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Abstract 
Biomarkers of psychiatric treatment response remain elusive. Functional magnetic resonance imaging 
(fMRI) has shown promise, but low reliability has limited the utility of typical fMRI measures as 
harbingers of treatment success. Strikingly, temporal variability in brain signals has already proven a 
sensitive and reliable indicator of individual differences, but has not yet been examined in relation to 
psychiatric treatment outcomes. Here, 45 patients with social anxiety disorder were scanned twice (11 
weeks apart) using simple task-based and resting-state fMRI to capture moment-to-moment neural 
variability. After fMRI test-retest, patients underwent a 9-week cognitive-behavioral therapy. Reliability-
based 5-fold cross-validation showed that task-based brain signal variability was the strongest 
contributor in a treatment outcome prediction model (total rACTUAL,PREDICTED = .77) - outperforming self-
reports, resting-state neural variability, and standard mean-based measures of neural activity. Notably, 
task-based brain signal variability showed excellent test-retest reliability (intraclass correlation 
coefficient = .80), even with a task length less than 3 minutes long. Rather than a source of undesirable 
“noise”, moment-to-moment fMRI variability may instead serve as a highly reliable and efficient 
prognostic indicator of clinical outcome. 
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Moment-to-moment brain signal variability reliably 
predicts psychiatric treatment outcome 

 
Biomarkers of psychiatric treatment response remain elusive. The search for such biomarkers is of 
particular importance given that subjective ratings of pre-treatment symptom severity often fail to predict 
treatment outcomes for a range of common psychiatric disorders (e.g., 1). Non-invasive functional 
magnetic resonance imaging (fMRI) serves as one theoretically viable alternative for prediction of 
treatment outcomes (e.g., 2). However, typical neuroimaging-based treatment outcome prediction 
models have been heavily critiqued under the argument that thousands of patients are needed to 
successfully establish treatment predictors (3). Further, recent meta-analyses demonstrate low overall 
reliability of both task and resting-state fMRI using standard measures (e.g., functional connectivity and 
average brain signals) (4, 5). Inaccurate predictions of treatment outcomes will thus necessarily remain 
(despite large-scale, resource-intensive efforts) if the same unreliable measures continue to be utilized. 
We need a different approach. 

Grossly underappreciated in the clinical domain, evidence continues to mount revealing that 
moment-to-moment fluctuations in brain activity (i.e., brain signal variability) can viably index the 
adaptability and effectiveness of neural systems. For example, Garrett and colleagues have shown in 
a series of experiments that better cognitive performance typically reflects greater moment-to-moment 
neural variability, the level of which can also be boosted pharmacologically (6–8). Crucially, although 
the unique predictive power of moment-to-moment neural variability can be more than five times that of 
conventional mean signal-based approaches (9) and initial evidence for measurement reliability is 
promising (10), no treatment outcome prediction studies to date have examined brain signal variability.  

Here, we provide a first test of the predictive utility of brain signal variability in relation to 
cognitive-behavioral therapy (CBT) outcomes in social anxiety disorder (SAD) patients. CBT for SAD is 
an evidence-based treatment intended to limit the avoidance of social situations and reduce self-
focused attention - hallmarks of the disorder (11). Although the average group-level effect of CBT can 
be strong (12), there is considerable variability across-patient response rates, with many SAD patients 
remaining symptomatic after treatment (13). At its core, CBT is intended to help patients adapt to 
momentary, social anxiety-provoking demands in the internal and external environment (11). This 
prompts the appealing question of whether such socially relevant demands may be reflected in moment-
to-moment fluctuations in brain signals (i.e., fMRI-variability), and whether brain signal variability could 
provide a novel predictive signature of CBT treatment outcome in SAD. 

To this end, 45 patients with a primary diagnosis of SAD underwent fMRI twice during an 11-
week test-retest period before enrollment in a 9-week CBT. We investigated the reliability and predictive 
power of moment-to-moment neural variability at rest and during a disorder-relevant socio-affective 
task, while further comparing the predictive accuracy of neural variability to conventional measures of 
mean neural responses and behavioral self-reports. Our results show that on-task moment-to-moment 
brain signal variability provides maximal reliability and treatment outcome prediction for SAD. 

Materials and Methods 
The study was registered at ClinicalTrials.gov (id: NCT01312571) and ethical approval was obtained 
from the regional committee at Umeå University, Umeå, Sweden. All participants gave written informed 
consent prior to participation. 

