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Abstract 
Background: Little is known about the role of artificial intelligence (AI) as a decisive 

technology in the clinical management of COVID-19 patients. We aimed to systematically 

review and critically appraise the current evidence on AI applications for COVID-19 in 

intensive care and emergency settings, focusing on methods, reporting standards, and clinical 

utility. 

Methods: We systematically searched PubMed, Embase, Scopus, CINAHL, IEEE Xplore, 

and ACM Digital Library databases from inception to 1 October 2020, without language 

restrictions. We included peer-reviewed original studies that applied AI for COVID-19 

patients, healthcare workers, or health systems in intensive care, emergency or prehospital 

settings. We assessed predictive modelling studies using PROBAST (prediction model risk of 

bias assessment tool) and a modified TRIPOD (transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis) statement for AI. We critically 

appraised the methodology and key findings of all other studies.  

Results: Of fourteen eligible studies, eleven developed prognostic or diagnostic AI predictive 

models, all of which were assessed to be at high risk of bias. Common pitfalls included 

inadequate sample sizes, poor handling of missing data, failure to account for censored 

participants, and weak validation of models. Studies had low adherence to reporting 

guidelines, with particularly poor reporting on model calibration and blinding of outcome and 

predictor assessment. Of the remaining three studies, two evaluated the prognostic utility of 
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deep learning-based lung segmentation software and one studied an AI-based system for 

resource optimisation in the ICU. These studies had similar issues in methodology, 

validation, and reporting. 

Conclusions: Current AI applications for COVID-19 are not ready for deployment in acute 

care settings, given their limited scope and poor quality. Our findings underscore the need for 

improvements to facilitate safe and effective clinical adoption of AI applications, for and 

beyond the COVID-19 pandemic. 

 

1 Introduction 

The ongoing coronavirus disease 2019 (COVID-19) pandemic has challenged healthcare 

systems and healthcare practitioners worldwide. Intensive care units (ICU) and emergency 

departments (ED) in badly afflicted areas have been overwhelmed by the surge in patients 

suspected or diagnosed with COVID-19 1-3. This exerts significant pressure on healthcare 

resources, necessitating novel diagnostics and care pathways to rationally deploy scarce 

emergency and intensive care healthcare resources. Current strategies and recommendations 

on clinical management and resource rationalisation draw on past pandemic experiences and 

expert recommendations 3-5; however, there has been growing interest in novel applications 

of artificial intelligence (AI) to assist in the COVID-19 response within these settings.  

 

AI is commonly defined as the use of computational methods to mimic human intelligence. 

Machine learning and deep learning are branches of AI which focus on automatic 

improvement of computer programmes through experience 6,7. Regression models, such as 

logistic, linear, or Cox regression, are simple forms of machine learning which already have 

longstanding use in medical research. More advanced machine learning, including random 

forest models, neural networks, or support vector machines, are also becoming more common 

in the medical literature, introducing more complex and diverse applications of AI. In 

intensive care and emergency settings, AI applications have assisted with automated patient 

monitoring 8-11, prognostication 12, and optimisation of staffing allocations 13-16. Given the 

unprecedented volume of COVID-19 patients, recent reviews have also identified resource 

optimisation of ICU beds as a potentially significant application of AI 17,18. 

 

Earlier systematic reviews have identified significant issues in the quality and reporting of 

predictive models for COVID-19 diagnosis and prognosis 19 and AI applications for 

classifying COVID-19 medical images 20. Shillian et al.’s 21 systematic review of machine 

learning studies in pre-COVID-19 ICUs reported similar issues, such as limited sample size 

and poor validation of predictions. However, no study has evaluated the scope and quality of 

all available AI applications in intensive care and emergency settings. This gap in knowledge 

precludes valuable improvements to the development and deployment of AI applications in 

these settings. We aimed to systematically review and critically appraise the current evidence 

on AI applications for COVID-19 in intensive care and emergency settings, focussing on 

methods, reporting standards, and clinical utility. 

 

2 Methods 
We reported this systematic review according to the Preferred Reporting Items for Systematic 

Reviews (PRISMA) guidelines (Additional file 1). A review protocol was developed but was 

not publicly registered. 

