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Abstract 12 

Background: Previous research has shown the slope of the EEG power spectrum differentiates between 13 

older and younger adults in various experimental cognitive tasks. Here, we extend that work, assessing 14 

the relation between the EEG power spectrum and performance on the Repeatable Battery for the 15 

Assessment of Neuropsychological Status (RBANS), a widely-used neuropsychological instrument that 16 

assesses a broad range of cognitive domains. 17 

Methods: Forty-four participants (21 younger adults, 23 older adults) completed the RBANS with EEG 18 

data collected at-rest. Using spectral parameterization, we tested the mediating effect of the spectral 19 

slope on age-related differences in subsequent cognitive task performance.  20 

Results: Older adults performed reliably worse on the RBANS overall, and on the Attention and Delayed 21 

Memory domains. However, evidence of mediation was only found for the Coding subtest, a measure of 22 

information processing speed. 23 

Conclusions: We found some evidence that the slope of the resting EEG power spectrum mediated age-24 

related differences in cognition. These effects were evident only in tasks requiring speeded processing, 25 

whereas this effect was not statistically significant for delayed memory, even though age-related 26 

differences were present.  27 

  28 
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Resting EEG spectral slopes are associated with age-related differences in information processing 29 

speed 30 

Aging is broadly associated with declines in cognitive and motor abilities.  Although the average 31 

pattern is for a decline in cognitive function with age, these changes are heterogeneous, such that 32 

within “normal” aging, there are substantial individual differences in both average performance and 33 

changes in performance over time (Habib et al., 2007). Some individuals experience declines so severe 34 

that they exceed the range of healthy aging, leading to mild cognitive impairment (MCI) or even 35 

dementia (Tucker-Drob, 2019). These declines can be attributed to numerous neurophysiological 36 

changes over the lifespan (Bäckman et al., 2006; Cabeza et al., 2016; Hedden & Gabrieli, 2004). 37 

Furthermore, these physical changes are broad and influence many different psychological processes, 38 

such as executive functions (Buckner, 2004), affective regulation (Fiske et al., 2009), and memory 39 

formation (Nyberg et al., 2012).  40 

Although numerous studies have documented the wide range of individual differences in older 41 

adults' cognitive function (Andrews et al., 2002; Dekhtyar et al., 2017; Lindenberger, 2014), the causes 42 

of these declines are unclear. Indeed, it is likely that age-related declines are multi-causal (Harada et al., 43 

2013), further complicating the issue. Across different domains of cognition and changes in anatomical 44 

structures, one unifying way of understanding this problem from a functional perspective is the neural 45 

noise hypothesis. The neural noise hypothesis suggests that many (not all) age-related changes in 46 

cognition might be explained by a reduction in the signal-to-noise ratio of neural circuits with increased 47 

chronological age (Cremer & Zeef, 1987; Voytek & Knight, 2015; Waschke et al., 2017). Recently, 48 

researchers have proposed that the slope of the EEG power spectrum may be a viable correlate of 49 

neural noise.  50 

Characterizing the EEG Power Spectrum 51 
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The slope of EEG power spectrum exhibits a pattern of 1/� noise, which is a common finding in 52 

many biological, physical, and even social systems (He, 2014; Ward & Greenwood, 2007). We can think 53 

of 1/�noise as a particular kind of pattern where low frequencies have the most power in the signal, and 54 

power decreases at higher frequencies; that is, there is a negative relationship between power and 55 

frequency, as is common in human EEG (Cohen, 2014), which follows the form: 56 

(Eq. 1.)  � ~
�

��
  , 57 

where the power in a signal (�) is inversely proportional to the frequency (1/�), with this 58 

proportionality determined by a decay parameter (�), hereafter referred to as the exponent, and a 59 

constant (�), hereafter referred to as the offset. When transformed into log-log space, this relationship 60 

becomes a linear function: 61 

(Eq. 2.)  ln��� 
 ln��� � � � ln���  , 62 

such that power in the signal monotonically decreases as the frequency increases, as shown in 63 

Figure 1. That is, in the resulting linear function, the exponent is now the slope of the line relating power 64 

to frequency. Many systems show this proportionality (with some relabeling of terms) from geology 65 

