With a number of daily test 297 "discovery" of every new infection case would be guaranteed (assuming 100% accurate tests). With a

298 number of daily tests as big as the entire population and with the highest possible number of detected

299 cases 298 number of daily tests as big as the entire population and with the highest possible number of detected
299 cases (*i.e.*, equal to the actual cases), the SDR value becomes $[\cup / ($ (actual new cases) * population) $]$
20

299 cases (*i.e.*, equal to the actual cases), the SDR value becomes [U / ((actual new cases) * population)]
200 with the denominator assuming its greatest possible value, hence producing the lowest possible SDR.
201 In a 299 cases (i.e., equal to the actual cases), the SDR value becomes [U / ((actual new cases) * population)]
299 with the denominator assuming its greatest possible value, hence producing the lowest possible SDR.
201 In a d 301 In a different approach that hypothetically guarantees the detection of all the actual n
302 infected cases (without testing the entire population), we can consider testing all the newly infect
303 individuals, and onl 302 infected cases (without testing the entire population), we can consider testing all the newly infected
303 individuals, and only them, so that the number of daily tests becomes equals to the number of new
304 infectio 303 individuals, and only them, so that the number of daily tests becomes equals to the number of new
304 infections (again, assuming 100% testing accuracy). In this case the SDR value becomes [U/(actual cases
305 * actua individuals, and only them, so that the number of daily foot depends on the number of data cases
303 * actual cases) = U/ actual cases²]. Whether the possible values of the SDR metric can be bigger or
306 smaller than infections (again, assuming 100% testing accuracy). In this case the SDR value becomes [U/(actual cases * actual cases) = U/ actual cases²]. Whether the possible values of the SDR metric can be bigger or smaller than * actual cases)
smaller than th
[cases_{t-1} * tests_t
mathematical d ³⁰⁵ * actual cases) = U/ actual cases² J. Whether the possible values of the SDR metric can be bigger or
306 smaller than the value obtained in this second hypothetical scenario, depends on whether the product
307 [ca $\left[\frac{1}{2}$ cases_{t-i} * tests_{t-i}] is smaller or bigger than the square of the number of actual new infection cases (see
308 mathematical demonstration, below). Finally, as the theoretical maximum of all the possible SD mathematical demonstration, below). Finally, as the theoretical maximum of all the possible SDR values
14 308 mathematical demonstration, below). Finally, as the theoretical maximum of all the possible SDR values \sim medRxiv preprint doi: [https://doi.org/10.1101/2021.02.20.21252138;](https://doi.org/10.1101/2021.02.20.21252138) this version posted November 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

It is made available under a CC-BY 4.0 International license.

would be equal to number U. Specifically:
 $U/(\alpha_{t-1} * population) \leq SDR \leq U/\alpha_{t-1}^2 \leq SDR' \leq U$ =>
 $U/(\alpha_{t-1} * population) \leq U/(cases_{t-1} * tests_{t-1}) \leq U/\alpha_{t-1}^2 \leq U/(cases_{t-1} * tests_{t-1}) \leq U$ =>

$$
311\,
$$

311
\n312
$$
U/(\alpha_{t-1} * population) \leq SDR \leq U/\alpha_{t-1}^2 \leq SDR' \leq U
$$
 =
\n313 $U/(\alpha_{t-1} * population) \leq U/(\cases_{t-1} * tests_{t-1}) \leq U/\alpha_{t-1}^2 \leq U/(\cases_{t-1} * tests_{t-1}) \leq U$ =
\n314 $1/(\alpha_{t-1} * population) \leq 1/(\cases_{t-1} * tests_{t-1}) \leq 1/\alpha_{t-1}^2 \leq 1/(\cases_{t-1} * tests_{t-1}) \leq 1$ (4
\n315 therefore:

$$
313 \tU/(\alpha_{t\cdot i} * population) \le U/(\text{cases}_{t\cdot i}) \le U/\alpha_{t\cdot i}^2 \le U/(\text{cases}_{t\cdot i}) * tests_{t\cdot i}) \le U \tag{258}
$$

$$
314 \t 1/(\alpha_{t-1} * population) \le 1/(\text{cases}_{t-1} * tests_{t-1}) \le 1/\alpha_{t-1}^2 \le 1/(\text{cases}_{t-1} * tests_{t-1}) \le 1 \t (4)
$$

$$
318 \qquad \qquad \text{(cases}_{t-1}^{\prime\,*} \text{tests}_{t-1}^{\prime}) \leq \alpha_{t-1}^2 \qquad \qquad \text{=}& \qquad \text{V}(\text{cases}_{t-1}^{\prime\,*} \text{tests}_{t-1}^{\prime}) \leq \alpha_{t-1} \qquad \qquad (7)
$$