 

2.1 Search strategy and selection criteria 

We searched six databases, PubMed, Embase, Scopus, CINAHL, IEEE Xplore, and ACM 

Digital Library, by combining search terms related to AI, COVID-19, and intensive care or 
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emergency settings. For brevity, the search strategy showing only the first three terms in each 

concept set is as follows: (("Artificial intelligence" OR "Deep learning" OR "Machine 

learning" OR …) AND ("COVID-19" OR "Coronavirus disease 2019" OR "2019-nCoV" 

OR …) AND (Emergency OR "ED" OR "intensive care" OR …)). The complete search 

strategy can be found in Additional file 2. We also screened the reference lists of included 

articles to identify additional relevant studies. We included articles that met the following 

criteria: (1) applied AI; (2) investigated COVID-19 operations of ICU, ED, or emergency 

medical services (EMS) or analysed data from COVID-19 patients in the ED or within a 

prehospital setting, COVID-19 patients requiring intensive care (admission to the ICU, 

mechanical ventilation, or a composite including either of these outcomes), or the healthcare 

workers treating these patients, including ED or ICU physicians and nurses as well as 

paramedics; and (3) were original, peer-reviewed research articles. For this review, artificial 

intelligence only encompassed conventional machine learning algorithms such as random 

forest models, neural networks, or support vector machines. Multivariable logistic regression 

predictive models (including ridge and least absolute shrinkage and selection operator 

(LASSO) regression) were excluded. No restrictions were placed on the language of articles. 

 

2.2 Literature selection and data extraction 

We conducted an initial search on 30 August 2020 and updated the search results on 1 

October 2020. Articles were screened by title, abstract, and, if ambiguous, full text by two 

independent reviewers (MLC and NL). Subsequently, the two reviewers (MLC and NL) 

independently extracted data using a standardised data extraction form. Discrepancies in 

article selection and data extraction were resolved between reviewers through discussion. 

 

We extracted the following data for all included articles: country of study population, 

outcome predicted, sample size of the training and validation datasets, AI algorithms used, 

discrimination (e.g. C-index, accuracy) and calibration (e.g. calibration slope, Brier loss 

score) of models on the strictest form of validation, features included in the final model, and 

transparent reporting of a multivariable prediction model for individual prognosis or 

diagnosis (TRIPOD) study type 22, if applicable.  

 

2.3 Data analysis 

For studies including multivariate AI predictive models, we evaluated the risk of bias within 

the study methodology using prediction model risk of bias assessment tool (PROBAST) 23. 

PROBAST is a structured tool comprising 20 signalling questions for assessing the risk of 

bias and applicability across the four domains of participants, predictors, outcome, and 

analysis. Applicability of included studies was not assessed as our study was not concerned 

with a specific application of AI predictive models. In lieu of specific reporting standards for 

AI studies at the time of study conception 24, we assessed the reporting quality of 

multivariable predictive modelling studies using an adaptation of Wang et al.’s 25 modified 

TRIPOD statement 26 for AI models (Additional file 3). For all other studies, we summarised 

the study methodology, including data sources, application of AI, and validation methods, as 

well as the key findings of the study. 

  

3 Results 
3.1 Study characteristics 

From our search of the six databases, 14 studies were included in this review (Figure 1).  

Table 1 presents the main characteristics of the study. 11 of the 14 studies investigated 

predictive models and were assessed according to PROBAST and TRIPOD: eight studies 

developed prognostic models 27-34 and three studies developed diagnostic models 35-37. Of the 
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remaining three studies, two evaluated the prognostic potential of existing AI-based lung 

segmentation software (without integration into a multivariate predictive model) 38,39 and one 

investigated an AI-based system for resource optimisation in the ICU 40. Eleven studies used 

patient data collected from the ICU and four studies used data from the ED. No study 

collected data from the prehospital setting, despite including prehospital-related search terms 

in the search strategy. 

 

In terms of country of study, Italy (n=3) and United States (n=3) were represented by more 

than one study, while Brazil, Canada, China, France, Germany, Israel, Turkey, and the United 

Kingdom had one study each. 

