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Abstract 

A fully automatic two-dimensional Unet model is proposed to segment aorta and coronary 
arteries in computed tomography images. Two models are trained to segment two regions of 
interest, (1) the aorta and the coronary arteries or (2) the coronary arteries alone. Our method 
achieves 91.20% and 88.80% dice similarity coefficient accuracy on regions of interest 1 and 
2 respectively. Compared with a semi-automatic segmentation method, our model performs 
better when segmenting the coronary arteries alone. The performance of the proposed method 
is comparable to existing published two-dimensional or three-dimensional deep learning 
models. Furthermore, the algorithmic and graphical processing unit memory efficiencies are 
maintained such that the model can be deployed within hospital computer networks where 
graphical processing units are typically not available. 
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Introduction 

Background 

Coronary artery disease (CAD) is one of the leading causes of death in the UK [1] and 
worldwide. The lumen of the coronary arteries can narrow as a result of build-up of 
atheromatous plaque within the artery wall. Reductions in local blood flow as a result of vessel 
lumen narrowing can starve heart muscle of oxygen. Vulnerable plaque can rupture, occlude 
the vessel lumen and result in a cardiac muscle ischaemia/death, which manifests clinically as 
a heart attack. Early detection of the presence of atheromatous plaque and vessel stenosis [2] 
could allow early medical intervention and potentially reduce the risk of heart attack. Currently, 
several non-invasive imaging modalities are available to clinicians for visualising the anatomy 
of the coronary arteries as well as delineating the severity of vessel stenosis. These imaging 
modalities are Stress Echocardiography [3], Cardiac magnetic resonance imaging (MRI) [4] 
and Computed Tomography Coronary Angiography (CTCA) [5]. CTCA is the quickest of these 
methods and offers high sensitivity and specificity for detection and exclusion of significant 
coronary stenosis [6]. As a result CTCA is the preferred first-line option for the assessment of 
stable cardiac disease in the National Institute for Health and Care Excellences guidelines for 
the UK [7]. CTCA has the ability to identify calcified, non-calcified coronary plaque and 
mixed-attenuation plaques which can help clinicians characterise plaques and formulate 
management strategies. 

 

To assess the severity of CAD, one approach involves visual estimation of stenosis severity on 
CTCA scans. This requires the geometrical information of the coronary arteries to be provided 
in order to accurately assess the severity of the stenosis. This approach however is subjective 
and time consuming. Accurate interpretation and diagnosis of CAD is heavily reliant on the 
experience and expertise of individual clinicians [8, 9]. The diagnostic outcomes can differ 
between newly trained clinicians compared to experienced specialists.  

 

An alternative approach for assessing CAD severity involves performing computational fluid 
dynamics (CFD) on the target arteries [10]. It first requires identification of accurate geometries 
of the aorta and coronary arteries. A set of partial differential equations of blood flow are then 
solved numerically given the boundary conditions and the geometries. Once the blood flow is 
estimated, the useful clinical predictor, Fractional Flow Reserve (FFR) [11-13] can be derived. 
This approach provides an objective estimation of stenosis and does not require additional 
imaging, which makes it particularly attractive to clinicians. However, implementing CFD 
models is very time consuming and computationally demanding. It is usually deployed on high 
performance computer clusters (HPC) [14] and takes several hours per patient to produce the 
results. Importantly, the CFD simulation has to be performed off-site where HPC services are 
available. This approach is not practical for real-time patient management. 

 

Deriving accurate geometrical information of the aorta and coronary arteries is important for 
the above approaches. It is achieved by delineating the outline of the vessels, termed 
segmentation. Blood vessel segmentation can be performed manually, semi-automatically or 
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automatically [15-20]. Manual segmentation is subjective and time consuming, requiring pixel-
by-pixel labelling of individual vessels. Semi-automatic and automatic segmentation methods 
are objective and quicker, though they can require manual correction for under- or over- 
segmented vessels. There remains an unmet need to develop fast, objective and accurate 
automated computer-derived coronary artery segmentation algorithms that can be deployed in 
a hospital setting to assist clinicians diagnose CAD. This is especially relevant in Accident and 
Emergency (A+E) departments where CTCA reviews are often delayed due to a lack of 
available specialists to read the CTCAs  [21]. This delay in turn slows patient management in 
A+E, increases resource utilisation and results in excess costs to the health service. 