- 326 Rolling 7-day average of total number of the ITT with $1 \leq \text{tests}_{t-1} \leq \text{population},$ and $1 \leq \text{tests}_{t}$
328
329
-
-

with $1 \le \text{tests}_{t-1} \le \text{population}$, and $1 \le \text{tests}_{t-1}' \le \text{population}$
328
329
Inequality (5) is trivial as the number of actual new cases (α_{t-1}) and the entire population $x^2 + y^2$
329
330 Inequality (5) is trivial as the number of actual new cas
331 Country, or area of interest, are by definition the highest possi 329
330
331
332
333 ---
330
331
332
333
334 331 country, or area of interest, are by definition the highest possible values of the product (cases_{t-I}*tests_{t-I}).
332 However, inequality (6) describes a situation where the number of tests can only be equal or grea 332 However, inequality (6) describes a situation where the number of tests can only be equal or greater
333 than α_{H}^2 /cases_{t-i)}, and which may increase up to the number of the entire population, causing the
334 than $\alpha_{k,l}$ ²/cases_{k-l}, and which may increase up to the number of the entire population, causing the reduction of the SDR value till its described minimum of $U/(\alpha_{k,l}^*$ population). Inequality (7), inversely, 15 than at the control of the than $\alpha_{t_i}^2$ /cases_{til}, and which may increase up to the number of the entire population, causing the reduction of the SDR value till its described minimum of $U/(\alpha_{t-1} * \text{population})$. Inequality (7), inversely,
15 $3344 + 324$ reduction of U/(α teribed minimum of U/Cately, including $7/$

It is made available under a CC-BY 4.0 International license.

describes a situation where the number of tests can only be equal or lower than α_{12}^2 /cases_{t-1}', and which

may decrease to as low as 1 test, causing the increase of the SDR value to its maximumber U.
Therefore, because of this demonstrated relationship between the number or
number of actual new infections, we theorize that in a may decrease to as low as 1 test, causing the increase of the SDR value to its maximum that equals the

number U.

Therefore, because of this demonstrated relationship between the number of daily tests and the

number of 337 mumber U.
338 Therefore, because of this demonstrated relationship between the number of daily tests and the
339 number of actual new infections, we theorize that in a plot of SDR versus the number of daily tests, the 338 Thereform
339 number of
340 observed p
341 Inversely w
342 potentially 239 number of actual new infections, we theorize that in a plot of SDR versus the number of daily tests, the
340 observed plateau is a consequence of the SDR starting to adopt values that are smaller than U/α^2 .
341 Inv 340 observed plateau is a consequence of the SDR starting to adopt values that are smaller than U/α^2 .
341 Inversely we observe values outside the plateau as long as SDR adopts values greater than U/α^2 . This is
342 p observed plateau is a consequence of the SDR starting to adopt values that are smaller than U/α⁻.

11 Inversely we observe values outside the plateau as long as SDR adopts values greater than U/α². This is

2008/2020 Inversely we observe values outside the plateau as long as SDR adopts values greater than U/α⁻. This is
342 potentially what happened around the mark of 10,000 tests in our studied example (roughly around
343 20/8/2020) 20/8/2020), with the product (cases * tests) increasing almost 10-fold within a few days and presumably
344 becoming greater than the square of the actual new cases, thus collapsing the SDR variability into the
345 observ 344 becoming greater than the square of the actual new cases, thus collapsing the SDR variability into the
345 observed plateau (Figures 2 & 5). The importance of the plateau being, as previously explained, the
346 reduct 345 observed plateau (Figures 2 & 5). The importance of the plateau being, as previously explained, the reduction of the metric's variability (i.e., Standard Deviation), enabling a correspondingly robust forecasting of ICU 346 reduction of the metric's variability (i.e., Standard Deviation), enabling a correspondingly robust
347 forecasting of ICU needs, (t+i) days ahead of each datapoint.
348
 $\sqrt{(cases_{t-12} * tests_{t-12})}$ vs. the domain space of [

It is made available under a CC-BY 4.0 International license.

530 Figure 5. Visualization of the domain space where the number of actual new cases are to be found

351 hypothetically (blue area), relatively to the square root of the product [cases $_{t-12}$ * tests_{t-12}] (orange l 352 before and after the date of 8/20/2020, which marked the beginning of the SDR plateau.
353
354 In the context of the regression analysis of the daily needs for new ICU admissions (U) vs. the
355 product of [Detected Ca 353
353 before and after the date of 8/2012, marked the beginning of the 120 plateau.
354 here context of the regression analysis of the daily needs for new ICU admiss
355 product of [Detected Cases * Performed Tests] (Fig 354
355
355
357
358 355 product of [Detected Cases * Performed Tests] (Figure 3), significant changes in the SDR median would
356 be reflected as changes in the slope and/or the intercept of the regression line. Specifically, changes in
357 356 be reflected as changes in the slope and/or the intercept of the regression line. Specifically, changes in
357 the slope most likely translate into two possibilities: (A) a change in virulence (*i.e.*, how many indivi 357 the slope most likely translate into two possibilities: (A) a change in virulence (*i.e.*, how many individuals
358 per group of 100 positive cases, per 10,000 tests, are expected to develop very severe COVID-19, give 353 the slope most likely translate into two possibilities: (A) a change in virtualities (i.e., how many individuals
358 per group of 100 positive cases, per 10,000 tests, are expected to develop very severe COVID-19, giv 359 theoretical zero regression intercept), or (B) a modification in sampling parameters (e.g., testing more or
360 fewer asymptomatic persons, or testing a younger subset of the population). Accordingly, a change in
361 359 theoretical zero regression intercept, or (b) a modification in sampling parameters (e.g., testing more or
360 fewer asymptomatic persons, or testing a younger subset of the population). Accordingly, a change in
361 t 361 the intercept will likely signify either (a) changes in viral prevalence^{7,11}, as the intercept represents a fixed number U for a theoretical x=0, (*i.e.*, a number of individuals with very severe COVID-19, while no the intercept will likely signity either (a) changes in viral prevalence²,¹¹, as the intercept represents a fixed number U for a theoretical x=0, (*i.e.*, a number of individuals with very severe COVID-19, while no ca Example of the and accuracy and accuracy^{7,11}, with intercept values closer to zero reflecting
363 cases are detected), or (b) changes in testing accuracy^{7,11}, with intercept values closer to zero reflecting
364 optimal cases are detected), or (b) changes in testing accuracy⁷¹²², with intercept values closer to zero reflecting
364 optimal accuracy. Rolling 3-weeks regression windows could be employed to detect dynamic changes of
365 the 365 the pandemic. The study of all the available confounding factors (*e.g.*, prevalence of new virus variant, changes in sampling strategies, changes in testing parameters, characteristics of areas infected, lockdown and 365 the pandemic. The study of all the available confounding factors (e.g., prevalence of new virus variant, changes in sampling strategies, changes in testing parameters, characteristics of areas infected, lockdown and ot 367 lockdown and other measures' status, ages of tested and infected individuals, etc.) is required to discern
368 which exact change is responsible for the observed new disease dynamics, and the SDR derived
369 regression 368 which exact change is responsible for the observed new disease dynamics, and the SDR derived
369 regression analysis can provide significant hints as to the direction of the change. In any of the above
370 cases, an i 369 regression analysis can provide significant hints as to the direction of the change. In any of the above
370 cases, an important shift of the SDR would signify an important change in the pandemic parameters,
371 which