(Holliger, 1996), to music (Voss & Clarke, 1975), to human cognition (Gilden et al., 1995; Wagenmakers 66 

et al., 2004).  67 

In the human EEG, a large proportion of the signal follows a broad-band 1/� pattern, with 68 

deviations away from this pattern reflecting periodic activity in the canonical frequency bands (e.g., 69 

alpha, beta, delta). Whereas decades of research has demonstrated relations between various 70 

oscillatory processes and specific psychological states or correlates, the psychological significance of the 71 

aperiodic (1/f) component of the power spectrum has only recently become clear. Because the 1/f 72 

pattern is so prevalent across different types of systems, it was often regarded as a form of background 73 

noise, with limited functional significance (see He, 2014 for a review). However, in the last several 74 

decades, key studies have established a plausible physiological basis for the spectral slope (Freeman & 75 
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Zhai, 2009; He et al., 2010) and a growing number of functional correlates (Ouyang et al., 2020; Voytek 76 

et al., 2015). 77 

78 

Figure 1. Three different time-series of hypothetical electrophysiological data. (A) Voltages are shown 79 

over time. (B) Following a fast Fourier transform, an exponential function ( ) is fit to the raw 80 

power spectrum. (C) By log-transforming the Power and the Frequency of the power spectrum, we can 81 

now approximate this relationship with a linear function ( ). These 82 

transformations are shown for three different cases where the value of the  exponent changes from 0 83 

(shown in black, representing “white” noise), to 1 (shown in dark grey, representing “pink” noise), to 2 84 

(shown in light grey, representing Brownian or “red” noise).  85 

 86 

  87 
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Most recently, studies have provided evidence that the spectral slope reflects the balance of 88 

excitation and inhibition (E:I) in the brain, such that flatter slopes indicate an increase in random 89 

excitatory spiking, a potential source of noise in the signal (Gao et al., 2017). Although those findings, 90 

and much of this literature, has involved invasive recordings from local field potentials or 91 

electrocorticography, more recent research has extended this to scalp EEG, demonstrating that 92 

anesthetic agents with known (and opposite) influences on excitation and inhibition modulate the 93 

spectral slope in the expected direction (Waschke et al., 2021). Other aspects of the electrophysiological 94 

power spectrum are increasingly understood as well, such as the relation of the spectral offset to 95 

neuronal firing rates (Manning et al., 2009), and the relation of the characteristic bend in the slope (the 96 

“knee” frequency) to the timescale of neural dynamics (Gao et al., 2020). This empirical work aligns with 97 

simulation studies, which have shown that the slope and other spectral features can be well-modelled 98 

as a function of local neuronal spikes and aggregate synaptic dynamics (Freeman & Zhai, 2009; Gao et 99 

al., 2020; Miller et al., 2009). Altogether, recent basic science on the spectral slope provides a 100 

compelling basis for considering it a viable index of neural noise (Tran et al., 2020). 101 

Functional and Age-Related Correlates of the Spectral Slope 102 

Simultaneous with these developments in understanding the mechanistic basis of the spectral 103 

slope, many studies have identified important functional correlates. For instance, the spectral slope has 104 

been observed to change across the lifespan (Dave et al., 2018; Donoghue et al., 2020; Schaworonkow & 105 

Voytek, 2021; Tran et al., 2020; Voytek & Knight, 2015), across a variety of tasks (Ouyang et al., 2020; 106 

Pathania et al., 2021; Voytek et al., 2015), across state-dependent variations in sleep (Freeman & Zhai, 107 

2009; Leemburg et al., 2018; Miskovic et al., 2019), and during anesthesia (Gao et al., 2017; Waschke et 108 

al., 2021). Furthermore, recent evidence points to the EEG spectral slope being a product of both fast 109 

networks representing the local dynamics and slow networks representing the more distributed 110 

recurrent connections. These two types of networks balance the excitation and inhibition to maximize 111 
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the information processing capabilities (Chaudhuri et al., 2018). Thus, the 1/f component of the power 112 

spectrum is not only a slowly changing tonic signal, but an important physiological signal that can 113 

change quite quickly given the demands of a task and the state of an individual. 114 

With respect to aging specifically, several recent studies have shown flattening of the spectral 115 

slope associated with differences in cognitive performance, or other aspects of brain functioning (Dave 116 

et al., 2018; McNair et al., 2019; Tran et al., 2020; Waschke et al., 2017). Voytek and colleagues (2015) 117 

conducted one of the first studies in this area, demonstrating that differences in the EEG spectral slope 118 

at rest were not only related to age differences in working memory performance, but the slope 119 

specifically mediated that effect. That is, older adults did not merely differ in both performance and 120 

slope values from younger adults, but the behavioral differences could be accounted for statistically by 121 

the slope effect alone. In the time since, many studies have replicated and expanded upon this basic 122 

effect. For example, in the neural domain, flatter slopes in older adults have been related to reductions 123 

in the amplitude of the N400 event-related potential (ERP) during language processing (Dave et al., 124 