General procedure 
Individuals experiencing social anxiety and seeking treatment were targeted via media advertisements, 
provided self-reports, and participated in a diagnostic interview as part of the screening. Included 
participants underwent internet-delivered CBT for SAD for 9 weeks. Before CBT, the patients were 
subject to a 11-week test-retest period on behavioral self-reports and brain-based fMRI (i.e., baseline 
1 and baseline 2). In addition to test-retest reliability, multiple baselines were included to control for 
standard confounds related to time in study (e.g., regression to the mean and spontaneous remission). 
Forty-six SAD patients were recruited in the current study. Data from one patient contained outliers, as 
evidenced by the multivariate mahalanobis distance of brain-behavioral measures (see Supplementary 
Material Figure S1 for details); thus, our primary results reported here will center on the remaining 45 
patients. 
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Recruitment of social anxiety disordered patients 
Individuals answered online questionnaires on demographics, social anxiety, and depressive and 
insomnia symptoms as part of the screening. Eligible individuals were interviewed via telephone using 
(A) the full Mini-International Neuropsychiatric Interview (M.I.N.I.) version 7.0 (14) and (B) the social 
phobia and major depressive disorder sections of the Structured Clinical Interview for DSM-IV – Axis I 
Disorders (SCID-I) (15). Included patients were at least 18 years of age, had no neurological disorder, 
no concurrent psychological treatment, and if treated with a psychotropic medication, they agreed to 
maintain a stable dose at least 3 months before enrollment and during treatment in the current study. 
All participants also met magnetic resonance imaging (MRI) safety criteria (e.g., not pregnant, no 
ferromagnetic objects in the body). At screening, we excluded patients that were currently suffering 
from ongoing depression (as indexed by scoring >34 on the Montgomery Åsberg Depression Rating 
Scale, MADRS-S) (16), bipolar or psychotic disorders, alcohol or substance use disorders, or antisocial 
personality disorder. Further, patients that answered positive to any SAD comorbidity in the M.I.N.I. 
screening telephone interview were subject to a second face-to-face DSM-5 diagnostic interview. 
Twenty patients (44.4%, 20/45) had a concurrent psychiatric comorbidity, and four patients (8%, 4/45) 
were on a stable dosage of selective serotonin reuptake inhibitors (SSRIs), which did not change 
throughout the study period. Two patients had previously used beta blockers in social situations, but 
agreed not to use them during the study period. For further study and sample details, see Månsson et 
al., 2019 (17). See also Table S1 for a detailed summary of demographic and clinical status, and 
comorbid mental illness. Importantly, all patients that entered treatment also remained throughout the 
intervention, and took part in post-treatment assessments. 

Cognitive behavioral-therapy (CBT) 
Briefly, internet-delivered CBT for SAD is a guided self-help intervention administered over a 9-week 
period. Each week, the patients are provided with a module containing text and homework assignments 
based on CBT. The content in this treatment is standardized (i.e., all patients were provided with the 
same material - identical to our previous RCTs (18, 19)). Patients were in weekly contact with a clinical 
psychologist, who provided written feedback and guidance via a secured internet platform. The patients 
undertook a weekly test with questions related to CBT and content of the module. To control for 
compliance, the patients had to give 100% correct responses on the multiple-choice questionnaire (with 
the possibility of redoing the test multiple times). After completion of the homework assignments and 
the multiple-choice quiz, the next module was made available to the patient. Further details regarding 
internet-delivered CBT have been described extensively elsewhere (20).  

Seven clinical psychologists served as therapists in the current study. The mean number (±SD) 
of years with experience working with CBT was 6.7±5.5 and the allocation of patients to the therapists 
was randomized. The mean (±SD) number of completed treatment modules was 7.9 (±1.8) and 80% 
(36/45) of the patients completed at least 7 out of 9 modules. 

Social anxiety, depressive, and insomnia outcomes 
The LSAS-SR is a 48-item self-report questionnaire (each question consists of common social 
situations and the responder is asked to state both his/her anxiety and avoidance in these situations). 
LSAS-SR is a gold-standard questionnaire to assess treatment-related changes in social anxiety 
symptoms and the total score typically shows excellent test-retest reliability (e.g., r = .83) (21). LSAS-
SR was the primary outcome measure of the current study and was administered at multiple times 
throughout the study period: screening (week 0), first (week 1) and second (week 9) baseline, and 
immediately after the treatment (week 18). To examine social anxiety as a general construct, secondary 
social anxiety measures were also collected, including the Social Interaction Anxiety Scale (SIAS) (22), 
the Social Phobia Scale (SPS) (22), and the Social Phobia Screening Questionnaire (SPSQ) (23). 
Further, post-treatment interviews were performed via telephone and included SCID-I on SAD (24) and 
M.I.N.I. on SAD (25), as well as the Clinical Global Impression-Improvement (CGI-I) scale (26). The 
interviews were performed by two external psychiatrists. Before the interview, the psychiatrists were 
informed about each patient’s pre-treatment LSAS-SR score, but blind to any post-treatment self-
reports. Depressive and insomnia symptoms were assessed using the Montgomery-Åsberg Depression 
Rating Scale, Self-reported version (MADRS-S) (16), and the Insomnia Severity Index (ISI) (27). 
Secondary social anxiety outcomes, and depressive and insomnia symptom questionnaires were 
administered at pre- and post-treatment. 
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Neuroimaging 
MRI was performed twice for each patient (first and second baseline) and the two sessions were 
separated by eleven weeks (average number of days between sessions: 77.2±1.6). Also, the time of 
day each patient was scanned did not vary between the two baselines (average difference in time of 
day = 1.7±2.3 hours), nor did pre-scan session subjective sleepiness (Karolinska Sleepiness Scale; B 
= 0.13, BSE = 0.25, Z = 0.53, P = 0.594) (28). 

In each scanning session, patients first underwent resting-state and then a task-related 
condition. Resting-state recordings lasted 340 seconds (sec) and were performed with eyes open 
(fixation-cross present on screen). As displayed in Figure 1, during the socio-affective face task, patients 
passively viewed emotional faces (happy/fearful male/female) across two blocks (29). In each block, a 
single face was repeatedly presented for 200 ms followed by a 300 ms fixation cross for a period of 80 
sec (both mini-blocks combined yielded a total of 160 sec of face stimulation). The order of stimuli was 
counterbalanced across subjects with regard to both the facial expression and sex of the person 
portrayed in the image. Before (20 sec), in-between (30 sec), and after (20 sec) the face stimulus blocks, 
fixation blocks were presented. 

