Title: Worries about COVID-19 infection and psychological distress at work and while commuting 3

- 4 **Running title:** worries about COVID-19 infection and psychological distress
- 5
- 6 Masamichi Uehara¹, M.D., Tomohiro Ishimaru¹, M.D., M.P.H., Ph.D., Hajime Ando²,
- 7 M.D., M.O.H., Ph.D., Seiichiro Tateishi³, M.D., Ph.D., Hisashi Eguchi⁴, M.D., M.B.A.,
- 8 Ph.D., Mayumi Tsuji⁵, M.D., Ph.D., Koji Mori⁶, M.D., Ph.D., Shinya Matsuda⁷, M.D.,
- 9 Ph.D., and Yoshihisa Fujino¹, M.D., M.P.H., Ph.D., for the CORoNaWork Project
- 10 ¹ Department of Environmental Epidemiology, Institute of Industrial Ecological
- 11 Sciences, University of Occupational and Environmental Health, Japan
- 12 ² Department of Work Systems and Health, Institute of Industrial Ecological Sciences,
- 13 University of Occupational and Environmental Health, Japan
- 14 ³ Department of Occupational Medicine, School of Medicine, University of
- 15 Occupational and Environmental Health, Japan
- ⁴ Department of Mental Health, Institute of Industrial Ecological Sciences, University of
- 17 Occupational and Environmental Health, Japan
- 18 ⁵ Department of Environmental Health, School of Medicine, University of Occupational NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

19 and Environmental Health, Japan

20	⁶ Department of Occupational Health Practice and Management, Institute of Industrial
21	Ecological Sciences, University of Occupational and Environmental Health, Japan
22	⁷ Department of Preventive Medicine and Community Health, School of Medicine,
23	University of Occupational and Environmental Health, Japan
24	
25	Author contribution:
26	MU; Writing the manuscript, TI; creating the questionnaire, review of manuscripts, and
27	advice on interpretation, HA; review of manuscripts and advice on interpretation, ST,
28	HE, MT, KM and SM; Review of manuscripts, advice on interpretation, and funding for
29	research, YF; Overall survey planning, creating the questionnaire, analysis, and drafting
30	the manuscript
31	
32	Correspondence to Yoshihisa Fujino ¹ , M.D., M.P.H., Ph.D.
33	Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
34	University of Occupational and Environmental Health, Japan
35	1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan

36 Tel: +81-93-691-7401

Email: zenq@med.uoeh-u.ac.jp

41 Abstract

42 Objective: This study examined the relationship between worry about COVID-19 infection in general, in the workplace and while commuting to work and psychological 43 44 distress in the midst of a rapid outbreak of COVID-19 in Japan. Methods: This cross-sectional, internet monitor study was conducted on December 22-45 26, 2020. Subjects were collected from throughout Japan. Out of a total of 33,302 46 47 participants, 26,841 people were included in the study after removing those providing 48 fraudulent responses. The subjects were asked single-item questions about whether they 49 were worried about COVID-19 infection in general, at work and while commuting to 50 work. Kessler 6 (K6) was used to assess psychological distress. The odds ratios (ORs) 51 of psychological distress associated with worry about infection were estimated using a 52 multilevel logistic model nested in the prefecture of residence, with adjustment for sex, 53 age, education, equivalent household income, occupation, number of business 54 establishments, smoking status, alcohol consumption, frequency of telecommuting, use 55 of public transportation, perceived assessment of workplace infection control efforts, 56 presence of infection among acquaintances, and experience of being a close contact. 57 Psychological distress was defined as a K6 score of 5 or higher and 13 or higher. 58 Results: Multivariate analysis showed that the OR of severe psychological distress

59	associated with general worry about COVID-19 infection was 1.10 (95% CI 1.00-1.22).