370 cases, an important shift of the SDR would signify an important change in the pandemic parameters,
371 which in turn would dictate a specific course of action for the authorities, appropriate for each case.
372 In Tab 371 which in turn would dictate a specific course of action for the authorities, appropriate for each case.
372 In Table 2 we contrast the regression parameters (*i.e.*, slope, intercept and R^2) against important
373 f In Table 2 we contrast the regression parameters (*i.e.*, slope, intercept and R²) against impor
373 factors of the ongoing pandemic, such as, Delta variant prevalence, vaccination levels, and lockd
374 periods. What is In Table 2 we contrast the regression parameters (*i.e.*, slope, intercept and R⁺) against important

factors of the ongoing pandemic, such as, Delta variant prevalence, vaccination levels, and lockdown

periods. What is periods. What is most notable is the stable slope decrease of the regression equations, over all 6 periods
examined, which is compatible with a decrease in population-level severity/virulence. This is to be
expected, given examined, which is compatible with a decrease in population-level severity/virulence. This is to be
expected, given the long periods of the applied lockdown measures and the ongoing mass vaccination
program in the country expected, given the long periods of the applied lockdown measures and the ongoing mass vaccination
program in the country (reaching 50% population coverage of fully vaccinated individuals on 8/8/2021).
As presented in the 377 program in the country (reaching 50% population coverage of fully vaccinated individuals on 8/8/2021).
378 As presented in the previous paragraph, another factor that can possibly lower the SDR slope is a
379 significa 378 As presented in the previous paragraph, another factor that can possibly lower the SDR slope is a significant change in sampling parameters, in a way where the group of asymptomatic individuals that are being tested be 379 significant change in sampling parameters, in a way where the group of asymptomatic individuals that
380 are being tested becomes considerably increased, a situation that results inherently to fewer detected
17 380 are being tested becomes considerably increased, a situation that results inherently to fewer detected
380 are being tested becomes considerably increased, a situation that results inherently to fewer detected
380 as a single tested becomes considerably increased, a situation that results inherently to fewer detected become
17

It is made available under a CC-BY 4.0 International license.

382 each factor with just the publicly available data, it is, nonetheless, possible to calculate a 9.5-fold total
383 drop in the observed severity between the beginning and ending of the six periods (17/10/2020 ->
384 8/ 383 drop in the observed severity between the beginning and ending of the six periods (17/10/2020 ->
384 8/8/2021), after adjusting for the obvious contribution of the change in the average number of cases
385 and tests (384 8/8/2021), after adjusting for the obvious contribution of the change in the average number of cases
385 and tests (Table 2):
 Δ (slope, 17/10/2020 -> 8/8/2021): (2*10⁻⁶ / 7*10⁻⁸) = 28.6 - Unadjusted fold change 385 and tests (Table 2):
386 Δ (slope, 17/10/2020 -> 8/8/2021): (2*10⁻⁶ / 7*10⁻⁸) = 28.6 - Unadjusted fold change in severity
387 Δ (average SDR denominator, 17/10/2020 -> 8/8/2021): (1,602*55,190) / (1,142*25,585

-
-
-

386 Δ (slope, 17
387 Δ (average
388 fold change in produce) Δ(slope, 17/10/2020 -> 8/8/2021): (2*10°/7*10°) = 28.6 - Unadjusted fold change in severity

387 Δ(average SDR denominator, 17/10/2020 -> 8/8/2021): (1,602*55,190) / (1,142*25,585) = 3

388 fold change in product (cases Δ (observed severity, 17/10/2020 -> 8/8/2021): 28.6 / 3 = 9.5 - Adjusted fold change in severity
389 Δ (observed severity, 17/10/2020 -> 8/8/2021): 28.6 / 3 = 9.5 - Adjusted fold change in severity
390 On the contrary