Magnetic resonance imaging 
Images were collected on a 3 Tesla General Electrics (GE) scanner with a 32 channel head coil at the 
Umeå Centre for Functional Brain Imaging (University Hospital of Umeå, Umeå, Sweden). First, an 
anatomical T1-weighted image (fast spoiled gradient echo) was collected (180 slices, 1 mm thickness, 
field of view: 250 mm, voxel size: 0.5 × 0.5 × 1 mm3) for each patient. Second, for resting-state and 
task, blood-oxygen-level-dependent (BOLD) contrast images were acquired using the following 
parameters: 30 ms echo time, 2000 ms repetition time; 80 degree flip-angle, field of view: 250 × 250 
mm3, matrix size: 96 × 96. Thirty-seven slices with a thickness of 3.4 mm were acquired to capture the 
whole brain. Ten dummy scans were run before the image acquisition started to avoid signals resulting 
from progressive saturation.  

Stimuli were presented on a computer screen and seen by the participant through a mirror 
attached to the head coil. Headphones and earplugs were used to reduce perception of scanner noise 
and cushions in the head coil reduced movement. Experienced MRI nurses were taking care of all 
participants. 

Brain image preprocessing pipeline 
fMRI data were preprocessed with FSL 5 (30, 31). Pre-processing included motion-correction, initial 
bandpass filtering (.01–.10 Hz), and detrending (up to a cubic trend) using SPM12. We also utilized 
extended preprocessing steps to further reduce potential data artifacts (6, 8, 9). Specifically, we 
subsequently examined all functional volumes for artifacts via independent component analysis (ICA) 
within-run, within-person, as implemented in FSL/MELODIC (32). Noise components were identified 
according to several key criteria: A) Spiking (components dominated by abrupt time series spikes); B) 
Motion (prominent edge or “ringing” effects, sometimes [but not always] accompanied by large time 
series spikes); C) Susceptibility and flow artifacts (prominent air-tissue boundary or sinus activation; 
typically represents cardio/respiratory effects); D) White matter (WM) and ventricle activation (33); E) 
Low-frequency signal drift (34); F) High power in high-frequency ranges unlikely to represent neural 
activity (≥ 75% of total spectral power present above .10 Hz;); and G) Spatial distribution (“spotty” or 
“speckled” spatial pattern that appears scattered randomly across ≥ 25% of the brain, with few if any 
clusters (i.e., ~20 voxels at 3 × 3 × 3 mm voxel size).  

Examples of these various components we typically deem to be noise can be found in previous 
work (10). By default, we utilized a conservative set of rejection criteria; if manual classification 
decisions were challenging due to mixing of “signal” and “noise” in a single component, we generally 
elected to keep such components. ICA components were reviewed by an experienced MRI research 
engineer and ambiguous noise/signal ICs were discussed within the research group to reach common 
decisions. Components identified as artifacts were then regressed from corresponding fMRI runs using 
the regfilt command in FSL. Finally, we registered functional images to participant-specific T1 images, 
and from T1 to 3 mm standard space (MNI 152) using FLIRT (affine). Finally, we masked the functional 
data with the GM tissue prior provided in FSL (probability > 0.37).  
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Voxel-wise estimation of brain signal variability 
For resting state, SDBOLD was computed across the entire denoised time series for each voxel. To 
calculate SDBOLD for the socio-affective face task, we also performed a block normalization procedure 
to account for residual low frequency artifacts (as in previous work) (6). We first normalized all blocks 
for the socio-affective face task such that the overall 4D mean across voxels and blocks was 100, within-
person. For each voxel, we then subtracted the block mean, concatenated across all task blocks, and 
computed voxel SDBOLD across this concatenated time series (35).  

We also sought to compare SDBOLD results to a more typical mean-based measure of fMRI 
activity (MEANBOLD) during the socio-affective face task. Accordingly, we calculated MEANBOLD by first 
expressing each within-block volume as percent change from the average of the ten preceding (fixation) 
block scans, calculating mean percent change within each block, and averaging across all face blocks 
(a typical method in the partial least squares (PLS) data-analysis framework; see below for model 
details and implementation). 

 
 

 
Figure 1. Study design and experimental task. (A) Forty-five patients provided behavioral (e.g., LSAS-SR) and 
brain data (i.e., fMRI) at two time-points: baseline 1 (B1) and baseline 2 (B2) separated by 11 weeks. Further, post-
treatment behavioral data after 9 weeks of Internet-delivered CBT were also collected. (B) Example of visual cortex 
(mean-centered) fMRI time series (data volumes in sec) within each baseline session from three random patients 
(i.e., solid green/blue/black lines). The dashed red line represents the average (median cubic spline) signal across 
all patients in the current study (n = 45). Vertical solid/yellow lines represent stimuli onsets: face 200 ms + 300 ms 
fixation, with 160 repetitions totalling 80 sec for each block. The non-shaded parts of the time-series represent 
fixation blocks (i.e., continuous presentation of a fixation cross - data not used). In agreement with the policy of 
medRxiv, stimuli including faces are not presented in this preprint. Abbreviations: CBT, cognitive-behavioral 
therapy; LSAS-SR, Liebowitz social anxiety scale, self-report version; fMRI, Functional magnetic resonance 
imaging; Post, Post-treatment; 
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Statistical modeling 

Treatment outcomes and predictors of clinical outcome 
Longitudinal behavioral data were implemented in repeated measure analyses with generalized 
estimating equations (default gaussian and exchangeable correlation structure) to calculate clinical 
outcomes across time (i.e., screening, first and second baseline, and post-treatment). Within-group 
Cohen’s d effect sizes were calculated by dividing the mean difference with the standard deviation and 
correcting for the correlation between time-points (i.e., post-treatment vs screening). Simple and 
hierarchical linear regressions were used to regress predictor (s) on clinical outcomes. Pre-treatment 
LSAS-SR as a predictor was compared with all brain-derived variables. Comparisons between 
predictive brain models were realized using multiple regression models and the adjusted R2 values are 
reported throughout the paper. All correlations were performed in a parametric way (Pearson 
correlations) and nonparametric bootstrapping (× 1000) was used to estimate standard errors (BSE) 
and 95% confidence intervals of regression models. Further, permutation tested statistics (× 1000) are 
reported. STATA Statistical Software (v15.1, STATA Corporation, College Station, TX, USA) was used.  

