Abstract
Viral genome sequencing can address key questions about SARS-CoV-2 evolution and viral transmission. Here, we present an integrated system of genomic surveillance in the German city of Düsseldorf, combining a) viral surveillance sequencing, b) genetically based identification of infection clusters in the population, c) analysis of hospital outbreaks, d) integration of public health authority contact tracing data, and e) a user-friendly dashboard application as a central data analysis platform. The generated surveillance sequencing data (n = 320 SARS-CoV-2 genomes) showed that the development of the local viral population structure from August to December 2020 was consistent with European trends, with the notable absence of SARS-CoV-2 variants 20I/501Y.V1/B.1.1.7 and B.1.351 until the end of the local sampling period. Against a background of local surveillance and other publicly available SARS-CoV-2 data, four putative SARS-CoV-2 outbreaks at Düsseldorf University Hospital between October and December 2020 (n = 44 viral genomes) were investigated and confirmed as clonal, contributing to the development of improved infection control and prevention measures. An analysis of the generated surveillance sequencing data with respect to infection clusters in the population based on a greedy clustering algorithm identified five candidate clusters, all of which were subsequently confirmed by the integration of public health authority contact tracing data and shown to be represent transmission settings of particular relevance (schools, care homes). A joint analysis of outbreak and surveillance data identified a potential transmission of an outbreak strain from the local population into the hospital and back; and an in-depth analysis of one population infection cluster combining genetic with contact tracing data enabled the identification of a previously unrecognized population transmission chain involving a martial arts gym. Based on these results and a real-time sequencing experiment in which we demonstrated the feasibility of achieving sample-to-turnaround times of <30 hours with the Oxford Nanopore technology, we discuss the potential benefits of routine ultra-fast sequencing of all detected infections for contact tracing, infection cluster detection, and, ultimately, improved management of the SARS-CoV-2 pandemic.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Jürgen Manchot Foundation, the DFG (Award 428994620), and the BMBF (Award 031L0184B and via the B-FAST project).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved by the ethics committee of the Medical Faculty of Heinrich Heine University Düsseldorf (#2020-839).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Viral genome sequences are available on GISAID. Accessions are listed in Supplementary Table 2. All source code for the dashboard is available under the MIT license and can be downloaded from https://github.com/DiltheyLab/SARS-CoV2-Dashboard/releases/tag/v1.0