- 60 The OR was significantly higher in association with worry about infection in the
- 61 workplace at 1.71 (95%CI 1.53–1.92) and worry about infection while commuting at
- 62 1.49 (95%CI 1.32–1.67).
- 63 Conclusions: The present study suggests the need for psychological intervention to
- 64 reduce worry about infection in response to public mental health challenges associated
- 65 with the COVID-19 pandemic.
- 66
- 67 Keywords: Anxiety, COVID-19, Japan, Occupational Health, Psychological Distress

69 Introduction

70	Mental health problems associated with the COVID-19 pandemic are an
71	emerging public health issue ¹ . Outbreaks increase generalized fear, community anxiety,
72	and panic symptoms ^{2,3} . Previous studies have reported a higher prevalence of
73	psychological symptoms such as depression and anxiety among individuals who
74	experienced lockdown during the COVID-19 pandemic ^{1,4-7}
75	Containment measures against pandemics like COVID-19 have a strong impact
76	on individuals' daily lives and psychological well-being ⁸ . "A new normal" of avoiding
77	the "three Cs" (crowded places, close-contact settings, and confined and enclosed
78	spaces) has been recommended as an effective countermeasure against infection ⁸ .
79	However, such measures also distance people from each other, which can lead to
80	decreased communication and socializing. In addition, COVID-19 has also brought
81	about economic recession and job insecurity. Together, these effects are thought to have
82	contributed to an increase in loneliness, worry, fear, anxiety, and stress among
83	individuals.
84	In situations like the current pandemic, worry of infection is a common feeling
85	among the majority of the population, given that various aspects of daily life pose

86 potential risk of infection. An increase in infections can trigger psychological symptoms

87	such as generalized fear and widespread community anxiety ^{2,3} . Psychological symptoms
88	such as persistent worrying, feeling overwhelmed by emotions, restlessness and
89	irritability emerge within the population in the form of anxiety, panic attacks,
90	depression and suicide ^{9,10} . Worry of infection is an early sign of psychological distress.
91	For workers, the workplace and commuting are considered particularly risky
92	opportunities for infection. For this reason, most workplaces are taking various infection
93	control measures, including limiting the number of visitors, restricting business trips,
94	encouraging telecommuting, ensuring sufficient office ventilation, and installing
95	partitions in customer-facing spaces. However, some workplaces are not taking
96	sufficient recommended measures for business reasons or due to cost. Naturally,
97	infection control efforts in the workplace influence workers' worry of infection. A
98	previous study reported that intensive workplace measures against COVID-19 are
99	associated with lower psychological distress among employees ¹¹ .
100	Therefore, we hypothesized that worry of infection in the workplace and while
101	commuting affect the psychological distress of workers. In this study, we examined the

103 midst of a rapid outbreak of COVID-19 in Japan.

102

7

relationship between workers' worry about infection and psychological distress in the

104 Method

105 Study design and subjects

106	This cross-sectional, internet monitor study was conducted on December 22-26,
107	2020, when Japan experienced its third wave of COVID-19 infection. Details of the
108	protocol of this survey are reported elsewhere ¹² . Briefly, data were collected from
109	workers who had employment contracts at the time of the survey and were selected
110	based on prefecture, job type, and sex. Out of a total of 33,302 participants in the
111	survey, 27,036 were included in the study after removing those who provided fraudulent
112	responses. After further excluding 195 individuals who indicated in the survey that they
113	had already been infected with COVID-19, a total of 26,841 individuals (13,713 males
114	and 13,128 females) were included in the current analysis. This study was approved by
115	the ethics committee of the University of Occupational and Environmental Health,
116	Japan (reference No. R2-079) . Informed consent was obtained in the form of the
117	website.

118

119 Assessment of worry about COVID-19 infection

120 Three single-item questions were used to determine whether or not the subjects121 were worried about infection. One question inquired about general worry of COVID-19

122	infection, while the other two were situation dependent, inquiring about worry of
123	infection at work and while commuting to work. The questions were, "Are you worried
124	about being infected with COVID-19?" "Are you worried about being infected while
125	working at your workplace?" and "Are you worried about being infected while
126	commuting to work?" The participants responded "yes" or "no" to the questions.
127	
128	Assessment of psychological distress
129	Kessler 6 (K6) was used to assess psychological distress ¹³ . The validity of the
130	Japanese version of the K6 has been confirmed ¹⁴ . In the present study, a K6 score of 5
131	or higher was used as the cutoff for mild psychological distress, and a score of 13 or
132	higher as the cutoff for severe psychological distress.
133	
134	Other covariates
135	The following survey items were considered confounding factors: age, sex,
136	marital status (married, unmarried, bereaved/divorced), occupation (mainly desk work,
137	jobs mainly involving interpersonal communication, and mainly labor), number of
138	employees, educational background, equivalent income (household income divided by
139	the square root of household size), smoking status, alcohol consumption, frequency of