 

According to the TRIPOD classification of predictive models, two studies were classified as 

Type 2b (validation using a non-random split of data by time and/or location), three studies as 

Type 2a (validation using a random split of data such as a train-test split), four studies as 

Type 1b (validation using re-sampling techniques such as bootstrapping or k-fold cross-

validation), and one study as Type 1a (no validation, only evaluation of apparent model 

performance on the same training dataset). One study that conducted development and 

validation using data from separate studies was considered Type 3. 

 

3.2 Risk of bias 

Table 2 presents the risk of bias assessment of AI predictive models according to PROBAST. 

All 11 predictive modelling studies had a high overall risk of bias. Two out of 11 studies had 

an unclear risk of bias within the participant domain. Unclear risk of bias in the participant 

domain was mainly due to ambiguous exclusion criteria that may lead to the study population 

not being representative of the intended target population 33,34.  

 

All three studies at a high risk of bias in the predictor domain were prognostic. Two studies 
32,33 used retrospective, multicentre data and were at risk of bias from varying methods of 

predictor assessment at different centres. The remaining study 31 obtained predictor data from 

the most recent assessments available, instead of assessing predictors at the intended time of 

use. Two studies did not report adequately on the assessment of computed tomography (CT) 
36 or other features 34, resulting in an unclear risk of bias. 

 

Two and four out of 11 studies were at high and unclear risk of bias within the outcome 

domain, respectively. In many prognostic studies 28,29,31,34, the criteria for ICU admission and 

blinding of outcome determination to predictor variables were often not reported, leading to 

an unclear risk of bias. 

 

Within the analysis domain, all eleven studies had insufficient outcome events per variable 

(EPV) (<20 EPV for model development studies and <100 for model validation studies) 

leading to a high risk of bias. Furthermore, no study reported on model calibration and only 

two studies 34,35 appropriately handled and reported on missing data. Prognostic predictive 

models were particularly at risk of inadequately accounting for, or reporting on, censored 

patients who were still hospitalised without the outcome (e.g. ICU admission) at the end of 

the study period. Only one study appropriately accounted for censored data by combining 

deep learning techniques with traditional Cox regression 33. 

 

3.3 Adherence to reporting standards 

The modified TRIPOD checklist comprised 25 terms, including 17 terms for reporting of 

methods and eight terms for results. Figure 2 describes the adherence of studies to reporting 
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standards, as assessed by the modified TRIPOD checklist. Studies reported on a median of 

48% (IQR: 48-59%) of relevant TRIPOD items, with 10 of 25 TRIPOD items having 50% 

adherence or less. Additionally, the following eight TRIPOD items had 25% adherence or 

less: reporting on treatments administered to study participants (item 5c), blinding of 

outcome and predictor assessment (items 6b and 7b), study size determination (item 8), 

reporting on characteristics of study participants, including proportions of participants with 

missing data (item 13b), reporting of unadjusted associations between predictors and 

outcomes in multivariable logistic regression models (item 14b), explanation of how to use 

the prediction model (item 15b), and calibration and method of calibration (adjusted item 

16b). 

 

3.4 Diagnosis 

Three studies investigated diagnostic AI predictive models; two studies developed models to 

predict the outcome of COVID-19 status at admission to the ED. Only one study was 

externally validated: Vasse et al. 37 developed a decision tree based on cellular population 

data using Random Forest for feature selection (accuracy=60.5%). Brinati et al.’s 35 Random 

Forest model (C-index=0.84, accuracy=82%) and Three-Way Random Forest model 

(accuracy=86%) achieved better performance but was validated using weaker k-fold cross-

validation. Both studies included leucocyte or a leucocyte sub-population count as a predictor 

in their final model. 

 

The third study 36 developed a decision tree for determining COVID-19 infection status in the 

ICU based on plasma inflammatory analyte features selected by a random forest classifier. 

On five-fold cross-validation, this classifier achieved an accuracy of 98%.  

 

3.5 Prognosis 

Most studies on prognostic AI predictive models (9/10, 90%) predicted ICU admission, 

mechanical ventilation, or a similar composite outcome of severe or critical illness. 