Estimating brain-based correlates of clinical outcome 
To examine the relationship between BOLD activity and treatment success, we utilized a multivariate 
PLS analysis (36, 37) (implemented in MATLAB 9.6.0.1072779; R2019a; Natick, Massachusetts: The 
MathWorks Inc. 2018). In brief, our PLS model began with a correlation matrix that captured the 
between-subject correlation (Pearson’s r) of brain activity (e.g., SDBOLD) in each voxel (51 609 per 
subject) and subject-wise delta LSAS-SR score (delta Post-B1). Next, this correlation matrix was 
decomposed using singular value decomposition (SVD), which yielded brain-based saliences (k = 51 
609) that represent the topographically resolved correlation strength between BOLD activity (e.g., 
SDBOLD) and delta LSAS-SR scores. For every subject, so-called “brain scores” were then calculated 
through the dot product of these weights with voxel-wise BOLD values. To estimate the robustness of 
model weights (saliencies), 1000 bootstraps with replacement were utilized, and the division of each 
voxel-wise salience by its corresponding bootstrap standard errors yielded pseudo-z normalized 
estimates called bootstrap ratios (BSRs). The topographical pattern of BSRs reveals how the correlation 
between brain activity (e.g., SDBOLD) and behavior (delta LSAS-SR) is distributed throughout the brain. 
Furthermore, bootstraps were used to estimate 95% confidence intervals (CIs) for observed correlations 
between brain measures and delta LSAS-SR scores. 

To compare relative predictive utility and reliability, this PLS approach was utilized separately 
to test the link between a series of different brain measures (i.e., socio-affective face task-based SDBOLD, 
face task-based MEANBOLD, and resting-state SDBOLD) and treatment-related LSAS-SR changes. We 
then ran a series of PLS models to also examine the influence of data volume on the strength and 
reliability of brain-based effects (i.e., for task-based SDBOLD and MEANBOLD: first 40, first 80, and all 160 
sec; for resting-state SDBOLD: first 40, first 80, first 160, and all 340 sec). The same behavioral variable 
(the difference in LSAS-SR scores between the initial measurement (Baseline 1) and post-treatment 
(Post-B1)) was used in all of these models.  

Cross-validation framework for brain and behavioral predictors of treatment outcome 
One key goal in the present work is to establish and compare the relative strength and reliability of 
different brain and behavioral predictors of treatment outcome. To do so, we employed a custom two-
step reliability-based cross-validation framework (see Figure 2). 
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Figure 2. A general overview of the analytic framework. The analysis of neuro-behavioral correlations between 
BOLD signals at B1 and the treatment outcome (i.e., delta LSAS-R score post-treatment minus B1) was computed 
for all 45 subjects via behavioral PLS. A bootstrap-based mask was created (BSR ± 2) based on B1 data. To 
compute “reliability-based cross validation”, weights from this mask were applied to corresponding voxels in B2 
brain data to permit extraction of subject-specific brain scores at B2 (i.e., no additional PLS model was run on B2 
data). Prediction of treatment outcome-based change scores was then performed using 5-fold cross-validation, 
from which empirical treatment-based change scores were correlated with predicted scores. Abbreviations: 
LSAS-SR, Liebowitz social anxiety scale, self-report version; fMRI, Functional magnetic resonance imaging; CBT, 
Cognitive behavior therapy; CV, Cross-validation; BSR, Bootstrapped ratio; PLS, Partial least squares; B1, 
Baseline 1; B2, Baseline 2; Post, Post-treatment; 
 
 
First, as described above (separately for each brain measure and data volume), we computed PLS 
models linking brain activity and reductions in LSAS-SR scores of all participants based on the first 
baseline (delta Post-B1) MRI recording. Second, the resulting voxel-wise BSRs for each model were 
thresholded at ±2 while excluding all clusters smaller than 20 voxels. Third, we applied these weights 
to MR data recorded during the second baseline measurement (B2; 11 weeks after B1) to extract 
subject-specific brain scores without re-estimating PLS models. Doing so permits a form of “metric 
invariance” (38) (here, the fixing of model weights between the two baseline periods), allowing for a 
clearer and more direct comparison of both measurement points. Finally, these B2 brain scores were 
used to estimate linear relationships between BOLD activity and changes in LSAS-SR scores (delta 
Post-B2) within a 5-fold cross validation framework. Linear coefficients were estimated on a subset of 
subjects (training set, n = 36) before being applied to another, non-overlapping subset of subjects (test 
set, n = 9), based on which predictions were generated.  

While our reliability-based modeling approach does not, by definition, seek out-of-sample 
prediction per se due to the common topographical weight map estimated at B1 and fixed at B2 (see 
above), we nevertheless test for “generalizability” of our models on two intertwined levels. First, because 
PLS weights from the B1 MR measurement are applied to B2 MR data without re-running PLS, any 
statistically meaningful prediction of treatment success can only emerge if the link between BOLD 
activity and treatment outcome is similar in both magnitude and topographical distribution across two 
completely separate MR recordings 11 weeks apart. Second, our 5-fold cross validation approach 
further limits model overfitting (in the presence of our limited sample size). By directly comparing the 
strength and reliability of different brain measures for treatment prediction here, future work on larger-
scale out of sample prediction of treatment outcomes can then proceed. 