140	telecommuting, and use of public transportation when commuting. The questionnaire
141	also asked the following questions: "Have you been a close contact of someone infected
142	with COVID-19?" and "Do you know of anyone close to you (friends or family) who
143	has been infected with COVID-19?"
144	The questionnaire also asked the participants to rate their company's infection
145	control measures using the question "Do you think your company has taken adequate
146	infection control measures for its employees?" Participants responded on a four-point
147	scale: "yes," "somewhat," "not really," "no."
148	In addition, the cumulative incidence rate of COVID-19 infection one month
149	prior to conduct of the survey in the prefectures of residence was used as a
150	community-level variable. Information was collected from the websites of public
151	institutions.
152	
153	Statistical analysis
154	The odds ratios (ORs) of psychological distress associated with worry about
155	infection were estimated using a multilevel logistic model nested in the prefectures of
156	residence. Psychological distress was defined as a K6 score of 5 or higher and 13 or

157 higher.

158	The multivariate model was adjusted for sex, age, education, equivalent
159	household income, occupation, number of business establishments, smoking status,
160	alcohol consumption, frequency of telecommuting, use of public transportation when
161	commuting, perceived assessment of workplace infection control efforts, presence of
162	infection among acquaintances, and experience of being a close contact. The incidence
163	rate of COVID-19 by prefecture was also used as a prefecture-level variable.
164	We further estimated the multivariate ORs of psychological distress associated
165	with use of public transportation, with adjustment for all factors except worry about
166	infection during commuting, because adjusting for worry about infection would be an
167	over-adjustment.
168	A p value less than .05 was considered statistically significant. All analyses
169	were conducted using Stata (Stata Statistical Software: Release 16; StataCorp LLC, TX,
170	USA).
171	

172 **Results**

173 Table 1 shows the characteristics of the subjects according to their worries about 174 infection. A total of 75% of the participants were worried about infection. While 50% of 175 participants were worried about being infected in the workplace, 32% were worried 176 about being infected while commuting to work. Women were more worried about 177 infection than men. There were no substantial differences in income, educational background, or lifestyle by worry about COVID-19 infection in general, while at work, 178 179 or while commuting. Participants who indicated that they worried about infection in the 180 workplace and while commuting shared similar characteristics. 181 Table 2 shows the ORs of psychological distress. In the age-adjusted model for 182 moderate psychological distress defined by a K6 score of 5 or higher, general worry 183 about COVID-19 infection (OR=1.29, 95%CI 1.22–1.37), worry about infection at work 184 (OR=1.79, 95%CI 1.70-1.88), and worry about infection while commuting (OR=1.64, 185 95%CI 1.55–1.73) all showed significant associations with psychological distress. 186 Multivariate analysis showed that the OR of moderate psychological distress associated 187 with general worry about COVID-19 infection was 0.97 (95% CI 0.91-1.04). The ORs 188 were significantly higher in association with worry about infection in the workplace at 189 1.57 (95%CI 1.57–1.48) and worry about infection while commuting at 1.49 (95%CI

190 1.38–1.60).

191	The sex- and age-adjusted OR of severe psychological distress, defined by a
192	K6 score of 13 or higher, associated with general worry about COVID-19 infection was
193	1.05 (95%CI 0.95–1.15). ORs were significantly higher in association with worry about
194	infection in the workplace (OR=1.76, 95%CI 1.61-1.92) and worry about infection
195	while commuting (OR=1.65, 95%CI 1.51-1.80). Multivariate analysis of severe
196	psychological distress showed similar results.
197	We also examined situations we predicted could enhance worry. Being in close
198	contact with an infected person increased the ORs of severe psychological distress;
199	however, having acquaintances who had been infected was not significantly associated
200	with severe psychological distress. The OR of severe psychological distress associated
201	with using public transportation for commuting to work was 1.25 (95%CI 1.25–1.39).
202	