2018), delayed auditory P2 ERP latencies during tone discrimination (McNair et al., 2019), and changes 125 

in various measures of single-trial neural variability (Tran et al., 2020; Waschke et al., 2017). 126 

Behaviorally, some of these and other studies have linked flatter slopes in older adults to poorer 127 

performances on tasks of spatial attention (Tran et al., 2020) and visual-short-term memory (Thuwal et 128 

al., 2021). Still other work has linked changes in the spectral offset to poorer cognitive control across the 129 

adult age range (Clements et al., 2021), while spectral slope has been linked to speeded target detection 130 

in adults aged 40 and below (Ouyang et al., 2020). 131 

Overall, these studies demonstrate a consistent pattern of flatter slopes in older adults, which 132 

are linked to changes in functioning across a variety of tasks, and in line with the neural noise 133 

hypothesis. Notwithstanding this progress, there are several outstanding questions, which if addressed, 134 

could further enhance understanding of the functional significance of the spectral slope. Largest among 135 
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these is the fact that, although the field as a whole has examined a range of tasks, to our knowledge, no 136 

single study has examined correlates of the spectral slope across a broad range of cognitive domains. 137 

This is important from the perspective of assessing the generality of spectral slope effects in aging, and 138 

the degree to which it may be more sensitive to declines in some functions than others (Dave et al., 139 

2018, p. 40). In addition, prior studies that have examined cognitive correlates of the spectral slope have 140 

thus far focused on experimental tasks, as opposed to standardized measures, such as those used in 141 

neuropsychological assessment. Insofar as the spectral slope is of interest in terms of its translational 142 

potential as biomarker of age-related decline, it is beneficial to examine the degree to which variation in 143 

the slope relates to performance on tasks that have been validated for actual clinical decision-making. 144 

Thus, in light of these considerations, the primary goal of this study was to replicate and expand upon 145 

the prior findings relating flatter spectral slopes to cognitive performance declines in older adults, by 146 

using a larger battery of clinically validated cognitive tests. Following from the initial study by Voytek et 147 

al. (2015)–the only study to date which has demonstrated a mediating effect of the spectral slope– our 148 

primary hypothesis was that the slope of the EEG power spectrum (collected at rest), would mediate 149 

age-group differences in performance across diverse cognitive domains.  150 

 151 

  152 
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Methods 153 

Participants  154 

Forty-nine participants were recruited for the study: healthy young adults (YA; <35y; n=22); 155 

cognitively healthy older adults (OA; >59y; n=24); and older adults with mild cognitive impairment (MCI; 156 

n = 3) following approval of the University Institutional Review Board. We originally planned to recruit a 157 

comparable sample of older adults with amnestic MCI, which is considered a prodrome of Alzheimer’s 158 

disease (Levey et al., 2006). This sample would allow for comparison of neurological changes between 159 

neurologically healthy older adults and those with MCI. Due to the onset of COVID-19 during data 160 

collection, however, we had to postpone data collection in older adults with MCI as a safety precaution. 161 

As a result, the n=3 older adults with amnestic MCI are excluded from statistical analyses, and our focus 162 

is solely on our primary aim comparing cognitively intact younger and older adults in the current sample.  163 

 Following informed consent, participants completed a demographic survey, wherein they self-164 

reported their education status, handedness, current medical status, and physical activity status. Older 165 

adults also self-reported their concurrent medications and sleep quality using The Pittsburgh Sleep 166 

Quality Index (PSQI), but these data we not obtained for younger adults.  167 

Participants over 18 were recruited and did not have any impairments that would limit the 168 

function of their arms, hand, or legs. Participants were recruited from the local community by flyers and 169 

word of mouth recruitment. Older adults specifically were also recruited through a participant database 170 

maintained by the Center on Aging at the University of Utah. Participants with MCI were recruited from 171 

an ongoing study by one of the coauthors (KD), a licensed neuropsychologist, who also provided their 172 

diagnosis for amnestic MCI. Participants were excluded if they had any self-reported musculoskeletal, 173 

neurological, or perceptual impairments that they thought would affect their performance in these 174 

tasks, or any history of skin allergies (as a precaution for EEG data collection). In addition, participants 175 
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were excluded if they had any medical history of severe cognitive impairment (e.g., dementia) or 176 

psychiatric conditions (e.g., severe depression, bipolar disorder, substance abuse). 177 