Prediction accuracy estimation 
To compare the predictive power of pre-treatment LSAS-SR and BOLD fMRI-derived (task SDBOLD, task 
MEANBOLD, and resting-state SDBOLD) variables, we calculated the Pearson correlation between 
predicted and observed LSAS-SR changes. Additionally, 95% confidence intervals were estimated for 
all correlation coefficients using a bootstrap approach (2500 bootstraps). Furthermore, and to offer a 
second metric for the relative comparison of predictors, we calculated the mean absolute scaled error 
(MASE) (39), which is defined as the ratio of the mean absolute prediction error to the mean absolute 
error of the one-step naïve forecast. While a MASE value of 1 represents equal predictive power of 
naive forecast and another predictor of interest, values below 1 depict a predominance of the predictor 
of interest where the improvement in prediction accuracy is 1–MASE %. MASE offers a scale-invariant 
measure of prediction accuracy and hence is directly comparable across different predictors regardless 
of their scale. Importantly, MASE penalizes over- and under-forecasting (i.e., too high vs. too low 
predicted scores, respectively) equally, rendering it a symmetric measure of prediction error. As other 
commonly used metrics of prediction accuracy do not offer scale independence or symmetry (e.g., root 
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mean squared error, RMSE), MASE has been suggested as an ideal measure to compare the accuracy 
of different predictions (40). 

Standard test-retest reliability estimation 
Intraclass Correlation Coefficients ICC (C,1) based on the degree of consistency among measurements 
were calculated to determine test-retest reliability on self-reported behavioral and brain-based variables 
(41) between the two baseline measurements (separated by 11 weeks). MATLAB 9.7.0.1190202 
(R2019b; Natick, Massachusetts: The MathWorks Inc.; 2018) was used to compute ICCs (42). Between 
B1 and B2 measurements, ICCs were calculated on LSAS-SR (total score), and for each brain measure 
and data volume, on PLS brain scores and on all voxels across the whole-brain (k = 51 609). 
Bootstrapped (× 1000 bootstraps) lower and upper bound 95% confidence intervals are reported. The 
ICCs were categorized as poor < 0.40, fair = 0.40 to 0.59, good = 0.60 to 0.74, or excellent ≥ 0.75 
according to Cicchetti and Sparrow (43). 

Data and code availability 
All code and statistical software commands will be available at https://github.com/LNDG. Due to current 
ethics constraints, we cannot at present make the raw data openly available, but please contact the first 
author (K.M.) to discuss other potential routes to data access. 
 

Results 

Treatment outcomes 
The primary social anxiety outcome (LSAS-SR) decreased 33.46 points on average from screening to 
post-treatment (see Figure 3A). Large within-group Cohen’s d effect sizes (>1.49) were observed for 
both LSAS-SR and secondary outcomes (i.e., SIAS, SPS, SPSQ), all permuted Ps <0.001. The 
clinician-administered CGI-I interviews found 32 of 45 patients’ mental health to be much (48.9%) or 
very much (22.2%) improved at post-treatment. Despite the overall improvement, only a minority of 
patients were in probable remission at post-treatment, as indicated by a score less than 30 on LSAS-
SR (28.9%, 13/45) or by being free from SAD according to DSM-5 criteria (17.8%, 8/45). See Tables 
S2-S3 and Figures S2-S4 for a detailed presentation of all clinical outcomes. 

Task-related brain signal variability strongly predicts treatment outcome 
Moment-to-moment brain signal variability during emotional face processing robustly predicted social 
anxiety change scores (post-pre CBT) (5-fold cross-validated; r (45)ACTUAL,PREDICTED = .65, MASE = .54, 
permuted P < 0.001; Figure 3B). Specifically, low signal variability in the right visual cortex, and high 
variability in the anterior cingulate, medial prefrontal, and temporal cortices predicted larger reductions 
in social anxiety symptoms (see Figure 3C, Figures S5-S8 and Tables S4-S8 for a complete 
presentation of neural activations and data density plots). The predictive power of task-related SDBOLD 
remained nearly identical even when the data volume was reduced by either 50% (80 sec; r (45)ACT,PRED 
= .65, MASE = .53, permuted P < 0.001) or 75% (40 sec; r (45)ACT,PRED = .62, MASE = .52, permuted P 
< 0.001) - see also Figure 4 and Tables S9-S10 for details of various multiple regression models 
spanning brain measures and data volumes. 
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Figure 3. Reductions in social anxiety symptoms and task-related brain signal variability as a predictor of 
treatment outcome. (A) Change in the primary social anxiety outcome LSAS-SR from screening, baseline 1, 
baseline 2 to post-treatment. The solid line represents the median cubic spline. (B) Task-based SDBOLD predicted 
treatment change score is strongly related to empirical change scores. (C) Task-based SDBOLD spatial pattern 
reflecting treatment outcome. Blue regions = lower SDBOLD associated with better treatment outcome; yellow/red 
regions: higher SDBOLD associated with better treatment outcome. X Y Z below the brains represent MNI 
coordinates. Further, an unthresholded statistical maps are available at NeuroVault.org 
(https://identifiers.org/neurovault.collection:9030). Abbreviations: LSAS-SR, Liebowitz social anxiety scale, self-
report version; SDBOLD, standard deviation of BOLD; BOLD, Blood-oxygen-level-dependent imaging; 
 