204 **Discussion**

205	This study showed that while general worry about COVID-19 infection was not
206	associated with psychological distress, worry about infection at work and while
207	commuting were associated with moderate and severe psychological distress.
208	The spread of COVID-19 infection is causing people to worry about infection in
209	a number of everyday situations. In the present study, 75% of participants were worried
210	about infection, suggesting that COVID-19 infection is a major source of public stress.
211	However, in this situation, worrying about infection is not unhealthy, but rather, a
212	natural reaction to current events. Such worry about infection may lead to preventive
213	behaviors ^{15–17} . In this situation, we found that having general worry about COVID-19
214	infection did not lead to psychological distress.
215	However, our study indicates that certain everyday situations, such as working
216	in the workplace and commuting to work, are particularly worrisome in relation to
217	infection. We found that worry about infection at work was associated with moderate
218	and severe psychological distress. There are many opportunities in the workplace for
219	direct contact with others, such as while communicating with colleagues and providing
220	services to customers, and for indirect contact with people through objects.
221	Additionally, in places like offices, workers share a relatively small space. Thus, the

fact that individuals have limited control over maintaining the recommended three Csstrategy for infection prevention at work can be a major cause of stress.

224 The present study also showed that worry about infection during commuting was 225 associated with moderate and severe psychological distress. Commuting to work is considered one way in which risk of infection can increase¹⁸, because individuals come 226 227 into contact with an unspecified number of people, are unable to maintain social 228 distancing, and are present in a space that feels relatively enclosed, such as a bus or 229 train. In fact, 47% of participants who were worried about infection while commuting 230 experienced moderate psychological distress, and 23% experienced severe 231 psychological distress. These results suggest that reducing worries about infection in the 232 workplace and during commuting is important for reducing public mental health issues caused by COVID-19¹⁹. 233

However, our findings also suggest the difficulty of reducing psychological distress due to worry about infection. We found that worries about infection in the workplace and while commuting to work were associated with psychological distress even after adjusting for assessment of adequate infection control measures in the workplace and use of public transportation. This suggests that workers worry regardless of whether or not they use public transportation to commute to work or have adequate

240 infection prevention measures installed in their workplace, and that these worries are 241 related to psychological distress. In fact, 38% of those who were worried about their 242 commute did not use public transportation. While we found that public transportation 243 use was associated with psychological distress, this association disappeared after 244 adjusting for general worry about COVID-19 infection. This finding supports the idea 245 that worry, rather than facts, is associated with psychological distress. Worry about 246 infection is not only based on rational judgment, but is also an intuitive feeling. 247 Therefore, to reduce excessive worry about infection and the resulting psychological 248 distress, it is necessary to both promote infection prevention measures and adjust 249 individuals' perception of their worries. Cognitive-behavioral therapy is considered an 250 effective method for such a $purpose^{20}$.

Limitations of this study warrant mention. First, the generalizability of the results is uncertain because this study was conducted through internet monitors. However, we attempted to reduce as much bias in the target population as possible by sampling according to region, job type, and prefecture based on the infection incidence rate. Second, the study asked simple questions about individuals' worries about infection, and was not intended to diagnose psychiatric symptoms or psychiatric illnesses. Participants who indicated that they were worried may also exhibit psychiatric

258 symptoms, such as anxiety, depression, and panic; however, distinguishing these 259 symptoms was outside the scope of this study. Third, worry about infection in the 260 workplace is thought to be greatly influenced by the type of job and the environment in which one works. Health care workers are a typical example of a population that is at 261 high risk of infection and are more likely to experience psychological distress¹⁰. In this 262 263 study, we only adjusted for simple variables such as job type (desk work and physical 264 work) and the number of employees in the workplace. Fourth, because this was a 265 cross-sectional study, the temporal relationship between worry about infection and 266 psychological distress is unclear. Excessive anxiety and depression may be symptoms 267 of psychological distress. Previous studies have shown that people with a history of 268 psychiatric disorders are more anxious and show greater psychological distress during 269 the COVID-19 pandemic²¹. However, because it is easier to confirm feelings of worry 270 than to make a psychiatric diagnosis, we believe that it is useful to identify the presence 271 of worry among workers for determining health status.