Tasks and Measures 178 

Participants completed a battery of cognitive and motor tasks: the RBANS to assess cognition, a 179 

maximum grip-force task, a simulated feeding task (Schaefer et al., 2015; Schaefer & Hengge, 2016), and 180 

a sensorimotor test of standing balance. However, to address our primary aim the current study focuses 181 

only on the resting EEG data and the behavioral data from the RBANS. 182 

Cognitive Assessment 183 

 RBANS: This individually-administered, paper and pencil battery has been validated to assess 184 

cognitive function in adults ages 20-89 (Randolph et al., 1998). It is a reliable and valid assessment of 185 

cognitive status for detecting dementia (Duff et al., 2008), discriminating among individual differences in 186 

healthy older adults (England et al., 2014; Patton et al., 2003), and in similarly aged clinical populations 187 

(Larson et al., 2005). Furthermore, there is good evidence of convergent validity to show that RBANS 188 

scores are associated with instrumental activities of daily living (Freilich & Hyer, 2007; Larson et al., 189 

2005). The RBANS consists of 12 subtests that load onto 5 indices of various cognitive domains: 190 

immediate memory, visuospatial/constructional ability, language, attention, and delayed memory. To 191 

ensure consistency of scoring, all tests were scored by the same author, AP. Although age-corrected 192 

normative data is available, we elected to use non-age-corrected raw scores so that we could compare 193 

age-groups on their absolute performance (rather than performance relative to age-matched peers).  194 

EEG Processing and Aggregation 195 

Scalp EEG was collected from a 32-channel actiCAP active electrode system housed in a 64-196 

channel cap and amplified with a BrainAmp DC amplifier (BrainProducts GmbH). The resting EEG data 197 

was collected for two minutes in each of two different conditions; eyes open and eyes closed. To reduce 198 

the potential for artifacts and make the parameterization of the power spectrum easier, we a priori 199 
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chose to analyze only on data from eyes-closed rest. Participants were seated in each condition and 200 

instructed to, “Clear their minds and relax”. In the eyes open condition, all participants were oriented 201 

towards a fixation cross that was taped to a white wall approximately 2m away. The electrodes were 202 

labelled in accordance with the standard 10-10 geodesic montage (Oostenveld & Praamstra, 2001). The 203 

specific electrode sites included, Fp1, Fz, F3, F7, FT9, FC5, FC1, C3, T7, TP9, CP5, CP1, Pz, P3, P7, O1, Oz, 204 

O2, P4, P8, TP10, CP6, CP2, Cz, C4, T8, FT10, FC6, FC2, F4, F8, and Fp2. The data were online referenced 205 

to the right ear, with a common ground on the left ear. The electrode impedances were maintained 206 

below 25kΩ, with a sampling frequency of 1000Hz.  207 

EEG data processing was conducted with the BrainVision Analyzer 2.1.2 software (BrainProducts 208 

GmbH). No online filters were applied, but offline the data were band-pass filtered between 0.1 and 40 209 

Hz with 24-dB rolloffs with a 60 Hz notch filter. The data were manually inspected, and eyeblinks marked 210 

for ICA-based ocular correction within BrainVision Analyzer software (BrainProducts 2013). This function 211 

was run with the FP2 electrode serving as the VEOG and the HEOG electrode. Using Welch’s method, 212 

the data were epoched in 1-s segments, which overlapped by 50%. Following that, segments with 213 

artifacts were removed (average of 91% segments retained per person, SD = 6.73%). The remaining 214 

segments were subjected to a fast Fourier transformation using 0.977 Hz bins and a Hamming window 215 

with a 50% taper (Welch, 1967). The data were then truncated between 2-25 Hz to exclude gamma-216 

band power and higher frequency muscle activation and were then averaged within sets of electrodes to 217 

get the average power spectrum in each region (Frontal: F7, F3, Fz, F4, F8; Central: C3, Cz, C4; Parietal: 218 