Collectively, such studies reported C-indices between 0.79-0.98. Liang et al’s 33 Deep 

Learning Survival Cox model had the largest training cohort of 1590 patients and achieved a 

C-index of 0.890, 0.852, and 0.967 when externally validated on cohorts of 801, 305, and 73 

patients from Wuhan, Hubei, and Guangzhou, respectively. Schwab et al.’s 34 support vector 

machine achieved a superior C-index of 0.98 on a weaker internal validation and a smaller 

sample size for testing model performance. 

 

The artificial neural network trained by Abdulaal et al. 27 using data collected at ED 

admission (C-index=0.901) was the only prognostic AI model developed to predict in-

hospital mortality in COVID-19 patients. 

 

Apart from predictive modelling, Durhan et al. 38 and Mushtaq et al. 39 evaluated the 

prognostic utility of two separate deep learning-based software that determine the normal 

lung proportion and total lung involvement, respectively. Scores obtained from each software 

achieved a C-index of 0.944 and 0.77 for predicting ICU admission, respectively. While 

multivariate predictive models were not developed, both studies were subject to similar issues 

in development and reporting, including ambiguous criteria for ICU admission, inappropriate 

handling of missing data using complete-case analysis, and lack of reporting on treatments 

received by participants and on blinding of the outcome.  

 

3.6 Other applications 
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Apart from diagnostic and prognostic applications, Belciug et al. 40 utilised an Artificial 

Immune System algorithm, a type of evolutionary AI algorithm, to optimise a queueing 

model for simulating hospital bed allocation in the ICU. The final model, intended as a tool 

for hospital managers, proposes an optimal admission rate and number of beds while 

balancing the costs associated with increasing capacity and refusing patients. The model was 

applied to ICU data published by the Ministry of Health of Italy and estimated a minimum 

rejection rate of 3.4% and 1.7% of patients requiring ICU admission from 13 March 2020 to 

23 March 2020 (average daily volume of 200 patients) and 23 March 2020 to 30 March 2020 

(average daily volume of 63 patients), respectively. However, these estimates were not 

validated. 

 

4 Discussion 
Our study is the first systematic review of AI applications for COVID-19 in intensive care 

and emergency settings. Applications were largely limited to diagnostic and prognostic 

predictive modelling, with only one study investigating a separate application of simulating 

ICU bed occupancy for resource optimisation. Due to high risk of bias, inadequate validation, 

or poor adherence to reporting standards in all reviewed studies, we have found no AI 

application for COVID-19 ready for clinical deployment in intensive care or emergency 

settings. 

 

Among the reviewed articles, we found a limited range of AI applications being studied 

within intensive care and emergency settings. An exploratory review identified early 

detection and diagnosis, resource management of hospital beds or healthcare workers, and 

automatic monitoring and prognostication as possible applications of AI for the COVID-19 

pandemic 17. However, current applications within the reviewed articles mainly comprised 

prognostic models for critical illness or diagnostic models to predict COVID-19 status, none 

of which are ready for clinical use. Only one preliminary study by Belciug et al. 40, which 

lacked validation, investigated allocative simulation and resource optimisation in the ICU, 

while no study investigated automatic monitoring or prognostication of COVID-19 patients. 

Belciug et al.’s study on ICU resource optimisation employed queueing theory, a 

mathematical field of study, and Artificial Immune Systems, an evolutionary AI algorithm 

that is uncommonly utilised in medical research. Unfamiliarity and the absence of general 

adoption of these methods within the medical community may contribute to the paucity of 

studies exploring less common but potentially impactful AI applications. As highlighted in 

previous literature 19,41, robust interdisciplinary collaboration and communication will be 

crucial in stimulating broader applications of AI for COVID-19 in intensive care and 

emergency settings, as well as the in medical literature at large. 

 

Assessment of AI predictive models also revealed significant deficiencies in model 

development, validation, and reporting. Unfortunately, these findings corroborate with earlier 

systematic reviews on predictive models for COVID-19 19 and in intensive care settings 21. 