In conclusion, while general worry about infection was not associated with psychological distress, worry about infection in specific situations such as in the workplace and while commuting was associated with moderate and severe psychological distress. These worries and the associated psychological and emotional

- 276 responses may not be mediated by actual infection control measures taken in the
- 277 workplace or use of public transportation. The results of this study suggest the need for
- 278 psychological approaches to reduce worries about infection in response to the mental
- 279 health challenges associated with the COVID-19 pandemic.

281 Acknowledgements

282	This study was funded by a research grant from the University of Occupational
283	and Environmental Health, Japan; a general incorporated foundation (Anshin Zaidan)
284	for the development of educational materials on mental health measures for managers at
285	small-sized enterprises; Health, Labour and Welfare Sciences Research Grants:
286	Comprehensive Research for Women's Healthcare (H30-josei-ippan-002) and Research
287	for the establishment of an occupational health system in times of disaster
288	(H30-roudou-ippan-007); and scholarship donations from Chugai Pharmaceutical Co.,
289	Ltd.

290 Present members Collaborative Online Research the of the on 291 Novel-coronavirus and Work (CORoNaWork) Project are: Dr. Yoshihisa Fujino 292 (current chairperson), Dr. Akira Ogami, Dr. Arisa Harada, Dr. Ayako Hino, Dr. 293 Chimed-Ochir Odgerel, Dr. Hajime Ando, Dr. Hisashi Eguchi, Dr. Kazunori Ikegami, Dr. Keiji Muramatsu, Dr. Koji Mori, Dr. Kyoko Kitagawa, Dr. Masako Nagata, Dr. 294 295 Mayumi Tsuji, Dr. Rie Tanaka, Dr. Ryutaro Matsugaki, Dr. Seiishiro Tateishi, Dr. 296 Shinya Matsuda, Dr. Tomohiro Ishimaru, Dr. Tomohisa Nagata, Dr. Yosuke Mafune, 297 and Ms. Ning Liu, in alphabetical order. All of the members are affiliated with the

298	University	of Occupational	and Environmental	Health, Japan.
	<i>_</i>	1		/ 1

299

300

- 301 Disclosure
- 302 Ethical approval: This study was approved by the ethics committee of the University
- 303 of Occupational and Environmental Health, Japan (reference No.R2-079).
- 304 **Informed consent:** Informed consent was obtained in the form of the website.

305

- 306 **Registry and the Registration No. of the study/Trial:** N/A
- 307 Animal Studies: N/A
- 308 Conflict of Interest: The authors declare no conflicts of interest associated with this

309 manuscript.

311 **References:**

- Wang C, Pan R, Wan X, et al. Immediate Psychological Responses and Associated
 Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19)
 Epidemic among the General Population in China. *Int J Environ Res Public Health*. 2020;17(5). doi:10.3390/ijerph17051729
- 316 2. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric
 317 complications of COVID-19 in 153 patients: a UK-wide surveillance study. *Lancet*318 *Psychiatry*. 2020;7(10):875-882.
- Serafini G, Parmigiani B, Amerio A, Aguglia A, Sher L, Amore M. The
 psychological impact of COVID-19 on the mental health in the general population.
 QJM. Published online June 22, 2020. doi:10.1093/qjmed/hcaa201
- 322 4. Tang W, Hu T, Hu B, et al. Prevalence and correlates of PTSD and depressive
 323 symptoms one month after the outbreak of the COVID-19 epidemic in a sample of
 324 home-quarantined Chinese university students. *J Affect Disord*. 2020;274:1-7.
- Losada-Baltar A, Jiménez-Gonzalo L, Gallego-Alberto L, Pedroso-Chaparro MDS,
 Fernandes-Pires J, Márquez-González M. "We're staying at home". Association of
 self-perceptions of aging, personal and family resources and loneliness with
 psychological distress during the lock-down period of COVID-19. *J Gerontol B Psychol Sci Soc Sci*. Published online April 13, 2020. doi:10.1093/geronb/gbaa048
- Mazza C, Ricci E, Biondi S, et al. A Nationwide Survey of Psychological Distress among Italian People during the COVID-19 Pandemic: Immediate Psychological Responses and Associated Factors. *Int J Environ Res Public Health*. 2020;17(9). doi:10.3390/ijerph17093165
- Moccia L, Janiri D, Pepe M, et al. Affective temperament, attachment style, and
 the psychological impact of the COVID-19 outbreak: an early report on the Italian
 general population. *Brain Behav Immun.* 2020;87:75-79.
- 8. World Health Organization. Coronavirus disease (COVID-19) advice for the
 public. Accessed January 27, 2021.
 https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-pub
 lic

