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Abstract:  

Background: Brain injury is pathophysiologically diverse, with many cases presenting with 

mixed pathologies. Utilizing objective measures to investigate the pathophysiology of injury 

would aid in understanding prognosis and targeting therapeutics. Objective: The goal of this 

study is to develop a traumatic brain injury classification scheme based on open source deep 

learning computer tomography (CT) analysis and the two serum biomarkers, glial fibrillary 

acidic protein (GFAP) and ubiquitin carboxy-terminal L1 (UCH-L1). Methods: Machine 

learning was utilized to develop a novel algorithm capable of classifying the type of brain injury 

based on a CT scan analysis algorithm and GFAP and UCH-L1 concentrations.  Injury  was 

stratified into one of four groups: spontaneous hemorrhage, oxygen deprivation, trauma resulting 

in vascular injury or high-velocity trauma with negative CT scan. Outcomes: 100 research 

subjects were enrolled. Using a combination of CT analysis and serum markers, the subjects with 

CT positive trauma were distinguishable from those with spontaneous hemorrhage, ischemic 

injury, CT negative trauma and controls with AUCs of 0.96, 0.99., 0.98 and 1.00 respectively.  

Ischemic injury was distinguishable from CT positive trauma with an AUC of 0.98.  All forms of 

brain injury could be distinguished from controls with AUC = 1.00.  Discussion: An open source 

algorithmic CT scan analysis algorithm and serum biomarkers accurately classified the nature of 

brain injury across major etiologies. Further implementation of such algorithms and addition of 

other objective measures will enable better prognostication of injury and improved development 

of therapeutics. ______________________________________________________________ 
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Introduction  

The objective classification of brain injuries using markers for the heterogeneous 

pathophysiology indicative of different mechanistic forces of injury remains a challenge. 

Currently, the primary assessors used to classify brain injuries in an acute care setting are the 

patient’s medical history, physical examination using measures such as the Glasgow Coma Scale 

(GCS), and radiographic imaging with computed tomography (CT).   However, history and 

physical examination are impacted by confounding factors such as intoxication, comorbidities, 

language barriers, cultural norms and examiner biases.  Conventionally read CT scans do not 

provide a quantitative measure of injury.  

 

The diverse pathophysiologic mechanisms that contribute to neurological damage in brain injury 

can be assessed with serum biomarkers to create specific injury profiles of traumatic and 

nontraumatic brain injuries.1 Glial fibrillary acidic protein (GFAP) and ubiquitin c-terminal 

hydrolase-L1 (UCH-L1) are serum based biomarkers with neurologic specificity1,2 and the 

potential to improve classification of injury. For example, axonal shearing may result in 

immediate release of cellular contexts during a traumatic injury, in contrast to a delayed release 

of cellular contents seen in oxygen deprivation injuries; a result of slower apoptosis.1,3 This 

information is useful in predicting the most effective therapeutic interventions. 

 

The objective of the current study was to create an objective classification scheme for 

heterogeneous brain injury.  UCH-L1 and GFAP concentrations were assessed in the acute 

period of less than 32 hours after injury in order to differentiate among the following five groups: 

healthy controls, CT negative TBI with high-velocity trauma (CTN-HVT), oxygen deprivation 

injuries from cardiac or respiratory arrest (CA/RA), spontaneous hemorrhage, and traumatic 

injury resulting in a CT scan positive for vascular injury. The 32 hour time point was chosen 

based on previous work demonstrating GFAP and UCH-L1 concentrations during this time 

frame can be used to accurately predict CT positive versus negative scans among patients with 

traumatic brain injuries.4  BLAST-CT, an open source, automated deep learning CT analysis 

algorithm was added to improve accuracy of classification.5 We hypothesized that each group 

would have a different biomarker profile because the mechanisms and magnitude in which these 

biomarkers are released will vary across groups. Successful identification of the differences in 
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these groups will allow for a rapid, accurate classification schema that will optimize triage and 

treatment times as well as minimize the need for unnecessary medical procedures and potentially 

improve long term patient outcome. 

 

Materials and Methods  

Institutional Review Board approval was obtained for prospective enrollment of patients who 

presented to the emergency department of a level-1 trauma center over a one year period.  

Subjects were consented if they were able to pass the Galveston Orientation and Amnesia Test 

(GOAT) and met criteria for providing informed consent. If they were not able to provide 

informed consent initially, a legally authorized representative was consented and the subject was 

reconsented once able. Only in situations where the subject expired in the hospital and family or 

a legally authorized representative could not be contacted was informed consent waived.  