Studies developing AI models should adhere to the TRIPOD reporting guidelines 22, 

PROBAST 23, or, ideally, recent AI-specific guidelines. These include the guidelines for 

transparency, reproducibility, ethics, and effectiveness (TREE) 42, CONSORT-AI 

(Consolidated Standards of Reporting Trials-Artificial Intelligence) 43, and SPIRIT-AI 

(Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) 
44. While the above guidelines provide comprehensive explanations and elaborations, we 

emphasise hereinafter several common problematic areas within the reviewed studies and 

recommendations for future studies.   
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The most common source of bias was an inadequate sample size, which was found in all 

studies. A low sample size introduces the risk of over-fitting and model optimism. A 

benchmark for the development of logistic regression models is 20 EPV 4,23,45, while models 

using AI algorithms like random forest, support vector machines, and neural networks may 

require up to 200 EPV to account for model optimism 46; a minimum of 100 EPV is 

recommended for validation studies 23. Missing data also contributed significantly to bias; 

only two studies appropriately handled and reported on missing data. Ideally, the proportion 

of missing data for each variable should be reported 22 and multiple imputation should be 

used to avoid bias from inappropriate exclusion of participants with missing data (i.e. 

complete-case analysis) 47-50. However, if complete-case analysis is used, authors should 

provide a comparative analysis of model performance with and without excluded participants 

to facilitate the judgement of bias from exclusion. For prognostic studies, studies often failed 

to appropriately account for censored patients (e.g. neither discharged nor admitted to the 

ICU). Censored patients should be handled using a time-to-event analysis such as Cox 

regression; inappropriate exclusion of these patients may lead to a skewed dataset that 

includes fewer patients without the outcome, introducing bias into the model 23. For 

diagnostic studies, bias was often introduced by using the reverse transcription-polymerase 

chain reaction (RT-PCR) test as the ground truth or gold-standard for COVID-19 diagnosis, 

despite potentially poor sensitivity 51. We recommend repeat RT-PCR testing to minimise the 

likelihood of false-negative tests in both diagnostic model development and validation 

studies.  

 

Several key areas for improvements in reporting were identified in our study, including 

treatments received by participants, blinding, and study size determination. In particular, no 

study reported on calibration, a crucial yet often unevaluated measure of model performance 
52. We recommend assessing calibration using the calibration hierarchy described by Van 

Calster et al. 53 instead of the commonly used Hosmer-Lemeshow test 54. This avoids 

artificial stratification of patients into risk groups and other limitations associated with the 

Hosmer-Lemeshow test 52.  

 

Studies should also endeavour to validate their data using stricter validation techniques. 

Studies with smaller sample sizes should utilise re-sampling techniques, such as 

bootstrapping or k-fold cross-validation. Studies with larger sample sizes should use a non-

random split of data (e.g. by location or time) or perform external validation on independent 

data, for example, from a different study 22,23,55. Validation using the same data for model 

development is inappropriate as it only provides apparent model performance. Similarly, 

validation using a random split of data, such as a ‘train-test’ split, has lower power than re-

sampling techniques 22,56 and should be avoided.  

 

In addition to the limitations in quality and reporting of AI applications, the narrow scope of 

applications being investigated naturally leads to fewer AI applications eventually being 

suitable for clinical use. While AI has been practically applied for the identification of 

candidate drugs for drug repurposing 57 and contact tracing 18, its application and utility for 

COVID-19 in clinical settings have been insignificant to date. Several studies have employed 

AI techniques for the detection and classification of COVID-19 images 20, however, none 

have been validated as a clinical diagnostic adjunct in the ED. Factors that may contribute to 

this lack of clinical validation include the high risk of bias within existing models 19,58, 

limited applicability of radiographic images for discriminating between multiple differential 

diagnoses, and the high prevalence of asymptomatic radiographs in patients who present soon 

after the onset of symptoms 59,60. Notwithstanding the high risk of bias and poor reporting of 
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the reviewed AI models, AI algorithms tend to produce uninterpretable “black box” 

predictive models, which may lead to decreased acceptability of both diagnostic and 

prognostic AI applications amongst clinicians and hospital administrators. Some studies 
32,36,37 have attempted to overcome this by using AI techniques for feature selection and 

presenting the final model as a decision tree or scoring system with clearly defined input 

variables. However, such simplifications of AI models curtail performance and limit the 

utility of the final model.  