Comparing the predictive utility of task-based fMRI variability to resting-
state variability, mean activity, and self-reports 
In a multiple regression model including all potential behavioral and brain-based predicted social anxiety 
change scores (and equal data volumes of 160 sec for all brain measures), task-related SDBOLD (β = 
.61, permuted P < 0.001) dominantly outperformed (A) resting-state SDBOLD (β = .26, permuted P = 
0.090), (B) task-related MEANBOLD (β = -.07, permuted P = 0.621), and (C) pre-treatment social anxiety 
severity (second baseline LSAS-SR, β = .22, permuted P = 0.186). The model accounted for 54% of 
the variance in the social anxiety change score. Although self-reported social anxiety at pre-treatment 
did not predict outcome within our full model, a moderate zero-order correlation did indicate that more 
severe patients exhibited greater reduction in social anxiety (r (45)ACT,PRED = .45, permuted P < 0.001) 
- see also Table 1 and Figure 4A for a complete presentation of statistical results. In a second model 
including the same predictors, but instead using the brain score from the full available resting-state 
SDBOLD data volume (340 sec). Here, we found that resting-state SDBOLD also uniquely predicted 
treatment outcome (β = .34, permuted P = 0.039), but task-related SDBOLD remained the strongest 
treatment outcome predictor (β = .41, permuted P = 0.018) despite less than half the data volume (160 
sec) of resting-state. Furthermore, as displayed in Figure S9, we demonstrate equal model performance 
without bootstrap-based thresholding based on the baseline 1 data (i.e., no feature selection). All peak 
neural activations (i.e., task SDBOLD, resting-state SDBOLD, task MEANBOLD) and corresponding 
coordinates are reported in Tables S6-S8, and unthresholded statistical maps for task SDBOLD and 
resting-state SDBOLD (the only significant brain-based predictors) are available at NeuroVault.org 
(https://identifiers.org/neurovault.collection:9030). 

As displayed in Figure 4A, a final cross-validated model including only the univariate significant 
predictors of treatment outcome (i.e., task SDBOLD (160 sec), resting-state SDBOLD (340 sec), and second 
baseline LSAS-SR), improved the predictive accuracy beyond any single predictor (r (45)ACT,PRED = .77, 
MASE = .43, permuted P < 0.001; see also Table 1). However, the unique variance associated with 
task-based SDBOLD was notably higher than all other predictors (Figure 4C). Furthermore, the spatial 
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patterns capturing neuro-behavioral correlations of task-based and resting-state SDBOLD differed 
considerably (see also Figure 4F, and Figure S10), suggesting that the contribution of each SDBOLD 
estimate to treatment outcome prediction is complementary both statistically (with regard to effect size 
and MASE values) and with regard to involved brain regions. 

 
 

 
Figure 4: Treatment outcome prediction accuracies and brain signal variability. (A) Prediction accuracy (i.e., 
MASE) for each condition (i.e., task SDBOLD, resting-state SDBOLD, task MEANBOLD, LSAS-SR at B1 and B2) and 
across data volumes (i.e., 40, 80, 160 and 340 sec). * denotes significant (permuted P < 0.001) zero-order 
prediction models noted in Table S4. Lower values indicate better model performance. (B) 5-fold cross-validated 
correlation between empirical and predicted treatment change scores using all zero-order significant conditions 
(i.e., 160 sec task SDBOLD, 340 sec resting-state SDBOLD, and LSAS-SR at B2). (C) Unique and shared variance 
(R2) between model predictors and treatment outcome. (D) Task-related SDBOLD and (E) resting-state SDBOLD 
spatial pattern reflecting treatment outcome. Blue regions represent less variability predicting better outcome, 
whereas yellow/red regions represent higher fMRI signal variability predicting better outcome. (F) Displays 
overlapping activations between task SDBOLD (160 sec) and resting-state SDBOLD (340 sec). In figure F, the spatial 
pattern for each condition represents a binary mask. X Y Z below the brains represent MNI coordinates. 
Unthresholded statistical maps will be available at NeuroVault.org 
(https://identifiers.org/neurovault.collection:9030). Abbreviations: MASE, Mean absolute scaled error; LSAS-SR, 
Liebowitz social anxiety scale, self-report version; B1, Baseline 1; B2, Baseline 2; SDBOLD, Standard deviation of 
BOLD; MEANBOLD, Average BOLD activity; BSR, Bootstrap ratio; BOLD, Blood-oxygen-level-dependent imaging; 
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Table 1. Univariate (zero-order) and multiple predictor models of treatment outcome across different within-patient 
data volumes. See Supplementary Material Table S4 for a complete presentation of model results across all data 
volumes. 
    95% CI  
Pre-treatment predictors Data volume MASE r (45) Lower Higher Permuted P 
Behavioral       
  LSAS-SR at B1 48 items 0.65 .27 -.01 .56 0.071 
  LSAS-SR at B2 48 items 0.58 .45 .20 .70 <0.001* 
       
Brain       
  Task SDBOLD 160 sec 0.54 .65 .51 .79 <0.001* 
       
  Rest SDBOLD 160 sec 0.63 .19 -.08 .46 0.204 
 340 sec 0.55 .55 .35 .75 <0.001* 
       
  Task MEANBOLD 160 sec 0.67 -.18 -.49 .12 0.218 
       
Brain SDBOLD and behavioral self-reports combined 

Multiple predictors**  0.43 .77 .66 .89 <0.001 

       
       

*Significant zero-order prediction. **The multiple regression model includes all significant zero-order predictors 
(i.e., 160 sec task SDBOLD, 340 sec resting-state SDBOLD, and LSAS-SR at B2). Abbreviations: MASE, Mean 
absolute scaled error; LSAS-SR, Liebowitz social anxiety scale, self-report version; B1, Baseline 1; B2, Baseline 
2; SDBOLD, neural variability; MEANBOLD, average neural response; Sec, Seconds; BOLD, Blood-oxygen-level-
dependent imaging; 

 
 

Neither depression nor insomnia severity at pre-treatment predicted social anxiety treatment outcomes 
(all permuted Ps > 0.188). Similarly, treatment credibility ratings, demographics (as displayed in Table 
S1: age, sex, education, marital status), or psychiatric comorbidity (yes/no) did not predict treatment 
outcome (all permuted Ps > 0.071). 
 