Informed consent or waiver of consent was obtained prior to data inclusion. Detailed description 

of study protocol and blood draw analysis can be found in supplemental materials. 

Analysis and plotting were performed using MATLAB (R2018b). Only samples with both valid 

UCH-L1 and GFAP biomarker results were included in the analysis. Biomarker levels below the 

detectable limit prior to transformation were assigned a value of zero, but included in the 

analysis. Biomarker concentrations of UCH-L1 and GFAP were taken from the same patient’s 

blood draw and were log transformed for development of the machine learning algorithm. 

Biomarker levels above the detectable limit (50,000 pg/ml for GFAP and 20,000 pg/ml for UCH-

L1) were included in analysis as equal to the upper limit. Only six GFAP and three UCH-L1 

blood draws had concentrations above the detectable limit. 

 

Differences in mean and median raw concentrations between traumatic injury, spontaneous 

hemorrhage (SpontHem), oxygen deprivation (CA/RA), Computer tomography negative- high-

velocity trauma (CTN-HVT) and control groups at all timepoints measured within 32 hours were 

assessed using the t-test and Wilcoxon rank-sum test. Concentrations were log-transformed to 

achieve normality prior to the plotting and data analyses.  
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Classification based on the integrated features of serum biomarkers and CT scan images was 

performed using a pre-trained deep learning model (BLAST-CT) based on a convolutional neural 

network.5 This algorithm automatically generates the voxel-wise segmentation of 4 lesion-types: 

intraparenchymal hemorrhage, extra-axial hemorrhage, perilesional edema and intraventricular 

hemorrhage. BLAST-CT identified the regions of the four lesion-types and quantified their 

respective volumes by counting the total segmented voxels. The segmentation volumes were 

normalized by the total head volume in each scan. 

 

Machine Learning 

Support Vector Machine (SVM)6  was utilized for the classification of the patient samples in our 

prediction tasks (see supplementary methods).  We performed leave-one-out cross-validation to 

evaluate the prediction performance of SVM.  In the evaluation, we hold out one sample at a 

time as the test data and treat the rest samples as training data to obtain the SVM model for 

classifying the held-out sample in the test data.  We repeat the procedure on every sample and 

report the overall test accuracy in Table 4.  We measured the classification accuracy using the 

Area Under the receiver operator Curve (AUC)7 denoting the number of true positives, true 

negatives, false positives and false negatives as TP, TN, FP, and FN respectively.  AUC 

measures the area under the receiver operating characteristic curve which plots the true positive 

rate (TPR) and false positive rate (FPR) at different classification thresholds.  

 

Results 

100 patients with matched GFAP and UCH-L1 concentrations were analyzed, 35 within the 

trauma with a head CT positive for vascular injury group, 10 within the spontaneous hemorrhage 

(SpontHem) group, 6 within the oxygen deprivation due to cardiac arrest or respiratory arrest 

(CA/RA) group, 10 within the computed tomography negative -high velocity trauma (CTN-

HVT) group, and 39 within the control group (table 1). Log-transformation was performed on the 

concentrations of GFAP and UCH-L1 before conducting data analyses.  Data collection was 

continuous except for the exclusion of one patient, who sustained a cardiac arrest resulting in a 

high speed collision and thus had a high velocity trauma confounded with an anoxic injury.     
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We first explored whether a single biomarker could separate the five different groups. The 

boxplot for each of the five groups is shown in Fig. 1. We observed a larger range in GFAP 

concentrations (Fig. 1A) compared to UCH-L1 (Fig. 1B). We performed one-way ANOVA 

analysis to test the null hypothesis that the mean is the same for all the five groups based on the 

GFAP and UCH-L1 concentrations, respectively. Next, we performed t-test and Wilcoxon rank-

sum test on each of the ten combinations of the five groups to test whether using a single marker 

can distinguish each pair of groups. The p-values are shown in Table 2 and Table 3. Comparing 

with the controls, every one of the four subject groups has significantly different means (p < 

0.01; t-test) and medians (p < 0·01; rank-sum test) on either GFAP or UCH-L1 concentrations. 

 

We observed that samples in CTN-HVT can be distinguished from controls using either GFAP 

or UCH-L1. We performed t-test and Wilcoxon rank-sum tests to test how significant the 

difference on each single biomarker is between the two groups. The small p values shown in 

Tables 2 and 3 suggest the samples of CTN-HVT have significantly different means and 

medians. 