Greenberg N, Brooks SK, Wessely S, Tracy DK. How might the NHS protect the
mental health of health-care workers after the COVID-19 crisis? *Lancet Psychiatry*. 2020;7(9):733-734.

- Pappa S, Ntella V, Giannakas T, Giannakoulis VG, Papoutsi E, Katsaounou P.
 Prevalence of depression, anxiety, and insomnia among healthcare workers during
 the COVID-19 pandemic: A systematic review and meta-analysis. *Brain Behav Immun.* 2020;88:901-907.
- 348 11. Sasaki N, Kuroda R, Tsuno K, Kawakami N. Workplace responses to COVID-19
 349 associated with mental health and work performance of employees in Japan. J
 350 Occup Health. 2020;62(1):e12134.
- Fujino Y, Ishimaru T, Eguchi H, et al. Protocol for a nationwide Internet-based
 health survey in workers during the COVID-19 pandemic in 2020. *medRxiv*.
 Published online February 5, 2021:2021.02.02.21249309.
- 13. Kessler RC, Andrews G, Colpe LJ, et al. Short screening scales to monitor
 population prevalences and trends in non-specific psychological distress. *Psychol Med.* 2002;32(6):959-976.
- 357 14. Furukawa TA, Kawakami N, Saitoh M, et al. The performance of the Japanese
 358 version of the K6 and K10 in the World Mental Health Survey Japan. Int J
 359 Methods Psychiatr Res. 2008;17(3):152-158.
- 15. Kwok KO, Li KK, Chan HHH, et al. Community Responses during Early Phase of
 COVID-19 Epidemic, Hong Kong. *Emerg Infect Dis.* 2020;26(7):1575-1579.
- 362 16. Bowman L, Kwok KO, Redd R, et al. Public perceptions and preventive
 363 behaviours during the early phase of the COVID-19 pandemic: a comparative
 364 study between Hong Kong and the United Kingdom. *bioRxiv*. Published online
 365 August 7, 2020. doi:10.1101/2020.08.06.20169409
- Magdy DM, Metwally A, Magdy O. Assessment of Community Psycho-behavioral
 Responses during the outbreak of novel coronavirus (2019-nCoV): A cross
 sectional study. *Research Square*. Published online April 29, 2020.
 doi:10.21203/rs.3.rs-25146/v1
- 370 18. Zhang J. Transport policymaking that accounts for COVID-19 and future public

health threats: A PASS approach. *Transp Policy*. 2020;99:405-418.

- 372 19. Dam P, Mandal S, Mondal R, Sadat A, Chowdhury SR, Mandal AK. COVID-19:
 373 Impact on transport and mental health. *J Transp Health*. 2020;19:100969.
- 374 20. Yue J-L, Yan W, Sun Y-K, et al. Mental health services for infectious disease
 375 outbreaks including COVID-19: a rapid systematic review. *Psychol Med.*376 2020;50(15):2498-2513.
- 377 21. Yamamoto T, Uchiumi C, Suzuki N, Yoshimoto J, Murillo-Rodriguez E. The
 378 Psychological Impact of "Mild Lockdown" in Japan during the COVID-19
 379 Pandemic: A Nationwide Survey under a Declared State of Emergency. *Int J*380 *Environ Res Public Health*. 2020;17(24). doi:10.3390/ijerph17249382

Table 1. The characteristics of the subjects according to their wo	orries about infection.
--	-------------------------