 

A fully automatic detection and classification system for CAD using computer-based deep 
learning algorithms is a way to achieve the above goal. The first stage of the process initially 
requires segmentation (identifying the outlines) of the aorta and coronary arteries on CTCA 
images. The second stage involves classification of disease severity performed on segmented 
CTCA images. The segmentation task has be considered in two ways in the literature. The first 
involves segmentation of both the aorta and the coronary arteries. For example, Gu et al [22] 
proposed a 3D deep learning model to perform this task. The other strategy is to segment just 
the coronary arteries alone. For example, Huang et al [23] suggested a 3D deep learning method 
with centreline to segment the coronary arteries. In general, the performance of aorta and 
coronary artery segmentation is better than segmentation of the coronary arteries alone. A more 
detailed summary regarding existing deep learning-based segmentations is discussed in the 
following paragraph.    

 

The works related to artery segmentation on CTCA images have been discussed in two review 
papers [20, 24]. The focus of the current study relates to deep learning methods of coronary 
artery segmentation. Therefore, we briefly summarise the work published so far. Several deep 
learning techniques have been proposed to segment the aorta and/or coronary arteries. 
Moeskops et al [25] investigated a single convolutional neural network trained to segment 
coronary arteries in cardiac CTA images. The training dice similarity coefficient (DSC) 
accuracy was around 65%. A 3D-convolutional neural network was presented by Merkow et 
al [26], which demonstrated that processing the volumetric data in 3D could improve the 
segmentation performance compared to 2D processing. However, the performance of the 
coronary artery segmentation model was not reported.  Kjerland et al [27] adopted a 3D 
DeepMedic network to segment both the aorta and coronary arteries. The reported DSC 
accuracy was between 75%-78%. Huang et al [23] examined a 3D Unet with/without a 
centerline to segment the coronary artery. The DSC accuracy was between 71%-78%.  

 

Recently, a 3D multi-channel Unet has been proposed by Chen et al [28], which had a DSC 
accuracy of 80% for coronary artery segmentation. Shen et al [29] proposed a 3D fully 
convolutional network with attention gates to segment both the aorta and coronary artery. The 
boundary of the segmented artery was smoothed by a level set function. The average DSC 
accuracy was about 90%. Lee et al [30] introduced a template transformer network where a 
shape template is deformed to match the underlying structure of interest through an end-to-end 
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trained spatial transformer network for coronary artery segmentation. The DSC accuracy is 
between 76%-78%. Wolterink et al [31] proposed using graph convolutional networks to 
predict the spatial location of vertices in a tubular surface mesh that segments the coronary 
artery lumen. The average DSC is 74%. Mirunalini et al [32] proposed a two-stage approach 
to segment the coronary artery. The first stage adopted a 2D Recurrent Convolutional Neural 
Network to detect the artery in the slice, then a 2D residual Unet was used to segment the 
coronary artery. The intersection over union (IoU) was reported, which was 84%. Lei et al [33] 
developed a 3D Attention Fully Convolutional Network model to automatically segment the 
aorta and coronary artery for CCTA. The mean DSC is 83%. Gu et al [22] recently published 
a 3D global feature embedded network with active contour loss to segment the aorta and 
coronary artery. The reported average DSC is 91.43%. 

 

In this study, we propose a modified U-Net [34] model and evaluate its performance for the 
automated segmentation of the aorta and coronary arteries on CTCA images. We then retrain 
our model to segment the coronary arteries alone and demonstrate improved performance. 

 

The main contributions of this study are: 

 The first study to propose a modified 2D Unet directly to segment the aorta and/or 
coronary arteries in CTCA scans 

 This fully automated technique is simple, fast and efficient, and produces results that 
can assist real-time clinical decisions 

 It is practically feasible to be implemented in clinical systems where available 
computational resources are limited 

 The performance of this model is similar to other existing deep learning techniques (3D 
global feature embedded network + Active contour loss) (with aorta) / (2D RCNN + 
2D Unet) (without aorta) 

 Importantly, our technique works well when the coronary arteries alone are segmented 
(accuracy ~89%). 

 

Method 

Clinical data 

CTCA scans were performed on 69 subjects and patients with chest pain. The scans were 
acquired at University College Hospital London and Barts Health NHS Trust using different 
CT scanners and acquisition protocols. An example of a CTCA scan is shown in Figure 1. 
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Figure 1: A CTCA scan of a patient 

 

Data pre-processing 

The original Digital Imaging and Communications in Medicine (DICOM) data were pre-
processed using ImageJ [35]. The image size was 512 x 512 pixels. The pixel intensity was 
normalised by using linear histogram stretch and then rescaled to between 0 to 255. Final 
images were converted to 8-bit Portable Network Graphics (PNG) for training, validation and 
testing. 