P7, P3, Pz, P4, P8; and Occipital: O1, Oz, O2).  219 

Calculation of the Exponent and Offsets 220 

 To compute the exponents and offsets for each participant, we used the spectral 221 

parameterization algorithm (specparam toolbox), which decomposes the power spectral density into 222 

the aperiodic background (exponent and offset) and the periodic peaks (Donoghue et al., 2020). The 223 
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code for this algorithm is available as an open source specparam toolbox (https://fooof-tools.github.io/). 224 

The data were truncated to 2-25 Hz, and the offsets and exponent were extracted from the average 225 

power spectrum in each brain region for each participant. To ensure consistency of data processing, the 226 

EEG data was parametrized with the “aperiodic_mode” set at ‘fixed’, the width the peaks limited to 8, 227 

and the minimum peak height set to 0.05. The choice of parameters led to a median r2 = 0.96, 228 

IQR=[0.92,0.98] across all regions. Thus, although other processing parameters could have been chosen, 229 

we achieved good spectral parameterization across participants and regions. 230 

Statistical Analysis 231 

All statistical analyses were conducted in R v4.1.0 (R Core Team, 2021; R Studio Team, 2020; 232 

Wickham et al., 2019). Following the extraction of the exponents and offsets, we used mixed-effects 233 

regression (Bates et al., 2014), with fixed effects of age-group and brain region, and their interactions. A 234 

random effect of Subject accounted for the within-subject nature of the Region factor.   235 

To assess age-group differences in cognitive performance, we used independent samples t-tests 236 

to compare performance on the raw RBANS scores between age groups. A priori, we chose to conduct 237 

one-tailed tests as past data strongly suggest that older adults should generally score worse than 238 

younger adults.  We tested the effect of age-group for RBANS domain-composite scores, calculated from 239 

the percentage of the maximum possible score on each subtest. Note that this is a departure from the 240 

way RBANS scores are normally analyzed, which requires age-normalizing the scores. Because our 241 

planned analyses require us to test the effect of age and then its (potential) mediation, we chose not to 242 

age-normalize the RBANS scores. Thus, we focus on the full RBANS composite score (percentile scores 243 

averaged across all domains) and domain composite scores (percentile scores combining subtests in 244 

each domain).  245 

Finally, we used mediation analysis with non-parametric bootstrapping to assess the mediating 246 

effect of the exponent on age-related declines in cognition (Imai et al., 2010; Tingley et al., 2014).  A 247 
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priori, we chose to focus on the exponents from the frontal electrodes only, reflecting our interest in 248 

higher cognitive function. The exponents were extracted from the specparam toolbox (one frontal 249 

exponent value for each participant) and then used as a mediator in a series of regression models. 250 

Cognitive domain performance was regressed onto age-group, the exponent was regressed onto age 251 

group, and cognitive test performance was regressed onto age-group and the exponent. Using k=5,000 252 

iterations, these models were bootstrapped to estimate the total effect, the average direct effect, and 253 

the average mediation effect. 254 

To ensure reproducibility, de-identified EEG and behavioral data, plus all analysis code are 255 

available from the corresponding author’s GitHub account 256 

(https://github.com/keithlohse/spectral_slopes_aging).  257 

 258 

Results 259 

Demographics 260 

Forty-nine participants were recruited from within the university and the larger community. 261 

However, due to a data storage issue, we lost EEG data for one YA participant, bringing our total YA 262 

n=21, and one OA participant, bringing our total OA n=23. Demographic statistics for these participants 263 

are shown in Table 1. Data from the n=3 older adults with MCI were too limited to include in statistical 264 

analyses. All subsequent analyses are based on the N=44 cognitively intact older and younger adults. 265 

  266 
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Table 1. Summary statistics for the participant demographic surveys. 267 

Variable Younger Adults Older Adults 

Participants (n) 21 23 

Age, mean (SD)                                           23.29(3.47) 70.83(5.77) 

Age, range 19, 33 59, 83 

Male (n) 11 4 

Education level (years), mean (SD) 14.93 (1.58) 15.45(2.61) 

# of Current Medications Not Collected 1 to 23 

No. of medications, mean (SD) Not Collected 5.55(5.26) 

Average Maximum Grip Force (kgf) 20.5 (6.5) 12.4 (4.2) 

Self-Reported Physical Activity   

  Vigorous PA (Days per week) 2.98(1.75) 2.22(2.33) 

  Vigorous PA (Hours per day) 1.21(0.64) 0.87(0.91) 

  Moderate PA (Days per week) 3.67(1.72) 4.15(2.52) 

  Moderate PA (Hours per day) 1.42(0.83) 1.51(1.22) 