No Yes No Yes N Number of subjects 6967 19874 13323 13518 198	No Yes
Number of subjects 6967 19874 13223 13518 18	
Traineer of Subjects 0707 17077 15525 15510 10	091 8750
Age, mean (SD) 47.0 (10.3) 47.0 (10.6) 48.3 (10.2) 45.8 (10.7) 47.4	(10.4) 46.2 (10.8)
Sex, male 4099 (58.8%) 9614 (48.4%) 7819 (58.7%) 5894 (43.6%) 9551 ((52.8%) 4162 (47.6%)
Marriage status, married 3702 (53.1%) 11207 (56.4%) 7519 (56.4%) 7390 (54.7%) 10196	(56.4%) 4713 (53.9%)
Job type	
Mainly desk work 3402 (48.8%) 9970 (50.2%) 7257 (54.5%) 6115 (45.2%) 8594 ((47.5%) 4778 (54.6%)
Jobs mainly involving interpersonal communi-cation 1707 (24.5%) 5163 (26.0%) 2856 (21.4%) 4014 (29.7%) 4570 ((25.3%) 2300 (26.3%)
Mainly labor 1858 (26.7%) 4741 (23.9%) 3210 (24.1%) 3389 (25.1%) 4927 ((27.2%) 1672 (19.1%)
Equivalent income (million JPY)	
50-249 1612 (23.1%) 4061 (20.4%) 2920 (21.9%) 2753 (20.4%) 4013 ((22.2%) 1660 (19.0%)
250-374 1897 (27.2%) 5607 (28.2%) 3578 (26.9%) 3926 (29.0%) 5128 ((28.3%) 2376 (27.2%)
375-489 1565 (22.5%) 5013 (25.2%) 3170 (23.8%) 3408 (25.2%) 4426 ((24.5%) 2152 (24.6%)
≥490 1893 (27.2%) 5193 (26.1%) 3655 (27.4%) 3431 (25.4%) 4524 ((25.0%) 2562 (29.3%)
Educational background	
Junior high 115 (1.7%) 252 (1.3%) 205 (1.5%) 162 (1.2%) 273 ((1.5%) 94 (1.1%)
High school 1892 (27.2%) 5018 (25.2%) 3599 (27.0%) 3311 (24.5%) 5113 ((28.3%) 1797 (20.5%)
University, graduate school, vocational school, junior college 4960 (71.2%) 14604 (73.5%) 9519 (71.4%) 10045 (74.3%) 12705	(70.2%) 6859 (78.4%)
Current smoker 1818 (26.1%) 5136 (25.8%) 3560 (26.7%) 3394 (25.1%) 4807 ((26.6%) 2147 (24.5%)
Alcohol consumption	
6 to 7 days per week 1523 (21.9%) 4092 (20.6%) 3089 (23.2%) 2526 (18.7%) 3932 ((21.7%) 1683 (19.2%)
4 to 5 days per week 530 (7.6%) 1513 (7.6%) 1012 (7.6%) 1031 (7.6%) 1309	(7.2%) 734 (8.4%)
2 to 3 days per week 826 (11.9%) 2420 (12.2%) 1635 (12.3%) 1611 (11.9%) 2127 ((11.8%) 1119 (12.8%)
Less than 1 day per week 1106 (15.9%) 3417 (17.2%) 2117 (15.9%) 2406 (17.8%) 2960 ((16.4%) 1563 (17.9%)
Almost none 2982 (42.8%) 8432 (42.4%) 5470 (41.1%) 5944 (44.0%) 7763 ((42.9%) 3651 (41.7%)
Number of employees in the workplace	
1-29 1736 (24.9%) 4386 (22.1%) 3927 (29.5%) 2195 (16.2%) 4615 ((25.5%) 1507 (17.2%)
30-99 1768 (25.4%) 5126 (25.8%) 3245 (24.4%) 3649 (27.0%) 4893 ((27.0%) 2001 (22.9%)
100-999 1725 (24.8%) 5375 (27.0%) 3095 (23.2%) 4005 (29.6%) 4640 ((25.6%) 2460 (28.1%)
≤ 1000 1738 (24.9%) 4987 (25.1%) 3056 (22.9%) 3669 (27.1%) 3943 ((21.8%) 2782 (31.8%)
Experience of being a close contact $56 (0.8\%)$ $148 (0.7\%)$ $79 (0.6\%)$ $125 (0.9\%)$ $122 ($	(0.7%) 82 (0.9%)
Presence of infection among acquaintances 364 (5.2%) 1778 (8.9%) 855 (6.4%) 1287 (9.5%) 1248	(6.9%) 894 (10.2%)
Use of public transportation for commuting 1358 (19.5%) 5884 (29.6%) 2730 (20.5%) 4512 (33.4%) 1761 -	(9.7%) 5481 (62.6%)
General worry about infection 0 (0.0%) 19874 (100.0%) 7221 (54.2%) 12653 (93.6%) 11895	(65.8%) 7979 (91.2%)
Worry about infection at work 865 (12.4%) 12653 (63.7%) 0 (0.0%) 13518 (100.0%) 6568 (2.4%)	36.3%) 6950 (79.4%)
Worry about infection while commuting 771 (11.1%) 7979 (40.1%) 1800 (13.5%) 6950 (51.4%) 0 (0	.0%) 8750 (100.0%)
Moderate psychological distress (K6≥5) 2447 (35.1%) 8240 (41.5%) 4264 (32.0%) 6423 (47.5%) 6516 ((36.0%) 4171 (47.7%)
Severe psychological distress (K6≥13) 605 (8.7%) 1814 (9.1%) 860 (6.5%) 1559 (11.5%) 2926 ((16.2%) 2047 (23.4%)