89
$$
\Delta
$$
 (observed severity, 17/10/2020 -> 8/8/2021): 28.6 / 3 = 9.5 - Adjusted fold change in severity

 Δ (observed severity, 17/10/2
389 Δ (observed severity, 17/10/2
391 On the contrary, the intercep
392 3.9. As explained previously, increase 390
391 Con the contrary, the intercept oscillates considerably between periods, ranging from +28.6 to
392 3.9. As explained previously, increases of the intercept may be attributed to greater viral spread in the
393 comm 391
392
393
394
395 3.9. As explained previously, increases of the intercept may be attributed to greater viral spread in the
393 community, as was the case in the second period $(11/2/2021 - 21/4/2021)$, when Athens, the capital,
394 saw a g 393 community, as was the case in the second period (11/2/2021 – 21/4/2021), when Athens, the capital, saw a great increase in infected cases, which signaled the beginning of the 3rd wave of the pandemic in Greece. Besid Saw a great increase in infected cases, which signaled the beginning of the 3^{rd} wave of the pandemic in
395 Greece. Besides viral spread, the other factor that influences the intercept is the accuracy of the tests
396 saw a great increase in infected cases, which signaled the beginning of the 3rd wave of the pandemic in
Greece. Besides viral spread, the other factor that influences the intercept is the accuracy of the tests
performed, performed, i.e., potential false positives and false negatives, due to poor test specificity, test sensitivity,
397 or yet undetectable levels of the virus in asymptomatic infected individuals who simply got tested too
398 397 or yet undetectable levels of the virus in asymptomatic infected individuals who simply got tested too
398 early in the course of the disease. Regarding Delta variant prevalence (B.1.617.2), representing 90% of
399 ca 398 early in the course of the disease. Regarding Delta variant prevalence (B.1.617.2), representing 90% of
399 cases in Greece on 8/8/2021, it doesn't appear to be affecting the severity of the disease (*i.e.*, a slope
3 2398 cases in Greece on 8/8/2021, it doesn't appear to be affecting the severity of the disease (*i.e.*, a slope

400 increase), however it is possibly contributing to the intercept increase from 16/6/2021 onwards, with it Eastes in Greece on 8/8/2021, it doesn't appear to be affecting the severity of the disease (i.e., a slope
increase), however it is possibly contributing to the intercept increase from 16/6/2021 onwards, with its
greater t greater transmissibility potential, as reported by other studies¹⁸. Overall, the slope and intercept of SDR-

402 based regression equations offer an additional layer of information, which, in conjunction with other

403

greater transmissibility potential, as reported by other studies²⁰. Overall, the slope and intercept of SDR-
based regression equations offer an additional layer of information, which, in conjunction with other
metrics a metrics and parameters, may create a better understanding of the pandemic's dynamics.

403 based of the called this new metric Severity Detection Rate, as its representation of the percentage of

405 very severe COVID-19 o 404 We called this new metric Severity Detection Rate, as its representation of the
405 very severe COVID-19 outcomes is modulated by the number of tests performed. It
406 standardization of the very severe cases ratio ove very severe COVID-19 outcomes is modulated by the number of tests performed. It is essentially a
406 standardization of the very severe cases ratio over the infected individuals, with the rate of daily testing.
407 In othe 406 standardization of the very severe cases ratio over the infected individuals, with the rate of daily testing.
407 In other words, the Severity Detection Rate becomes representative of the proportion of people who
18 407 In other words, the Severity Detection Rate becomes representative of the proportion of people who $\frac{1}{2}$
18 407 In other words, the Severity Detection Rate becomes representative of people who μ

It is made available under a CC-BY 4.0 International license.

409 is achieved.
408 As presented in the Methods section, for a more complete examination, we also defined the
411 percentage of patients who require ICU admission, per new cases detected (t-i) days ago, as ICU Rate
412 (I 410 As p
411 percentage
412 (IR). If, in th
413 area of inte
414 parameter example in the Methods section, the Methods section of a country (or the Ata (IR). If, in theory, the total number of tests became equal to the entire population of a country (or the area of interest), then the SDR metric 412 (IR). If, in theory, the total number of tests became equal to the entire population of a country (or the area of interest), then the SDR metric would be the same as the IR metric, as the 'number of tests' parameter wo area of interest), then the SDR metric would be the same as the IR metric, as the 'number of tests'

parameter would be removed from the denominator (as redundant), and both would practically

represent the true percentage For interest metric metric metric interest interest interest interest interest of the same as the predictive potential of the IR metric, we have repeated for IR every piece of analysis that was performed
413 are SDR metric From the true percentage of critical patients per infected individual. In order to assess the

predictive potential of the IR metric, we have repeated for IR every piece of analysis that was performed

on the SDR metric th

predictive potential of the IR metric, we have repeated for IR every piece of analysis that was performed

417 on the SDR metric throughout this study.