 

The above barriers to the validation and integration of AI in clinical settings may preclude 

significant contribution of AI to combatting the COVID-19 pandemic in intensive care units 

and emergency departments in the near future. However, improvements in the development, 

validation, and reporting of AI applications will be critical in advancing the applicability and 

acceptance of these systems in clinical settings in later phases of the COVID-19 pandemic 

and in future global health crises. Encouragingly, leading journals such as the Lancet family 

of journals have committed to enforcing AI-specific guidelines such as CONSORT-AI and 

SPIRIT-AI for submissions with an AI intervention 61. However, concerted effort is needed 

from the entire research community, including journals, editors, and authors, to normalise the 

use of these guidelines and checklists. Such changes will encourage improved development, 

reporting, and eventual clinical uptake of future AI applications. 

 

Limitations 

The results from our systematic review should be considered along with the following 

limitations. Firstly, our search excluded non-peer-reviewed articles which may neglect the 

most recent literature but ensures a baseline quality of included studies. Secondly, we may 

have missed some relevant articles despite using a comprehensive search strategy due to 

publication in journals not indexed in the searched databases and variations in terminology 

used to describe AI algorithms and intensive care and emergency settings. We may also have 

missed AI applications that were deployed without publication in scientific literature; in 

particular, given the intense media attention and the pressure to deploy solutions quickly, AI 

solutions developed by governments and industry are more likely to be published in mass 

media formats rather than scientific journals. Thirdly, assessment according to PROBAST 

and, to a lesser extent, TRIPOD reporting guidelines still rely on a degree of subjectivity, 

despite comprehensive explanations and elaborations. Hence, other reviewers may arrive at 

slightly differing results. Lastly, the unprecedented volume of research on COVID-19 has 

resulted in a rapidly evolving body of literature. Hence, our findings are merely descriptive of 

the current state of affairs, which may change with welcome improvements and additions to 

the medical literature.  

 

5 Conclusions 

Despite widespread interest in novel technologies for the COVID-19 pandemic, our 

systematic review of the literature reveals that current AI applications were limited in both 

the range of applications and clinical applicability. Several significant issues in the 

development, validation, and reporting of AI applications undermine safe and effective 

implementation of these systems within intensive care units or emergency departments. The 

integration of new AI-specific reporting guidelines like CONSORT-AI and SPIRIT-AI into 

research and publication processes will be a vital step in creating future AI applications that 

are clinically acceptable in the current pandemic, future pandemics, and within the wider 

medical field. We also emphasise the importance of closer interdisciplinary collaboration 

between AI experts and clinicians. 
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Table 1 – Main study characteristics 

Author 

[referen

ce] 

Study 

type 

Countr

y of 

study 

popula

tion 

Relevant 

setting 

of 

collected 

data 

(ED, 

ICU, or 

Prehospi

tal) 

Outcome 

predicted 

Sa

mpl

e 

size 

of 

trai

nin

g 

dat

aset 

Sanple size 

of test 

dataset 

Model 

performancea 

TR

IP

OD 

clas

sific

atio

nb 

Diagnostic 

Brinati et 

al.35 

Retrospe

ctive  
Italy ED 

Positive COVID-19 

status 
279 

N/A (cross-

validation) 

Random forest (C-

index=0.84) 
1b 

Fraser et 

al.36 

Prospecti

ve  
Canada ICU 

Positive COVID-19 

status 
20 

N/A (cross-

validation) 

Decision tree 

(accuracy=98%) 
1b 

Vasse et 

al.37 

Retrospe

ctive 
France ED 

Positive COVID-19 

status 
744 2390 

Decision tree 

(Sensitivity=60.5%, 

Specificity=89.7%) 

2b 

Prognostic 

Abdulaal 

et al.27 

Retrospe

ctive 

United 

Kingdo

m 

ED In-patient mortality 318 80 
Neural network (C-

index=0.901) 
2a 

Assaf et 

al.28 

Retrospe

ctive 
Israel ED; ICU 

Critical illness 

(mechanical 

ventilation, ICU 

admission, multi-

organ failure, 

and/or death) 