Task-based signal variability prediction specifically generalizes across 
secondary social anxiety measures 
As the task SDBOLD condition was the strongest treatment outcome predictor, we investigated if this 
predictor also generalized across secondary social anxiety outcomes. To do so, we first estimated a 
single PCA component representing all available secondary outcomes (i.e., self-reported SIAS, SPS, 
SPSQ, and the clinician-administered CGI-I; eigenvalue = 2.80, 70% explained variance and 
component loadings varied from .72 to .89). This component score correlated strongly with the task-
based SDBOLD predicted social anxiety change score used in our primary (LSAS-SR) analyses above 
(R2 = 34%, permuted P < 0.001). Further, as Table S2 and Figure S3B depict, symptoms of depression 
(permuted P < 0.001) and insomnia (permuted P = 0.042) decreased over the course of therapy. 
However, the socio-affective face task SDBOLD predicted social anxiety change score was not associated 
with reductions in depressive or insomnia symptoms (all permuted Ps > 0.351). Taken together, these 
results support both sensitivity and specificity of our task-based SDBOLD prediction model of treatment 
outcome.  

Eleven-week test-retest reliability 
As displayed in Figure 5 and Table S11, the eleven-week test-retest reliability (Baseline 1 versus 
Baseline 2) was excellent both for the primary social anxiety measure (LSAS-SR; ICCB1,B2 = 0.84, CI 
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95% 0.75, 0.90) and our task-related SDBOLD measure (PLS brain scores; ICCB1,B2 = 0.80, CI 95% 0.68, 
0.87). Task SDBOLD ICC values dropped but remained reasonable after reducing data volumes to 80 
sec (ICCB1,B2 = 0.76) and 40 sec (ICCB1,B2 = 0.62). In contrast, task-related MEANBOLD showed very poor 
reliability (all ICC’sB1,B2 ~0), indicating that the MEANBOLD prediction model was not useful here. When 
data volume was equated across conditions, resting-state SDBOLD also showed less reliability than task-
related variability, and only when the full resting-state data volume was examined (340 sec, 
representing more than double the available task SDBOLD data volume) did reliability improve to the level 
achieved by the 160 sec task SDBOLD (resting-state ICCB1,B2 = 0.81, CI 95% 0.74, 0.88). Voxel-wise 
ICC’s are displayed and reported in Table S12. 
 
 

 
Figure 5: Test-retest reliability. ICCs were computed for LSAS-SR scores as well as fMRI BOLD across 
conditions (i.e., task SDBOLD and resting-state SDBOLD) and data volumes (i.e., 40, 80, 160 and 340 sec). Error bars 
represent bootstrapped, bias-corrected 95% confidence intervals. For reference, two meta-analyses on test-retest 
reliability using conventional analytics (i.e., functional connectivity and average brain signals) are presented. Noble 
et al., 2019 (ref 4) and Elliott et al., 2020 (ref 5) are meta-analyses on standard measures of task- and resting-state 
fMRI. Abbreviations: ICC, Intraclass correlation coefficient; SDBOLD, neural variability; BOLD, blood-oxygen-level-
dependent imaging; fMRI, functional magnetic resonance imaging; LSAS-SR, Liebowitz Social Anxiety Scale. Self-
report version; 
 

Discussion 
In the present study, we found that internet-delivered CBT successfully reduced SAD patients suffering 
(LSAS-SRPRE-POST Cohen’s d = 1.62) and that pre-treatment brain signal variability was an accurate and 
reliable predictor of treatment outcome. A multiple predictor model that included task-based SDBOLD, 
resting-state SDBOLD, and pre-treatment social anxiety severity showed excellent prediction accuracy 
(R2 = 61%, MASE = .43). Task-related SDBOLD was the strongest predictor and exhibited excellent 
reliability. This relatively short (160 sec) estimate of task-based BOLD signal variability outperformed 
resting-state SDBOLD, standard MEANBOLD, and pre-treatment self-reported social anxiety. Resting-state 
variability also uniquely predicted treatment outcome in our full model, but accounted for ~50% less 
unique explained variance than task-based SDBOLD and required more than double the data volume to 
achieve comparable reliability and treatment outcome prediction accuracy. Crucially, socio-affective 
face task SDBOLD was both sensitive and specific to social anxiety treatment outcomes.  
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Estimating moment-to-moment fluctuations during simple, disorder-
relevant tasks may help optimize treatment prediction 
Clinical neuroscientists often argue that resting-state neuroimaging protocols are preferable for ease of 
implementation and minimization of demands on patients. Our robust task-based treatment prediction 
results were achieved using a disorder-relevant task (socio-affective visual processing in SAD patients) 
with extremely low cognitive requirements (passive viewing, no behavioral responses required) and 
absolutely minimal scan time (2 minutes 40 sec, far shorter than typical resting-state scans). Further, 
the spatial patterns for task and resting-state SDBOLD were largely distinct. Thus, while both task and 
resting-state variability contributed to CBT outcome prediction, the two measurements represent 
different neural signatures. If simple, demand-minimal fMRI remains a primary goal for biomarker 
development in psychiatry, passive, disorder-relevant tasks should be included in future large-scale 
studies of treatment outcome, particularly when BOLD fluctuations can be examined. Here, we 
employed a simple and straightforward calculation of each patient’s brain signal variability, for which 
code is freely available and deployable for use in the majority of already collected patient fMRI data.  