418 Regarding forecasting, the conclusion drawn by this parallel anal 417 on the SDR metric throughout this study.

418 Regarding forecasting, the conclusion drawn by this parallel analysis is that the IR metric

419 performed as well as the SDR metric, in the analyzed example (Figures 3-S, 418 Regarding forecasting, the conc
419 performed as well as the SDR metric, in
420 this, the IR metric would probably have t
421 public, as it represents a more comprehe
422 individuals. We therefore believe that th end as well as the SDR metric, in the analyzed example (Figures 3-S, 4-S, Table 2-S). On top of
420 this, the IR metric would probably have the advantage of simplicity when communicated in the general
421 public, as it rep this, the IR metric would probably have the advantage of simplicity when communicated in the general

421 public, as it represents a more comprehensible concept: the number of very severe cases per infected

422 individual public, as it represents a more comprehensible concept: the number of very severe cases per infected

422 individuals. We therefore believe that the IR metric may be used in cases where the population-level

423 COVID-19 t Fund a more compresents a more compresents a more compresent a more per increase where the population-level

422 COVID-19 testing surveillance of the pandemic is well established, by efficient and sufficient testing.

424 423 COVID-19 testing surveillance of the pandemic is well established, by efficient and sufficient testing.
424 Nonetheless, we support that by including the number of daily tests performed, the SDR metric is
425 inherentl Nonetheless, we support that by including the number of daily tests performed, the SDR metric is

425 inherently more suitable for a wider range of surveillance scenarios, e.g., when the testing strategies

426 and pandemi metric in the support that by including the number of daily force performed, the support including interests and pandemic parameters (e.g., number & type of tests, geographical/ occupational/ age targeting, contact tracing and pandemic parameters (e.g., number & type of tests, geographical/ occupational/ age targeting, contact tracing efficacy, transmissibility of the virus, etc.) are more volatile in time. In different countries, or in spec 427 contact tracing efficacy, transmissibility of the virus, etc.) are more volatile in time. In different
428 countries, or in specific areas of interest, it is still possible for the IR-based monitoring to fail to return countries, or in specific areas of interest, it is still possible for the IR-based monitoring to fail to return

regression coefficients as strong as in our studied example. In those cases, it would be necessary to

switch restances, or in specific areas of interest, it is still possible. In those cases, it would be necessary to switch to SDR-based monitoring to ensure that a threshold of sufficient testing has been reached (*i.e.*, plateau 430 switch to SDR-based monitoring to ensure that a threshold of sufficient testing has been reached (*i.e.*, plateau formation). In any case, although more studied examples are required to better understand the potential Figure 1330 switch to SDR-based monitoring to ensure that a threshold of sumerient testing has been reached (i.e.,
431 plateau formation). In any case, although more studied examples are required to better understand the
4 potential practical differences between the two metrics, since they both showed equal forecasting

433 performances, we believe that SDR is the more well-rounded metric, which can be efficiently used in

434 potentially ve performances, we believe that SDR is the more well-rounded metric, which can be efficiently used in

potentially very diverse situations of pandemic surveillance.

435

436 potentially very diverse situations of pandemic surveillance.
435
436
437

435
436
437 436
437 437

medRxiv preprint doi: [https://doi.org/10.1101/2021.02.20.21252138;](https://doi.org/10.1101/2021.02.20.21252138) this version posted November 13, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has grante

It is made available under a CC-BY 4.0 International license.

439 Table 2. Regression equations per distinct period of stable Severity Detection Rate, with respective average numbers of observed daily needs for 440 new ICU admissions, cases detected and tests performed, vaccination coverage at the beginning of each period, percent of Delta variant prevalence 441 in cases detected, along with important dates and comments that potentially influenced the course of the pandemic in Greece (each period is color-442 coded with reference to the respective 'distinct periods of testing levels', in Table 1).

443

444

445

446

447

448

. [CC-BY 4.0 International license](http://creativecommons.org/licenses/by/4.0/) It is made available under a

It is made available under a CC-BY 4.0 International license

It is made available under a CC-BY 4.0 International license.

449

450
451
452
453 451 Taken to
452 *(i.e.*, daily needs
453 toolbox, i.e., the
454 number $R_0^{19,20}$, a 452 (*i.e.*, daily needs for ICU) should be viewed as integral parts of the currently employed epidemiological
453 toolbox, i.e., the positivity rate, efficient contact tracing for determination of the basic reproduction
 toolbox, i.e., the positivity rate, efficient contact tracing for determination of the basic reproduction

454 (mmber $R_0^{19,20}$, and wastewater-based surveillance^{21,22}. The metric introduces the goal for authorities 454 number $R_0^{19,20}$, and wastewater-based surveillance^{21,22}. The metric introduces the goal for authorities to
455 minimize its variation by means of a sufficient number of daily tests and an adequate sampling strat mumber $R_0^{2.9,20}$, and wastewater-based surveillance^{21,22}. The metric introduces the goal for authorities to

455 minimize its variation by means of a sufficient number of daily tests and an adequate sampling strateg For a minimize its variation by means of a summation by means of a supplied temporal computer of the comes possible.
457 With accurate forecasting, number U becomes in essence a quantitative metric for the severity of the 457 With accurate forecasting, number U becomes in essence a quantitative metric for the severity of the
458 pandemic.
459 In Figure 6 we detail all the proposed steps for population-level surveillance of COVID-19
460 pand