  Light PA (Days per week) 5.76(2.12) 5.43(2.42) 

  Light PA (Hours per day) 3.74(3.15) 2.91(2.08) 

  Resistance training (Days per week) 2.52(2.09) 1.17(1.59) 

Sleep Quality, mean (SD) Not Collected 5.33(3.57) 

Note that details of medications taken and the Pittsburgh Sleep Quality Index were only added to the 268 

study protocol after data collection in the younger adults was finished. As such, these data are only 269 

available for the older adults.  270 
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Age-Related Differences in EEG Power Spectra 271 

To measure age-related changes in the exponent in different brain regions, a linear mixed-effect 272 

regression model with fixed effects of age-group and brain region, and their interactions revealed a 273 

significant main effect of Age-Group (F(1,44) = 12.56, p < 0.001) and brain Region (F(3,132) = 8.70, p < 274 

0.001). These effects were superseded by the Age-Group x Region interaction (F(3,132) = 10.09, p < 275 

0.001). To decompose this interaction, we subset the data into regions, and performed linear 276 

regressions with fixed-effects of Age-Group.  277 

In the frontal region, there was a significant main effect of Age-Group, F(1,42)=13.28, p <0.001. 278 

The exponents in the frontal region were lower in older adults (i.e., flatter power spectra) as compared 279 

to the younger adults, see Figure 2B.  280 

In the central region, there was a there was a significant main effect of Age-Group, 281 

F(1,42)=22.00, p <0.001. The exponents in the central region were reliably lower in older adults as 282 

compared to the younger adults, see Figure 2B. 283 

In the parietal region, there was a there was a significant main effect of Age-Group, 284 

F(1,42)=9.24, p = 0.004. The exponents in the parietal region were reliably lower in older adults as 285 

compared to the younger adults. In the occipital region, however, no significant effect of Age-Group was 286 

observed, F(1,42) = 1.71, p = 0.198. Both results are shown in Figure 2B 287 

  288 
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 289 

Figure 2. (A) Average power spectra across the frontal electrodes (F7, F3, Fz, F4, F8) as function of age-290 

group, shown in log-log space. Thin colored lines show individuals, thicker black lines show the average 291 

power spectra for the whole group (line dashing varies with group). (B) Estimated exponents from each 292 

region as a function of age group. P-values are based on a linear model regressing exponents onto a 293 

contrast coded age group variable in each region. YA = younger adults; OA = older adults. The canonical 294 

alpha band (8-12 Hz) is highlighted in Panel A.  295 

  296 
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Age-Related Differences in Cognition 297 

As shown in Figure 3, there was considerable variability both within and between groups on the 298 

different scales of the RBANS. For the RBANS composite score, there was a statistically significant 299 

difference between younger and older adults (t(41.6) = -1.87, p=0.034), with older adults performing 300 

worse (d=-0.40). Delving into the specific cognitive domains of the RBANS, only Attention (t(38.1) = -301 

2.86, p = 0.003, d=-0.61) and Delayed Memory (t(41.8) = -1.84, p=0.036, d=-0.39) showed statistically 302 

significant differences, whereas differences for Immediate Memory (t(40.3)=-0.38, p = 0.353, d=-0.08), 303 

Visuospatial/Constructional ability (t(42.0)=-1.01, p = 0.158, d=-0.21), and Language (t(39.7) = 0.62, p = 304 

0.730, d=0.13) were not statistically significant.   305 

  306 
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 307 

Figure 3. RBANS scores for each cognitive domain as a function of group: Immediate memory, 308 

Visuospatial/ Constructional abilities, Language, Attention, and Delayed Memory. P-values are based on 309 

directional Welch’s Two Sample t-test (not assuming equal variances), where ��: �� � ��. YA = 310 

younger adults; OA = older adults.  311 

Does the spectral slope mediate age-related changes in cognition? 312 

 Given our a priori predictions, exponents from the frontal region were tested as potential 313 

mediators for age-group differences in the RBANS. As shown in Table 2, we tested only those RBANS 314 

scales that showed statistically significant differences between age-groups. Contrary to our predictions, 315 

neither total RBANS scores (p=0.170), the Delayed Memory domain (p=0.183), nor the Attention domain 316 

(p=0.259) showed a statistically significant mediation effect. See Figure 4A-C.    317 