 

Semi-automatic segmentation 

Initial annotation was performed using Simpleware-ScanIP (Version 2018.12; Synopsys, Inc., 
Mountain View, USA). The segmentation procedure consisted of thresholding, background 
flood-fill and split algorithms. Firstly, the thresholding was applied such that only regions 
containing contrast were considered. Secondly, a seed point was placed within the aorta, and 
the background flood-fill algorithm was able to segment the coronary arteries and cardiac 
chambers which were connected to the aorta. Lastly, the split algorithm was performed such 
that the aorta and the coronary arteries were separated from the cardiac chambers. It should be 
noted that the split operation may be repeated such that all connected chambers are separated. 
The workflow of these procedures is displayed in Figure 2. 

 

 
Figure 2: The workflow of initial annotation by using Simpleware-ScanIP 
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The initial mask contained the ascending aorta (AA), right coronary artery (RCA), left 
circumflex artery (LCX) and left coronary artery (LCA). The mask was then fine-tuned 
manually using 3D Slicer [36]. To acquire the mask containing just the coronary arteries, the 
AA was removed to leave the RCA, LCX and LCA only. An example of initial and final masks 
is shown in Figure 3. 

 

Figure 3: The final coronary artery mask fine-tuned using 3D Slicer 
 

Manual segmentation 
The manual segmentation was implemented in Slicer 3D. The annotator highlighted the vessel 
by identifying the contrast within the CTCA image given an initial mask. The segmented masks 
were used as the optimum manual (ground-truth) labels. 

 

Segmentation methods 

(1) Aorta and coronary artery segmentation 

The regions of interest that the current work focusses on are the aorta and coronary arteries. 
There are two scenarios that these masks are used. (1) The combined mask of the aorta and 
coronary arteries is useful for blood flow estimation by using computational fluid dynamics. 
Aortic segmentations can produce continuous 3D measurements of aortic size and shape which 
are objective and allow detailed longitudinal comparisons of subtle changes in aortic 
morphology. (2) The mask of coronary arteries alone is useful for cardiologists to assess the 
degree of stenosis in areas where CAD has developed. Therefore, the proposed method was 
evaluated on these two segmented masks. 

 

(2) Fully automatic segmentation  
(A) Our proposed model 

Our model is based on the 2D Unet [34]. A Unet is a deep convolutional neural network 
consisting of down-sample and up-sample paths. The first component of the network extracts 
spatial features and contexts, while the second component localizes the features by using 
transposed convolutions. A sigmoid function is used for the final background/foreground 
classification. We have modified the Unet model in two ways: (1) a batch normalization layer 
is added to the convolution block; (2) a dropout layer is added before each convolution block. 
This additional implementation improves the stability and performance of the proposed model. 
The details of our proposed model is shown in Figure 4. 
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Figure 4: The network architecture of our proposed method 

 

(B) Model training 

55 datasets (n=13 with no coronary disease, n=42 with coronary disease) were used for training 
(80%) and validation (20%) The test data set contained 14 datasets (n=5 with no coronary 
disease, n=9 with coronary disease). There were 11677 slices in the training dataset and 2920 
slices in the validation dataset. Slice by slice training was adopted. Two models were trained 
by using the following optimum manual labels: (1) Aorta and coronary arteries (2) coronary 
arteries only. 

 

(C) Training implementation 

The proposed models were implemented in Tensorflow (v 2.1.0) and Keras (2.3.1) on Linux 
(Rocks 7). They were executed on a cluster (Intel Xeon Gold 5118, 2.3GHz) with a Tesla V100-
PCIE-32GB GPU. The Adam algorithm was used to optimise the proposed models. The 
learning rate was initially set to 1e-5. 200 epochs were set for model training. Early stopping 
was executed when the loss was not reduced across 10 consecutive epochs. 

 

(D) Loss function and performance evaluation 

The combined binary cross entropy (BCE) and dice similarity coefficient (DSC) with equal 
weight were used as the loss function for deep learning. The segmentation performance was 
measured by using DSC and IoU metrics which are commonly used to measure the similarity 
between two segmentations. 
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(E) The segmentation prediction implementation 

The prediction was performed by using the trained models above. It was implemented on 
Tensorflow (v 2.1.0) and Keras (v 2.3.1) on Windows 10 and executed on a machine (Intel i9-
9960X, 3.1GHz) with a Nvidia Geforce RTX 2700 GPU. The time required for the prediction 
was also recorded on a per subject/patient basis. 