458 pandemic.
459 In Figure 6 we detail all the proposed steps for population-level surveillance of COVID-19
460 pandemic using the Severity Detection Rate metric. For monitoring SDR Standard Deviation, a minimum
461 of 3-459 In
460 pandemic.
461 of 3-weeks
462 lag.period pandemic using the Severity Detection Rate metric. For monitoring SDR Standard Deviation, a minimum
461 of 3-weeks rolling window interval is suggested empirically, as this interval includes the roughly 2-week
462 lag peri 461 of 3-weeks rolling window interval is suggested empirically, as this interval includes the roughly 2-week
462 lag period between case detection and ICU intubation. The recommended surveillance model provides
463 three 462 lag period between case detection and ICU intubation. The recommended surveillance model provides
463 three distinct advantages: (1) a measurable threshold for adequacy of tests performed, (2) important
464 qualitative 463 three distinct advantages: (1) a measurable threshold for adequacy of tests performed, (2) important qualitative information regarding the current dynamics of the pandemic (virulence, prevalence, testing accuracy, etc. three distinct advantages: (1) a measurable threshold for adequacy of tests performed, (2) important
464 qualitative information regarding the current dynamics of the pandemic (virulence, prevalence, testing
465 accuracy,

467 We strongly believe that the explicit tracking of this novel metric enhances the visibility of viral
468 spread and dynamics and may procure an accurate outlook of the upcoming needs for ICU admissions 469 well in advance, which should serve as an early warning system for COVID-19 health establishments and 467 **19 Ability 19 Abili** 468 spread and dynamics and may procure an accurate outlook of the upcoming needs for ICU admissions
469 well in advance, which should serve as an early warning system for COVID-19 health establishments and
470 resources. well in advance, which should serve as an early warning system for COVID-19 health establishments and
470 resources. We therefore suggest further study of Severity Detection Rate with data from more
471 countries, as well From Bources. We therefore suggest further study of Severity Detection Rate with data from more
countries, as well as at a local level wherever possible, to confirm the proposed functionality and utility
of this metric.
47 471 countries, as well as at a local level wherever possible, to confirm the proposed functionality and utility
472 of this metric.
473 472 of this metric.
473
474 473
474
474

 474

Recommended population-level surveillance of COVID-19 pandemic using the Severity Detection Rate (SDR) metric

476 **Figure 6.** Stepwise schema detailing the *logic and requirements for population-lever* sur*veillance* of 477 COVID-19 pandemic with the use of the Severity Detection Rate metric.

475

It is made available under a [CC-BY 4.0 International license](http://creativecommons.org/licenses/by/4.0/) .

479 1.
480 Hopkins Bloot
481 <u>https://www.jh</u>
482 2 1. Dowdy D, D'Souza G. COVID-19 Testing: Understanding the "Percent Positive". Johns
480 Hopkins Bloomberg School of Public Health. Accessed 31 August 2021. Available from:
481 <u>https://www.jhsph.edu/covid-19/articles/covi</u>

481 https://www.jhsph.edu/covid-19/articles/covid-19-testing-understanding-the-percent-positive.html
482 2 Siddarth D, Katz R, Graeden E, Analytics T, Allen D, Tsai T. 2020. Evidence Roundup: Why
483 positive test rates ne 2. Siddarth D, Katz R, Graeden E, Analytics T, Allen D, Tsai T. 2020. Evidence Roundup: \\tips://globalhealth.harvard.edu/evidence-roundup-why-positive-test-rates-need fall-below-3 483 positive test rates need to fall below 3%. Harvard Global Health Institute. Accessed 31 August 2021.
484 Available from: https://globalhealth.harvard.edu/evidence-roundup-why-positive-test-rates-need-to-
485 fall-below 484 Available from: https://globalhealth.harvard.edu/evidence-roundup-why-positive-test-rates-need-to-
485 fall-below-3
486 3. Hellenic National Public Health Organization. Daily Reports COVID-19. Accessed 31
487 August 20

 $\frac{13}{2}$ 486 3.
487 August 2021
488 <u>19/</u>
489 4. August 2021. Available from: https://eody.gov.gr/epidimiologika-statistika-dedomena/ektheseis-covid-
188 19/
489 4. Greek Government's official community on Viber network. Official COVID-19 update.
190 Accessed 31 August 2

——
489
490 Acce
491 <u>http</u>
492 eH8

491 https://invite.viber.com/?g2=AQAVNiDVlfirlEtaYLf1s2sUzRrpfLVlfLVg4J8wkdNKMUSnUcQWJxnXH0Os1h 490 Accessed 31 August 2021. Available from:
491 https://invite.viber.com/?g2=AQAVNiDVlfjrIEtaYLf1s2sUzRrpfLVlfLVg4J8wkdNKMUSnUcQWJxnXH0Os1h
492 eH&lang=el
493 5. Corman VM. Landt O. Kaiser M. Molenkamp R. Meiler A. Chu DK 191 Accessive 2021 Access 2021
191 Attps://invite.viber.com/?g2=AQAVNiDVlf
192 <u>eH&lang=el</u>
193 5. Corman VM, Landt O, Kais
194 Schneider J. Schmidt ML. Mulders DGJC.