 

We explored whether the GFAP and UCH-L1 concentrations can be combined as predictors to 

classify the samples in each pair of the five different groups using machine learning with the 

Support Vector Machine (SVM).  The concentrations of GFAP and UCH-L1 for each patient 

sample within the four subject groups and controls were plotted in Fig. 2.  We measured the 

classification accuracy with the Area Under the receiver operator Curve (AUC) scores which are 

shown in Table 4. One can observe that the subjects with trauma, SpontHem and CR/RA could 

be distinguished from controls with AUC = 1·00. In the comparisons within the four subject 

groups, the AUCs are all larger than 0·95. The high AUC of 0·93 suggest that the biomarkers 

GFAP and UCH-L1 can jointly distinguish the CTN-HVT samples from controls.  

 

We next explored whether the lesion volumes derived from the CT scan images together with the 

GFAP and UCH-L1 concentrations can be combined as predictors to classify the samples in each 

pair of the five different groups using SVM. We measured the classification accuracy with the 

receiver operator curve (AUC) scores which are shown in Table 5. We observe that including the 

lesion volumes as additional predictors can significantly improve the classification accuracy.   
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Discussion 

We evaluated serum biomarker concentrations of ubiquitin c-terminal hydrolase-L1 (UCH-L1) 

and glial fibrillary acidic protein (GFAP) in the acute period of traumatic brain injury (<32 hours 

of injury) to differentiate between five different groups of patients: uninjured controls, CT-

negative injury with high-velocity trauma (inertial injury), oxygen deprivation injury (CA/RA), 

spontaneous hemorrhage (non traumatic injury) and CT-positive vascular traumatic injury. 

Evaluation of two serum biomarkers together was able to differentiate between traumatic injuries 

and non traumatic injuries, due to a range of causes. Biomarker profiles differ amongst the 

groups because the mechanisms through which the biomarkers are being released and to what 

magnitude varies. Oxygen deprivation led to the highest concentrations of UCH-L1 across all 

types of injuries examined and had lower levels of GFAP compared to the trauma and 

spontaneous hemorrhage groups.  

 

GFAP and UCH-L1 serum levels measured immediately after a traumatic injury correlated with 

increased likelihood of poor outcomes six months post injury. Previously, GFAP alone was able 

to accurately predict traumatic injuries and no improvement was found by adding UCH-L1 

concentrations to the analysis.8 GFAP and UCHL-1 concentrations were also assessed in patients 

with mild TBI.  These biomarkers were increased in patients with unfavorable short-term 

outcomes. These levels were significant within 6 hours post injury.9 

 

Concentrations of GFAP were more elevated for spontaneous hemorrhage as compared to 

injuries caused by trauma. Conversely, UCH-L1 concentrations were modestly increased for 

trauma-induced injuries in comparison to spontaneously presenting hemorrhages. Increased 

GFAP concentrations may also be due to larger volumes of blood found in spontaneous 

hemorrhages. Patients who experience multiple TBIs may potentially develop autoantibodies 

against GFAP that may cause reduced levels of GFAP with subsequent injuries.10  Thus we 

would caution against use of a single marker in classifying injury. 

 

Consistent with previous studies, we were able to accurately predict an ischemic stroke from 

hemorrhagic stroke, where immediate cell death results in a rise in GFAP concentration in 

individuals who experienced a hemorrhagic stroke.11 GFAP levels from ischemic patients were 
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still significantly elevated compared to healthy controls. However, we found robust serum levels 

of UCH-L1 from ischemic injury, enabling better classification, when both biomarkers are 

combined. We demonstrate improved predictive potential using both UCH-L1 and GFAP as 

shown in Figure 2 with AUC of 0·93. The AUC values suggest a reasonable model to classify 

brain injury.  

 

Addition of an open source, automated CT scan analysis (BLAST CT) to aid in stratification of 

injury by etiology resulted in additional improvement in differentiating traumatic injuries from 

those occurring from a spontaneous hemorrhage (AUC of 0.83 in table 1 and 0.96 in table 2). 

BLAST-CT identifies three types of hemorrhage, which when assessed in conjunction with 

concentration of the two serum biomarkers further improved the algorithm (table 5). These 

improvements most likely are due to the inclusion of lesion volume as well as identification of 

specific hemorrhage type.  