	OR of moderate psychological distress (K6≥5)									OR of severe psychological distress (K6≥13)							
	Age-sex adjusted				Multivariate*				Age-sex adjusted				Multivariate*				
	OR	959	% CI	р	OR	95%	ω CI	р	OR	959	% CI	р	OR	95%	% CI	р	
General worry about infection	1.29	1.22	1.37	< 0.001	0.97	0.91	1.04	0.412 1	1.05	1.05 0.95 1.15	0.365	1.10	1.00	1.22	0.060		
Worry about infection at work	1.79	1.70	1.88	< 0.001	1.57	1.48	1.68	< 0.001	1.76	1.61	1.92	< 0.001	1.71	1.53	1.92	< 0.001	
Worry about infection during commuting	1.64	1.55	1.73	< 0.001	1.49	1.38	1.60	< 0.001	1.65	1.51	1.80	< 0.001	1.49	1.32	1.67	< 0.001	
Experience of being a close contact	1.42	1.08	1.89	0.014	1.47	1.10	1.97	0.010	1.45	0.96	2.19	0.074	1.57	1.02	2.41	0.039	
Presence of infection among acquaintances	1.07	0.97	1.17	0.163	1.06	0.96	1.16	0.271	0.97	0.83	1.14	0.730	0.97	0.82	1.14	0.689	
Use of public transportation for commuting	1.11	1.04	1.17	0.001	0.86	0.80	0.93	< 0.001	1.18	1.07	1.31	0.001	0.94	0.83	1.06	0.336	
					1.15**	1.08	1.23	< 0.001					1.25**	1.12	1.39	< 0.001	
"Do you think your company has taken adequate																	
infection control measures for its employees?"																	
Yes	reference			reference			reference				reference						
Somewhat	1.23	1.14	1.31	< 0.001	1.23	1.14	1.32	< 0.001	0.90	0.79	1.01	0.080	0.86	0.76	0.98	0.022	
Not really	1.99	1.83	2.16	< 0.001	1.93	1.77	2.10	< 0.001	1.48	1.29	1.71	< 0.001	1.35	1.17	1.56	< 0.001	
No	2.70	2.44	2.98	< 0.001	2.50	2.25	2.77	< 0.001	3.21	2.78	3.70	< 0.001	2.74	2.36	3.18	< 0.001	

Table 2. Associations of worry about infection and psychological distress

* The multivariate model included sex, age, education, equivalent household income, occupation, number of business establishments, smoking status, alcohol consumption, frequency of telecommuting, and use of public transportation when commuting, perceived assessment of workplace infection control efforts, presence of infection among acquaintances, and experience of being a close contact. The incidence rate of COVID-19 by prefecture was also used as a prefecture-level variable

** ORs were derived from the multivariate model without worry about infection at work and while commuting.