492 eH&lang=el
493 5. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S
494 Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, van der Veer B, van den Brink S, Wijsman L
495 Goderski G, R 493 5.
494 Schneider J,
495 Goderski G,
496 C. 2020. D Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, van der Veer B, van den Brink S, Wijsman L,
495 Goderski G, Romette J-L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, Drosten
496 C. 2020. Detection 495 Goderski G, Romette J-L, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, Drosten
496 C. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.
497 25(3):pii=2000045. 496 C. 2020. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.
497 25(3):pii=2000045. doi.org: 10.2807/1560-7917.ES.2020.25.3.2000045.
498 6. Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup

25(3):pii=2000045. doi.org: 10.2807/1560-7917.ES.2020.25.3.2000045.

497 25(3):pii=2000045. doi.org: 10.2807/1560-7917.ES.2020.25.3.2000045.

498 6. Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup-Fellous C, Morand-Joubert 498 6. Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup-Fellou
499 Afonso AM, Le Goff J, Delaugerre C. 2020. Evaluation of a Rapid Diagno
500 CoV-2 Antigen in Nasopharyngeal Swabs. J Clin Microbiol. 23;58(8):e009
501 20.

502 **6. Lambert-Onital A, Cambert-Niclot S, Curre-** S, Curre-Oniclot S, Salit M. 2021. Testing at scale during the COVID-19 pandemic. Nat Rev Genet 503 22, 415-426. doi: 10.1038/s41576-021-00360-w 501 20.
502 7. Mercer TR, Salit M. 2021. Testing at scale during the COVID-19 pandemic. Nat Rev Genet
503 22, 415–426. doi: 10.1038/s41576-021-00360-w
504 8. Elbe S. Buckland-Merrett G. 2017. Data. disease and diplomacy: G 502
502
503 22,
504
505 con

503 22, 415–426. doi: 10.1038/s41576-021-00360-w
504 8. Elbe S, Buckland-Merrett G. 2017. Data, disease and diplomacy: GISAID's innovative
505 contribution to global health. Glob Chall. 10;1(1):33-46. doi: 10.1002/gch2.10 504 8. Elbe S, Buckland-Merrett G. 20
505 contribution to global health. Glob Chall. 10;1(1): 504 8. Elbe S, Buckland-Merrett G. 2017. Data, disease and diplomacy: GISAID's innovative
505 contribution to global health. Glob Chall. 10;1(1):33-46. doi: 10.1002/gch2.1018.
24 505 contribution to global health. Glob Chall. 10;1(1):33-46. doi: 10.1002/gch2.1018.

It is made available under a CC-BY 4.0 International license.

9. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, Sagulenko P, Bedford T,
507 Neher RA. 2018. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 1;34(23):4121-
508 10. Forster P, Fors

508 4123. doi: 10.1093/bioinformatics/bty407.
509 10. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2
510 genomes. 2020. Proc Natl Acad Sci U S A. 28;117(17):9241-9243. doi: 10.1073/

509 10. Forster P, Forster L, Renfre
510 genomes. 2020. Proc Natl Acad Sci U S A. 28
511 11. Nichols JD, Bogich TL, Hov
512 Jewell J. Pepin KM. Probert WJM. Pulliam J 510 genomes. 2020. Proc Natl Acad Sci U S A. 28;117(17):9241-9243. doi: 10.1073/pnas.2004999117.
511 11. Nichols JD, Bogich TL, Howerton E, Bjørnstad ON, Borchering RK, Ferrari M, Haran M,
512 Jewell J, Pepin KM, Probert W 511 11. Nichols JD, Bogich TL, Howerton E, Bjørnstad ON, Borchering RK, Ferrari M, Ha
512 Jewell J, Pepin KM, Probert WJM, Pulliam JRC, Runge MC, Tildesley M, Viboud C, Shea K. 2021. St
513 testing approaches for targeted Sommetry Program Inc., Runge MC, Tildesley M, Viboud C, Shea K. 2021. Strategic
513 testing approaches for targeted disease monitoring Sa State Jewell J, Pepin KM, Probert WJM, Pulliam JRC, Runge MC, Tildesley M, Viboud C, Shea K. 2021. Strategic

513 testing approaches for targeted disease monitoring can be used to inform pandemic decision-making.

514 P

514 PLoS Biol 19(6): e3001307. doi: 10.1371/journal.pbio.3001307
515 12. Krinis N. 2020. Greece to Enter Lockdown to Fight Second Covid-19 Wave. Greek Travel
516 Pages. Accessed 31 August 2021. Available from: https://news 515 12. Krinis N. 2020. Greece to Enter Lockdown to F
516 Pages. Accessed 31 August 2021. Available from: https
517 <u>lockdown-fight-second-covid-19-wave</u>
518 13. Koutantou A. 2021. Greek premier orders 516 Pages. Accessed 31 August 2021. Available from: https://news.gtp.gr/2020/11/05/greece-enter-
517 <u>lockdown-fight-second-covid-19-wave</u>
518 13. Koutantou A. 2021. Greek premier orders full lockdown in Athens after sur

520 https://www.reuters.com/world/greek-premier-orders-full-lockdown-athens-after-surge-coronavirus-518 13. Koutantou A. 2021. (1991)
519 coronavirus cases. Reuters.
520 <u>https://www.reuters.com/world/greek</u>
521 <u>cases-2021-02-09</u> 519 coronavirus cases. Reuters. Accessed 31 August 2021. Available from:
520 <u>https://www.reuters.com/world/greek-premier-orders-full-lockdown-athens-after-surge-coronavirus-
521 cases-2021-02-09
522 14. Reuters Staff. 202</u>