Moving beyond average neural signals for reliable treatment prediction  
Our task-based SDBOLD prediction model also dominated a more conventional analytic approach using 
mean brain signals (MEANBOLD; i.e., the average fMRI signal across time) to estimate treatment 
outcomes. Why might MEANBOLD perform so poorly? Recently, alarming meta-analyses demonstrate 
that the average ICC may be as low as .40 (95% CI = .33, .46) for common experiments using 
conventional mean-based analyses in task-based fMRI (5). Crucially, the test-retest reliability of such 
standard (and alternative) fMRI measures in the treatment outcome prediction literature remains largely 
unknown. Our task-based SDBOLD treatment prediction model demonstrated excellent 11-week test-
retest reliability (ICCB1,B2 = .80), and even with minimal data (40 sec), task SDBOLD was far more reliable 
(ICC = .62) than MEANBOLD when all available data (160 sec) were used. Beyond the poor performance 
of MEANBOLD here, another meta-analysis also revealed very low reliability (ICC = .29; 95% CI = .23, 
.36) for connectivity-based analyses of resting-state fMRI data (4). Utilizing brain measures with such 
poor reliability may continue to contribute to non-replicability, and we argue that moment-to-moment 
brain signal variability computations are therefore strong candidates for future smaller- and larger-scale 
investigations of biomarkers in psychiatric research and treatment outcome prediction. 

What could BOLD variability reveal about social anxiety treatment 
outcomes? 
Researchers often conceive signal variability as unreliable and unwanted “noise.” However, moment-
to-moment brain variability continues to exhibit a host of behaviorally- and group-relevant effects in 
cognitive neuroscience (e.g., for a review see (44)), yet remains grossly underutilized in clinical 
research. To our knowledge, SAD has not previously been linked to BOLD variability. It has been argued 
that an individual's brain signal variability may (A) reflect available neural dynamic range for the 
veridical/accurate processing of incoming stimuli (45) and (B) index a more cognitively effective system 
overall (44). One characteristic SAD symptom is self-focused attention; as a result of an external socio-
affective “trigger”, SAD patients become self-attentive and biased towards internal cognitive and 
emotional processes, leading to deficits in the ability to disengage from internally-focused modes (11). 
As such, SAD patients may indeed “filter” external socio-affective stimuli through their own internal 
biases, showing a heightened focus on socio-affective content at the cost of an incomplete 
representation of such stimuli. CBT includes cognitive and behavioral interventions for dealing with 
excessive anxiety, such as shifting one’s attention from internally referenced processing toward a more 
faithful representation of external input. Previous work has shown that lower signal variability in the 
visual cortex should be expected when individuals do not fully process the complexity of visual input 
(45). It is plausible that treatment-responsive SAD patients express more limited visuo-cortical brain 
signal variability due to a relative inability to fully process external socio-affective stimuli, a function that 
may be directly improved via CBT. Complementarily, we also found that patients who displayed higher 
variability in the prefrontal cortex profited more from CBT. Past work consistently shows that greater 
BOLD variability in the frontal lobes typifies healthy, higher performing adults across a host of different 
cognitive domains, such as attentional capacity, working memory, and verbal abilities (6, 8–10, 46, 47) 
(for a review see (44)). Accordingly, prefrontal signal variability may be required to respond to internet-
delivered CBT, a treatment process that requires self-motivated learning, working memory, and verbal 
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capacity. Although these interpretations remain speculative, novel questions related to intra-individual 
variability could be key for future directions in neuroscience-based psychiatric research. To best do so, 
future longitudinal studies are needed that mechanistically investigate the links between joint changes 
in neural variability and psychiatric treatment outcomes. 

Limitations and future directions 
We provide first evidence for within-sample reliability-based mapping of a series of different fMRI-based 
measures and experimental conditions in relation to treatment outcome. However, ultimately, the utility 
of any prediction model is determined by its ability to generalize to new unseen patients. Poldrack and 
colleagues (3) recently criticised current prediction practices in the neuroimaging literature (e.g., 48–
51), claiming that hundreds or even thousands of patients are needed for out of sample prediction. Even 
when such high data volume is available, prediction using conventional brain measures can work (N = 
1 188) (2), but replication is not guaranteed in completely independent patient samples (52). We provide 
clear, reliability-based evidence for the importance of considering measures of brain signal variability in 
treatment prediction, and we argue that the use of such reliable tools may markedly reduce the need 
for such massive, resource-intensive samples for treatment prediction. Further, although accurate and 
reliable prediction of response to single treatments is a first crucial step for the field, it is essential to 
know the type of treatment to which a particular patient is more likely to respond to achieve maximum 
clinical utility. To achieve this, a reliable and accurate treatment outcome predictor is needed, and 
herein we present fMRI variability as a strong candidate for future investigations. Finally, our socio-
affective face task SDBOLD treatment outcome prediction model was specific to social anxiety. However, 
there is well-established evidence that moment-to-moment brain signal variability is linked to various 
state- and trait-related functions in different samples (8, 44) and it is thus possible that BOLD variability 
may also be sensitive to a variety of different treatment outcomes in other common psychiatric 
disorders. 

Summary 
In conclusion, neural variability has the potential to offer unique insights into factors that affect patient 
responses to psychiatric treatments. Here, we demonstrate that intra-individual variability in neural 
response is a reliable and accurate predictive biomarker of treatment success, even when using a 
simple passive task administered in under 3 minutes. Ultimately, our findings may help improve 
precision medicine and clinical decision-making in psychiatric populations. 
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