 

In this study, we focused on blood draws taken within 32 hours of presentation to the emergency 

department.  Both biomarkers are known to have different kinetic properties due to their location 

and release within the body. UCH-L1 peaks early and decreases rapidly in intracranial lesions, 

and GFAP increases after 4 hours and declines at 16 hours.12 Previously, GFAP and UCH-L1 

concentrations acquired within 48 hours post injury were capable of distinguishing mass lesions 

from diffuse injuries. Analysis of concentrations up to seven days post injury did not increase 

predictive power to differentiate between injury type.13 A major challenge for diagnosing 

traumatic brain injuries is that patients can present with a wide range of symptoms and/or have 

altered consciousness due to other processes such as concomitant medications, intoxication, and 

comorbid injuries. Furthermore, some symptoms can be milder and harder to differentiate from 

other disorders, leading patients to delay presentation to the emergency department until they 

experience more severe symptoms. We found these two biomarkers, along with algorithmic CT 

analysis, to improve classification of injuries of different etiology with little dependence on the 

timing of the blood draw when taken within 32 hours of presentation to the emergency 

department.  
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Conclusion 

The findings of this study demonstrate the utility of using two serum biomarkers and algorithmic 

analysis of CT scan for classification of diverse brain injuries. This study is limited to small 

sample sizes for each type of pathology and necessitates investigation of larger sample sizes to 

overcome potential sampling bias. Our future goal is to perform clinical validation studies using 

the serum biomarker prediction algorithm developed in this smaller, developmental study on 

larger dataset such as the Transforming Research and Clinical Knowledge in Traumatic Brain 

Injury initiative (TRACK-TBI).15 Further, the predictive power of the biomarkers was only 

assessed by acute clinical outcomes from known etiologies.   In future work, we will add 

additional objective markers, such as eye tracking, to enable assessment of severity in addition to 

type of injury.  Information from these studies may also elucidate biological differences in race 

and sex that are known to exist across the spectrum of brain injuries. These diagnostic tools will 

improve the quality of life for patients, give guidance to families of the injured, and create 

objective measures for physicians. 
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Funding and Disclosures 

Dr. Samadani reports grants from Abbott Diagnostic Laboratories, grants from Minnesota State 

Office of Higher Education (#176016),  during the conduct of the study; consultation fees from 

Abbott Diagnostic Laboratories, speaker honoraria from The American Association of 

Neuroscience Nurses, Cottage Health, Google Inc., Integra Corp, Medtronic Corp, National 

Neurotrauma Society, Mayo Clinic, Minnesota, Texas, Louisiana and Wisconsin Coaches 

Associations, the National Football League and USA Football, and equity in Oculogica Inc. 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2021. ; https://doi.org/10.1101/2021.02.13.21250776doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.13.21250776
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

References 
 

1. McMahon PJ, Panczykowski DM, Yue JK, et al. Measurement of the glial fibrillary acidic 
protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic 
brain injury compared to computed tomography and magnetic resonance imaging. J 
Neurotrauma. 2015;32(8):527-533. 

2. Gan ZS, Stein SC, Swanson R, et al. Blood Biomarkers for Traumatic Brain Injury: A 
Quantitative Assessment of Diagnostic and Prognostic Accuracy. Front Neurol. 
2019;10:446. 

3. Agoston DV, Shutes-David A, Peskind ER. Biofluid biomarkers of traumatic brain injury. 
Brain Inj. 2017;31(9):1195-1203. 

4. Mahan MY, Thorpe M, Ahmadi A, et al. Glial Fibrillary Acidic Protein (GFAP) 
Outperforms S100 Calcium-Binding Protein B (S100B) and Ubiquitin C-Terminal 
Hydrolase L1 (UCH-L1) as Predictor for Positive Computed Tomography of the Head in 
Trauma Subjects. World Neurosurg. 2019;128:e434-e444. 

5. Monteiro M, Newcombe VFJ, Mathieu F, et al. Multiclass semantic segmentation and 
quantification of traumatic brain injury lesions on head CT using deep learning: an 
algorithm development and multicentre validation study. Lancet Digit Health. 
2020;2(6):e314-e322. 

6. Corinna Cortes VV. Support-vector networks. Machine Learning. 1995(20):273-297. 
7. Fawcett T. An introduction to ROC analysis. Pattern recognition letters 2006;27(8):861-

874. 
8. Anderson TN, Hwang J, Munar M, et al. Blood-based biomarkers for prediction of 

intracranial hemorrhage and outcome in patients with moderate or severe traumatic 
brain injury. J Trauma Acute Care Surg. 2020;89(1):80-86. 