520 https://www.reuters.com/world/greek-premier-orders-full-lockdown-athens-after-surge-coronavirus-
521 cases-2021-02-09
522 14. Reuters Staff. 2021. Greece orders COVID self-testing for service workers. Reuters.
523 Acce 524 https://www.reuters.com/world/greek-premier-orders-full-lockdown-athens-after-surge-coronavirus-521 cases-2021-02-09 523 Accessed 31 August 2021. Available from: https://www.reuters.com/article/health-coronavirus-greece-
524 tests-idUSL8N2M740B
525 15. ESN COVID-19 Official Announcements & News. Timeline for the loosening of the
526 lock

527 Available from: https://esngreece.gr/covid-19-official-announcements-news 525 15. ESN CONTRACTES
526 lockdown measures in
527 Available from: https://
528 16. GTP ec 526 lockdown measures in Greece. 2021. Erasmus Student Network Greece. Accessed 31 August 2021.
527 Available from: https://esngreece.gr/covid-19-official-announcements-news
528 16. GTP editing team. 2021. All Employees in

413 Available from: https://esngreece.gr/covid-19-official-announcements-news
528 16. GTP editing team. 2021. All Employees in Greece Must Self-test for Covid-19. Greek
529 Travel Pages. Accessed 31 August 2021. Available 528 16. GTP editing team. 2021. All Employees in Greece Must Se
529 Travel Pages. Accessed 31 August 2021. Available from: https://news.gtp.gr/
530 greece-must-self-test-covid-19
531 17. European Centre for Disease Prevent 529 Travel Pages. Accessed 31 August 2021. Available from: https://news.gtp.gr/2021/05/24/all-employees-
530 greece-must-self-test-covid-19
531 17. European Centre for Disease Prevention and Control. SARS-CoV-2 variants of

529 Travel Pages. Accessed 31 August 2021. Available from: https://news.gtp.gr/2021/05/24/all-employees-531 17. European Cent
532 of 26 August 2021. Accessed 3
533 <u>19/variants-concern</u> of 26 August 2021. Accessed 31 August 2021. Available from: https://www.ecdc.europa.eu/en/covid-
19/variants-concern
25 533 19/variants-concern

It is made available under a CC-BY 4.0 International license.

- 18. Centers for disease control and prevention. Delta Variant: What We Know About the

535 <u>Science.</u> Accessed 31 August 2021. Available from: https://www.cdc.gov/coronavirus/2019-

536 nov/variants/delta-variant.html

537
- 1999 Schemar Schemar accessed 31 August 2021. Accept 31 August 2021. Accordinate from: https://www.coronavirus-
19. Macdonald G (1952). The analysis of equilibrium in malaria. Tropical Diseases Bulletin.
19. 29. 20. Delama
- 537 19. Macdonald G (19
538 49 (9): 813–829. ISSN 0041-3240.
539 20. Delamater PL, Sti
540 reproduction number (R0). Emerg 49 (9): 813–829. ISSN 0041-3240. PMID 12995455.
539 20. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. 2019. Complexity of the basic
540 reproduction number (R0). Emerg. Infect. Dis. 25, 1–4.
541 21. Wu Y. Guo C 539 20. Delamater PL, Street EJ, Leslie TF,
540 reproduction number (R0). Emerg. Infect. Dis. 25, 1
541 21. Wu Y, Guo C, Tang L, Hong Z, Zhou
542 X. Mishra N. Lu J. Shan H. Jiang G. Huang X. 2020. I
- 139 139 139 139 20. Delay 139. Delay 21. University of the basic Street Equipment Property of the basic Street Equipment Property. Complexity of the basic Street 541 21. Wu Y, Guo C, Tang L, Hong Z, Zhou J, D
542 X, Mishra N, Lu J, Shan H, Jiang G, Huang X. 2020. Prol
543 samples. Lancet Gastroenterol Hepatol. 5(5):434-435.
544 Mar 20. 542 X, Mishra N, Lu J, Shan H, Jiang G, Huang X. 2020. Prolonged presence of SARS-CoV-2 viral RNA in faecal
543 samples. Lancet Gastroenterol Hepatol. 5(5):434-435. doi: 10.1016/S2468-1253(20)30083-2. Epub 2020
544 Mar 20. 543 samples. Lancet Gastroenterol Hepatol. 5(5):434-435. doi: 10.1016/S2468-1253(20)30083-2. Epub 2020
544 Mar 20.
545 22. Polo D, Quintela-Baluja M, Corbishley A, Davey LJ, Andrew CS, David WG, Jesús LR. 2020.
546 Making
- 544 Mar 20.
545 22. Polo D, Quintela-Baluja M, Corbishley A, Davey LJ, Andrew CS, David WG, Jesús LR. 2020.
546 Making waves: Wastewater-based epidemiology for COVID-19 approaches and challenges for
547 surveillance and 544 Mar 20. 546 Making waves: Wastewater-based epidemiology for COVID-19 – approaches and challenges for
547 surveillance and prediction. Water Research, 186, 116404. doi: 10.1016/j.watres.2020.116404.
548 547 Making waves: Waster-Based epidemiology for COVID-19 epipemiological estimates and challenges for
548
548
549 548
548
550
550
-
-

549
550
551 551

- 1
550
551
552 ---
551
552 552
1 552