 

Segmentation performance and time evaluation 

The accuracy of the segmentation performance of our proposed method was compared with 
published accuracies of existing 2D and 3D deep learning models. For the test dataset, the time 
required for segmentation and the segmentation performance for our method was compared to 
semi-automatic segmentation methods. The performance of the segmentation was evaluated by 
using the DSC and IoU metrics. The Mann-Whitney U Test was performed to evaluate whether 
there was any difference in segmentation time between automatic and semi-automatic 
approaches. The analyses were implemented on SPSS (IBM SPSS Statistics for Windows, 
version 25, IBM, Armonk, NY, USA). 

 

Experiments and results 

Learning curve 

The learning curves of our model for two scenarios are shown in Figure 5. No overfitting was 
found in the training for both scenarios. Some fluctuations of the loss function were found at 
an early stage of training, though the training became stable later on. This potentially reflects 
the fact that the training was performed in mini-batches. The training that used the aorta and 
coronary arteries as ground-truth labels took 125 epochs, while the training using coronary 
arteries alone as the ground-truth label took only 51 epochs. This indicates that the aorta and 
coronary arteries have distinct features that took longer to learn in the first scenario. 
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(B) 

Figure 5: Learning curves: trained with (A)  aorta and coronary arteries (B) coronary 
arteries only 

 

Segmentation performance 

Table 1 shows the segmentation performance when the aorta and coronary arteries were 
segmented. The accuracy of our method and Simpleware-ScanIP are 91.20% and 99.40% 
respectively. The semi-automatic approach performed better than our method when both the 
aorta and coronary arteries were present in the mask.  

 

The performance of segmentation of the coronary arteries alone is shown in Table 2. The 
accuracy of our method and Simpleware-ScanIP were 88.80% and 73.22% respectively. Our 
method performs better than the semi-automatic approach when just the coronary arteries are 
present in the mask. 
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Table 1: Segmentation performance – mask contains aorta and coronary arteries 

With aorta DSC (average) IoU (average) 

Simpleware-ScanIP 99.40% 98.81% 

Our method 91.20% 83.82% 

Table 2:  Segmentation performance – mask contains coronary arteries only 

Without aorta DSC ( average) IoU ( average) 

Simpleware-ScanIP 73.22%  57.75% 

Our method 88.80% 79.85% 
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The results demonstrate that a semi-automatic approach is good at segmenting the aorta. The 
semi-automatic approach was limited in its ability to segment the coronary arteries, but as the 
aorta occupied most of the volume of the mask, the overall segmentation accuracy remained 
high. Our method performed well when attempting to segment the coronary arteries alone. This 
suggests that our model has the ability to utilise other features (i.e. shape) to recognise the 
coronary arteries, while the semi-automatic approach relies solely on pixel density. If the 
contrast within the coronary artery is not bright enough, the semi-automatic approach will miss 
some segments of the coronary artery (See Figure 6). 

   
(A) (B) (C) 

Figure 6: (A) Ground-truth mask (yellow) (B) Mask from Simpleware-ScanIP  (blue) with 
a missing vessel (orange circle) (C) Mask from our model (red) 

 

The segmentation results of patients 1 and 2 are displayed in Figures 7 and 8. From Figure 7, 
it is clear that our method can segment the aorta and coronary arteries, with a result very close 
to the optimal manual label. The Simpleware–ScanIP segments the aorta with good accuracy 
while some segments of the coronary arteries are missing. 

  
(A) Optimal manual label (B) Optimal manual label 

  
(C) Our method (D)  Our method 
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(E) Simpleware-ScanIP (F) Simpleware-ScanIP 

Figure 7: Segmentation results of Patient 1. Segmentation of aorta and coronary arteries: 
(A) Optimal manual label, (C) Our method, (E) Simpleware–ScanIP. Segmentation of 
coronary arteries only: (B) Optimal manual label, (D) Our method, (F) Simpleware–
ScanIP 

 

For patient 2 (Figure 8), our method can segment the aorta and coronary arteries well, but the 
segmentation incorporates an artefact. When segmenting the coronary arteries alone, some 
segments of the coronary arteries are missing in the segmentation. As expected, the aorta 
segmentation is good when using the semi-automatic method, while the segmentation of the 
coronary arteries is relatively poor. It should be noted that the artefact present in the 
segmentation of the aorta and coronary arteries using our method can be easily removed by 
excluding the non-connected components of the mask.  