162 
N/A (cross-

validation) 

Random forest (C-

index=0.93) 
1b 

Burdick 

et al.29 

Prospecti

ve  

United 

States 
ICU 

Decompensation 

leading to 

mechanical 

ventilation within 

24h 

49,6

23  
197 

Gradient boosting 

machine (C-

index=0.866) 

3 

Burian et 

al.30 

Prospecti

ve 

Germa

ny 
ICU ICU admission 65 

N/A (cross-

validation) 

Random forest (C-

index=0.79) 
1b 

Cheng et 

al.31 

Retrospe

ctive 

United 

States 
ICU 

ICU admission 

within 24 hours 
401 521 

Random forest (C-

index=0.799) 
2a 

Durhan 

et al.38 

Retrospe

ctive  
Turkey ICU 

ICU admission 

(software evaluates 

the extent of normal 

lung parenchyma) 

90 N/A 

Deep learning 

software (C-

index=0.944) 

N/A 

Jackson 

et al.32 

Retrospe

ctive 

United 

States 
ICU 

Invasive 

mechanical 

ventilation 

297 N/A 

Fast-and-frugal 

decision tree 

(accuracy=70%) 

1a 

Liang et 

al.33 

Retrospe

ctive 
China ICU 

Critical illness (ICU 

admission, invasive 

ventilation, death) 

159

0 
710 

Deep learning 

survival Cox model  

(C-index=0.852-

0.967) 

2b 

Mushtaq 

et al.39 

Prospecti

ve  
Italy ICU 

ICU admission 

(software evaluates 

the extent of lung 

opacity and 

consolidation) 

697 N/A 

Deep learning 

software based on 

convolutional 

neural networks (C-

index=0.77) 

N/A 

Schwab 

et al.34 

Retrospe

ctive 
Brazil ICU ICU admission 391 167 

Support vector 

machine (C-

index=0.98) 

2a 

Resource optimisation 
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COVID-19: coronavirus disease 2019, ED: Emergency Department, N/A: Not applicable, ICU: 

Intensive Care Unit 

a: Performance of the best performing model is reported if multiple models were constructed. 

Only the performance on the strictest form of validation is reported. A range is given if the 

model was validated on multiple datasets. 

b: TRIPOD classification according to strictest validation used. 1a: Performance is evaluated 

directly on the same data; 1b: Performance and optimism of the model are evaluated using re-

sampling techniques, such as bootstrapping or k-fold cross-validation; 2a: Model development 

and performance evaluation are done separately on a random split of the data, such as a train-

test split; 2b: Model development and performance evaluation is done separately on a non-

random split of the data by time, location, or both; 3: Model development and performance 

evaluation are conducted on separate data sets, for example, from different studies. 
 

Table 2 – PROBAST (prediction model risk of bias assessment tool) assessment of 

predictive modelling studies 

Author 
Risk of bias according to PROBAST domain 

Participants Predictors Outcomes Analysis Overall 

Diagnostic 

Brinati et al.35 Low Low Low High High 

Fraser et al.36 Low Unclear Low High High 

Vasse et al.37 Low Low Low High High 

Prognostic 

Abdulaal et al.27 Low Low Low High High 

Assaf et al.28 Low Low Unclear High High 

Burdick et al.29 Low Low Unclear High High 

Burian et al.30 Low Low Low High High 

Cheng et al.31 Low High Unclear High High 

Jackson et al.32 Low High High High High 

Liang et al.33 Unclear High High High High 

Schwab et al.34 Unclear Unclear Unclear High High 

Vasse et al.37 Low Low Low High High 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Belciug 

et al.40 

 

Retrospe

ctive 
Italy ICU 

Developed a model 

for simulating ICU 

bed occupancy 

N/A N/A 

Artificial immune 

system algorithm 

(no accuracy 

measure estimated) 

N/A 
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Figure 1: PRISMA flow diagram 
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Figure 2: (a) Number of TRIPOD items reported per study and (b) Proportion of studies 

reporting on each TRIPOD item 
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