 In an earlier version of these analyses published in a pre-print (Pathania, Clark, et al., 2021), we 318 

did find evidence of statistically significant mediations. However, those analyses used regression-based 319 

methods to estimate the slope of power spectrum (rather than spectral parameterization) and analyzed 320 

the RBANS at the level of specific subtests rather than scales. To better understand these discrepant 321 
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results, we focused on the Attention scale, which showed the largest age-related differences, and ran 322 

mediation analyses on its constituent subtests: the Coding test and the Digit Span test (see Figure 4D 323 

and E). As shown in Table 2, there was evidence of mediation for the Coding subtest (p=0.034), but not 324 

for the Digit Span subtest (p=0.800). Thus, across our pre-print and the current analysis, there was 325 

evidence that the exponent of the frontal power spectrum mediated age-related differences in the 326 

coding subscale. This suggests that the mediation is not an artifact of the method of estimation 327 

(regression in the pre-print, spectral parameterization here) and is instead something unique about the 328 

Coding subtest that is not shared with the Digit Span.  329 

 330 

  331 
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Table 2. Testing the exponent of the power spectrum as a mediator of age-related differences using 332 

non-parametric bootstrapping to estimate mediation effects. 333 

 Total Effect Direct Effect Average Mediation Effect 

Dependent Variable Estimate p-value Estimate p-value Estimate p-value 

Average (%) 4.34 0.050 2.50 0.340 1.84 0.170 

Delayed Memory (%) 7.29 0.057 4.04 0.378 3.25 0.183 

Attention (%) 8.36 0.003 6.29 0.070 2.06 0.259 

-- Coding Subtest (%) 17.32 <0.001 13.92 <0.001 3.40 0.034 

-- Digit Span Subtest (%) -0.61 0.860 -1.34 0.800 0.73 0.800 

*Note that the total effect reflects the effect of both the grouping variable (Age Group) and the 334 

mediator (spectral power Exponent) on the outcome (domains of cognition). The direct effect is the 335 

effect of the group variable with the mediator removed, and the mediation effect is a statistical test of 336 

the exponent as a mediator.  337 

 338 

 339 

  340 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 28, 2021. ; https://doi.org/10.1101/2021.02.12.21251655doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.12.21251655
http://creativecommons.org/licenses/by-nc-nd/4.0/


21

 

341 

Figure 4. RBANS total (A), Attention domain (B), Delayed Memory domain (C), Coding subtest (D), and 342 

Digit Span subtest (E) scores as a function of the spectral slope across the frontal electrodes. These 343 

subtests were selected for the statistically significant differences between younger (YA) and older adults 344 

(OA) shown in Figure 3. Lines indicate the ordinary least squares regression line within each group.  345 

  346 

1 
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Discussion 347 

Consistent with the neural-noise hypothesis of aging, our data showed that (1) the slope of the 348 

resting EEG power spectrum is flatter in older compared to younger adults (replicating past work) and 349 

(2) individual differences in the slope of the EEG power spectrum mediated age-related differences in a 350 

clinically validated assessment of information processing speed (extending past work). However, it is 351 

important to note that this pattern was not evident across the five different domains of the RBANS. 352 

Contrary to our predictions, none of the RBANS domains showed a reliable mediation effect. Since the 353 

Attention domain showed the largest age-related differences, we performed mediation analysis with its 354 

constituent subscales, Coding and Digit Span. The effect was apparent only in the Coding subtest. Other 355 

domains/subtests of the RBANS were not examined, as we did not find reliable evidence of cognitive 356 

differences between the performance of younger adults and older adults. Thus, combining the current 357 

data with past work, it appears that the flattening of the exponent with age is a reliable effect (Tran et 358 

al., 2020; Voytek et al., 2015; Waschke et al., 2017). Further, the exponent is related to cognition not 359 

only in tightly controlled laboratory tasks (Thuwal et al., 2021, Tran et al., 2020; Voytek et al., 2015), but 360 

also in validated clinical tests (the Coding subtest of the RBANS in the present data).  361 

The obtained pattern of results raises important questions about how the findings pertaining to 362 