 

  
(A) Optimal manual label (B) Optimal manual label 

  
(C) Our method (D) Our method 
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(E) Simpleware-ScanIP (F) Simpleware-ScanIP 

Figure 8: Segmentation results of Patient 2: with aorta and coronary arteries (A) Optimal 
manual label (C) Our method (E) Simpleware–ScanIP, with coronary arteries only (B) 
Optimal manual label (D) Our method (F) Simpleware–ScanIP 

 

Segmentation time 

The segmentation time of our proposed method and semi-automatic segmentation is shown in 
Table 3 (aorta and coronary arteries) and Table 4 (coronary arteries only) respectively. The 
mask prediction using our method was significantly faster than the Simpleware-ScanIP for both 
segmentation scenarios (p-value < 0.001), taking less than 4 seconds on average to predict the 
aorta and/or coronary arteries masks. Additionally, the segmentation time is between 40s and 
141s when only a CPU with multi-cores is used. 

 

 

 

Table 3: Segmentation time – mask contains aorta and coronary arteries 

With aorta Time (average) Time (SD) 

Simpleware-ScanIP 203.07s 101.69s 

Our method 

(GPU) 

3.29s 0.47s 

Our method 

(CPU only – 2 cores, 4 threads) 

138.57s 15.74s 

Our method 

(CPU only – 16 cores, 32 threads) 

40.93s 4.71s 
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Discussion 

A deep learning model based on a 2D Unet has been developed to segment the aorta and/or 
coronary arteries on cardiac CTCA images. Two models were trained to segment ROIs in two 
scenarios - (1) the aorta and coronary arteries (2) coronary arteries only. Our method 
demonstrates 91.20% and 88.80% DSC accuracy on scenarios 1 and 2 respectively. This 
suggests that our method can segment the aorta and/or coronary arteries with high accuracy. 

 

Compared with a published 3D deep learning model [22] for scenario 1, which uses a 3D global 
feature embedded network with active contour loss, the performance of our method is similar 
(DSC: 91.20% (our method) vs 91.43% (ref. [22])). Our proposed method utilised a smaller 
number of network parameters resulting in more efficient training and a faster prediction time 
compared to the published 3D model. Our method requires less GPU memory, which is a 
common limitation when training and implementing a 3D model. It should also be noted that 
our method does not require GPUs for deployment, which favours its application in hospital 
networks where typically only CPUs are available. 

 

The performance of our method was also compared with the 2D RCNN + 2D Unet technique 
[32] for scenario 2. Our method showed comparable performance (IoU: 79.85% (our method) 
vs 84.36% (ref. [32])), but does not require implementation of a sequence model to detect the 
coronary arteries. Implementing an additional sequence model would increase the 
computational complexity and hence decrease the algorithmic efficiency. It should be noted 
that the difference in reported accuracy between these methods may relate to the different test 
sets that were evaluated. 

 

Table 4: Segmentation time – mask contains coronary arteries only 

Without aorta Time (average) Time (SD) 

Simpleware-ScanIP 345.00s 113.45s 

Our method 

(GPU) 
3.36s 0.50s 

Our method 

(CPU only – 2 cores, 4 threads) 

140.07s 16.90s 

Our method 

(CPU only – 16 cores, 32 threads) 

40.93s 4.75s 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 20, 2021. ; https://doi.org/10.1101/2021.02.18.21252005doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.18.21252005


Compared with semi-automatic methods, our model performance is degraded when 
segmenting the aorta and coronary arteries. However, our model gives improved accuracy 
when segmenting the coronary arteries alone. The findings highlight the importance of 
evaluating segmentation performance of large vessels and small vessels separately to reduce 
the potential bias of segmentation performance metrics. In terms of the prediction time, our 
proposed model provided the fastest prediction when compared with the semi-automatic 
method. Though the time difference is statistically significant, the impact in time may be 
negligible from clinical perspective.  

 

One advantage of our study is that a larger sample size (compared with published 2D approach) 
is used for training and prediction. This allows a more generalizable model can be obtained 
and therefore a more reliable prediction can be performed. 

 

There are several limitations of this study. The design of the study is retrospective, and 
accordingly may suffer from patient selection bias. The ground-truth labels of this study were 
obtained by manual annotation and it is possible that the accuracy of the labels were potentially 
biased to the annotator’s experience. The performance of our model was compared with 
existing models using different datasets and we were not able to directly compare the various 
models on the same imaging dataset. Although our method can predict the segmented mask 
with good accuracy, visual inspection of the imaging by experts is still required. Currently, 
some regions of the proximal coronary artery are missed when using our models. Further 
improvements could be made by incorporating an attention gate to our model, which could 
allow the network to focus more closely on the coronary arteries during training. 

 

Conclusion 

Our study demonstrates that a 2D UNET model is able to segment the coronary arteries 
efficiently and with good accuracy. It has the advantage that it can be deployed within hospital 
computer networks where GPUs are not available.  Our study is a first essential stage of work 
to develop fully automatic detection and classification systems for CAD by using computer-
based deep learning algorithms. 
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