9. Lewis LM, Papa L, Bazarian JJ, Weber A, Howard R, Welch RD. Biomarkers May 
Predict Unfavorable Neurological Outcome after Mild Traumatic Brain Injury. J 
Neurotrauma. 2020. 

10. Zhang J, Zhang CH, Lin XL, Zhang Q, Wang J, Shi SL. Serum glial fibrillary acidic 
protein as a biomarker for differentiating intracerebral hemorrhage and ischemic stroke 
in patients with symptoms of acute stroke: a systematic review and meta-analysis. 
Neurol Sci. 2013;34(11):1887-1892. 

11. Luger S, Witsch J, Dietz A, et al. Glial Fibrillary Acidic Protein Serum Levels Distinguish 
between Intracerebral Hemorrhage and Cerebral Ischemia in the Early Phase of Stroke. 
Clin Chem. 2017;63(1):377-385. 

12. Papa L, Brophy GM, Welch RD, et al. Time Course and Diagnostic Accuracy of Glial and 
Neuronal Blood Biomarkers GFAP and UCH-L1 in a Large Cohort of Trauma Patients 
With and Without Mild Traumatic Brain Injury. JAMA Neurol. 2016;73(5):551-560. 

13. Posti JP, Takala RS, Runtti H, et al. The Levels of Glial Fibrillary Acidic Protein and 
Ubiquitin C-Terminal Hydrolase-L1 During the First Week After a Traumatic Brain Injury: 
Correlations With Clinical and Imaging Findings. Neurosurgery. 2016;79(3):456-464. 

14. Yue JK, Vassar MJ, Lingsma HF, et al. Transforming research and clinical knowledge in 
traumatic brain injury pilot: multicenter implementation of the common data elements for 
traumatic brain injury. J Neurotrauma. 2013;30(22):1831-1844. 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2021. ; https://doi.org/10.1101/2021.02.13.21250776doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.13.21250776
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

Figure Legends 

 

Figure 1. Box plots depicting serum marker concentrations of all blood draws taken from the 

five patient groups assessed by only a single biomarker. A. GFAP concentrations (log-

transformed pg/mL) depict differences between brain injury groups: Trauma (blue), Spontaneous 

Hemorrhage (SpontHem shown in red), Cardiac or Respiratory Arrest (CA/RA shown in 

yellow), and CT-negative with high-velocity trauma (CTN-HVT shown in purple). B. UCH-L1 

concentrations (log-transformed pg/mL) from patients with matching blood draw time points 

from GFAP concentrations. Significance shown in the plot title by P-value for one-way ANOVA 

analysis for each separate biomarker to stratify patient groups by injury. GFAP and UCH-L1 

concentrations were transformed and log normalized.  

 

Figure 2. Scatter plot of GFAP and UCH-L1 concentrations from all patient samples show the 

four separate concentration profiles used by the SVM to predict etiology in comparison to the 

uninjured control samples. Uninjured controls (shown as green diamonds), Traumatic injury 

(shown as blue circles), Spontaneous hemorrhage (SpontHem show as red triangles), Oxygen 

deprivation from cardiac or respiratory arrest (CA/RA shown as yellow asterisks), and computed 

tomography negative with high-velocity trauma (CTN-HVT shown as purple squares). Log-

transformed pg/mL concentrations are shown on scatter plot axes.   
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Table 1: Study demographics of patient groups stratified by injury type 

 

Characteristic Total Traumatic 

Hemorrhag

e 

CT (-) High 

Velocity 

Trauma 

Spontane

ous 

Hemorrh

age 

Cardiac/ 

Respiratory 

Arrest 

Healthy 

Control 

Subjects (n) 100 35 10 10 6 39 

Age in years (range, mean) 16-87, 46·5 22-85, 53·3 17-77, 42·7 45-80, 59·9 27-87, 51·5 16-65, 37·1 

Sex 

Female 45 (45%) 9 (26%) 2 (20%) 3 (30%) 2 (33%) 29 (74%) 

Male 55 (55%) 26 (74%) 8 (80%) 7 (70%) 4 (67%) 10 (26%) 

Race 

African American 22 (22%) - 2 (20%) 3 (30%) 1 (17%) 16 (41%) 