Coding subtest of the RBANS should be interpreted. The Coding subtest falls under the “Attention” 363 

domain. Interestingly, the Digit Span is the other subtest in the Attention domain, and we found no 364 

evidence of a mediation effect with respect to Digit Span scores. Ultimately, the reason for the strong 365 

association with the Coding subtest is not clear, but we posit a few possible (non-exclusive) 366 

explanations. First, the Coding subtest has the strictest time requirements of any subtest on the RBANS, 367 

and is directly analogous to other symbol substitution tasks that are commonly used to assess 368 

processing speed in neuropsychology (Larrabee, 2017). To perform the task efficiently, participants need 369 

to memorize the correspondence between symbols presented on the paper and the numbers those 370 
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symbols represent (i.e., a symbol-number pairing). As the task goes on, more efficient participants are 371 

able to encode the symbol-number pairings into working memory, as opposed to repeatedly alternating 372 

between the symbol key and the response field. Thus, these tasks require the rapid integration of 373 

various sub-processes, including visual scanning, working memory, sustained attention, and visuomotor 374 

coordination, and consequently quantify an individual’s ability to rapidly learn, coordinate, and execute 375 

a set of simpler sub-tasks (Lezak et al., 2004).  376 

A second, perhaps complementary, perspective on these measures highlights the importance of 377 

executive functions, via cognitive control and working memory, in allowing individuals to rapidly 378 

coordinate the necessary sub-processes when faced with a novel task and timed testing conditions 379 

(Koziol & Budding, 2009). Both of these perspectives are consistent with the large literatures that 380 

highlight: (1) the relative prominence of changes in the (interrelated) functions of processing speed, 381 

working memory, and fluid cognition with greater age (Salthouse & Davis, 2006), and (2) the effects of 382 

clinical conditions affecting distributed processing and/or white matter integrity on timed symbol-383 

substitution tasks (e.g., DeLuca et al., 2004; Kinnunen et al., 2011; Lezak et al., 2004). 384 

Interestingly, we did not find evidence for the exponent mediating age-related differences in 385 

delayed memory. From these pilot data, we cannot conclude that there is no relationship between 386 

exponents and delayed memory, but we found no evidence for a mediating effect in the current sample. 387 

There are several reasons why there might be no evidence of mediation in delayed memory despite a 388 

relatively large age-related difference. It could be that there truly is no mediating effect in delayed 389 

memory in the population or it could be that there is an effect but we lacked the power to detect it. This 390 

second option is an important consideration because in the present sample the Attention domain 391 

showed the largest age-related differences. If differences in other domains were larger (i.e., between 392 

group variance increased or within group variation reduced) that would increase the power to detect a 393 
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mediation if one exists in that domain. At present, however, we only find evidence of a mediation effect 394 

for the Coding subtest, which leans most heavily on speeded information processing.  395 

 Finally, it is unfortunate that we were unable to collect data from our sample of older adults 396 

with MCI. The descriptive data for three participants are interesting, but far too limited to allow a 397 

substantial qualitative interpretation. Based on the relationship between resting EEG exponents and 398 

performance in cognitively intact older adults, however, we do think that these pilot data warrant 399 

further research into the clinical utility of the resting spectral slope as a biomarker of cognitive decline. 400 

We have shown that resting EEG exponents are sensitive to individual differences in some aspects of 401 

cognition. Combined with past work showing how frequency-based EEG measures can longitudinally 402 

predict the conversion from MCI to Alzheimer’s disease (Engedal et al., 2020; Poil et al., 2013), we think 403 

the present data warrant longitudinal studies to see if the EEG exponents possibly outperform other 404 

biomarkers, or if the predictive utility of other biomarkers is improved after accounting for the EEG 405 

exponent/offset (Donoghue et al., 2020).  406 

 407 

Limitations 408 

 There are a number of limitations in the present study of which we need to be cognizant. First 409 

and foremost, we have a limited sample size and we need to careful in the interpretation of our 410 

hypothesis test results. Due to relatively low power in some analyses, significant results may not be 411 

representative of the real underlying effects, and non-significant results may have simply lacked 412 

adequate statistical power (Button et al., 2013; Lohse et al., 2016). Finally, although the RBANS does tap 413 

multiple cognitive domains, it does not have pure measures of executive functioning. Given the present 414 

results, future studies might examine if executive function specifically is influenced by age and spectral 415 

slope. 416 

 417 
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Conclusions 418 

 Consistent with the neural-noise hypothesis of aging, we replicated earlier work showing that 419 

the resting EEG exponents become flatter with age and that individual differences in the exponents 420 

explain individual differences in cognition. We also extend this past work by demonstrating these effects 421 

in clinically validated assessments of cognitive status. However, the mediation effect was only present in 422 

a test of information processing speed, suggesting that these effects are not broadly applicable to all 423 

areas of cognition.   424 
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