Asian 1 (1%) - 1 (10%) - - - 

Caucasian 61 (61%) 28 (80%) 7 (70%) 5 (50%) 4 (67%) 17 (44%) 

Hispanic or Latino 7 (7%) 2 (6%) - 1 (10%) - 4 (10%) 

Mixed Race 1 (1%) - - - - 1 (3%) 

Native American 3 (3%) 2 (6%) - - 1 (17%) - 

Unknown 5 (5%) 3 (9%) - 1 (10%) - 1 (3%) 

Mechanism of Injury 

Assault 6 (6%) 2 (6%) 4 (40%) - - - 

Bicyclist Hit by Vehicle 7 (7%) 3 (11%) 4 (40%) - - - 

Incidental Fall 17 (17%) 17 (47%) - - - - 

Motor Vehicle Crash 10 (10%) 8 (22%) 2 (20%) - - - 

Pedestrian Struck by 

Vehicle 
1 (1%) 1 (3%) - - - - 

Other 20 (20%) 4 (11%) - 10 (100%) 6 (100%) - 

None 39 (38%) - - - - 39 (100%) 

GCS on Arrival 

13 – 15 69 (69%) 17 (48%) 10 (100%) 3 (30%) - 39 (100%) 
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8 – 12 3 (3%) 3 (9%) - - - - 

7 or less 28 (28%) 15 (43%) - 7 (70%) 6 (100%) - 

Loss of Consciousness Duration 

0-30 mins 10 (10%) 8 (23%) 2 (20%) - - - 

30 mins – 24 hrs 7 (7%) 7 (20%) - - - - 

Greater than 24 hrs 5 (5%) 1 (3%) - 3 (30%) 1 (17%) - 

None 52 (52%) 5 (14%) 5 (50%) 3 (30%) - 39 (100%) 

Unknown 26 (26%) 14 (40%) 3 (30%) 4 (40%) 5 (84%) - 

 

*GCS: Glasgow Coma Scale 
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Table 2. Comparison between types of injury: p-values of t-test (GFAP/UCH-L1)  

   

 
SpontHem CA/RA CTN-HVT Control 

Trauma 3·98E-03/2·96E-02 4·80E-06/4·35E-05 7·53E-12/5·44E-04 1·05E-30/2·21E-16 

SpontHem  1·40E-06/1·25E-07 5·64E-12/1·29E-01 4·05E-26/5·49E-09 

CA/RA   1·04E-01/1·15E-09 1·01E-07/2·55E-22 

CTN-HVT    8·04E-08/7·80E-06 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2021. ; https://doi.org/10.1101/2021.02.13.21250776doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.13.21250776
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Comparison between types of injury: p-values of Wilcoxon rank-sum test 

(GFAP/UCH-L1) 

 SpontHem CA/RA CTN-HVT Control 

Trauma 2·88E-03/2·16E-02 2·57E-05/6·97E-05 2·81E-09/4·09E-04 4·92E-17/2·45E-13 

SpontHem  1·14E-04/9·61E-06 4·79E-07/1.17E-01 1·77E-09/1·90E-06 

CA/RA   3·51E-01/5·48E-06 6·58E-07/3·85E-08 

CTN-HVT    3·76E-06/9·17E-05 
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Table 4. Classification with Support Vector Machine (SVM) based on the combinations of UCH-L1 

& GFAP Area Under the Curve (AUC) 

  SpontHem CA/RA CTN-HVT Control 

Trauma 0·83 (0.71, 0.95) 0·95 (0.88, 1.00) 0·97 (0.92, 1.00) 1·00 

SpontHem   1·00 1·00 1·00 

CA/RA     0·98 (0.91, 1.00) 1·00 

CTN-HVT       0·93 (0.81, 1.00) 

 

Table 4 footnote:  numbers in the parenthesis indicate the lower and upper bounds of AUC. 
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Table 5. Classification with Support Vector Machine SVM based on the combinations of serum 

biomarkers and CT images Area Under the Curve (AUC) 

  SpontHem CA/RA CTN-HVT Control 

Trauma 0·96 (0.91, 1.00) 0·99 (0.96, 1.00) 0·98 (0.94, 1.00) 1·00 

SpontHem   1·00 1·00 1·00 

CA/RA     0·98 (0.91, 1.00) 1·00 

CTN-HVT       1·00 

 

Table 5 footnote:  numbers in the parenthesis indicate the lower and upper bounds of AUC. 
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