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Abstract

0.1. Background

COVID-19 case counts are the predominant measure used to track epidemi-
ological dynamics and inform policy decision-making. Case counts, however,
are influenced by testing rates and strategies, which have varied over time
and space. A method to consistently interpret COVID-19 case counts in
the context of other surveillance data is needed, especially for data-limited
settings in low- and middle-income countries (LMICs).

0.2. Methods

We leverage statistical analyses to detect changes in COVID-19 surveillance
data. We apply the pruned exact linear time change detection method for
COVID-19 case counts, number of tests, and test positivity rate over time.
With this information, we categorize change points as likely driven by epi-
demiological dynamics or non-epidemiological influences such as noise.
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0.3. Findings

Higher rates of epidemiological change detection are more associated with
open testing policies than with higher testing rates. The non-pharmaceutical
intervention most correlated with epidemiological change is workplace clos-
ing. LMICs have the testing capacity to measure prevalence with precision
if they use randomized testing. Rwanda stands out as a country with an effi-
cient COVID-19 surveillance system. Sub-national data reveal heterogeneity
in epidemiological dynamics and surveillance.

0.4. Interpretation

Relying solely on case counts to interpret pandemic dynamics has important
limitations. Normalizing counts by testing rate mitigates some of these limi-
tations, and open testing policy is key to efficient surveillance. Our findings
can be leveraged by public health officials to strengthen COVID-19 surveil-
lance and support programmatic decision-making.

0.5. Funding

This publication is based on models and data analysis performed by the
Institute for Disease Modeling at the Bill & Melinda Gates Foundation.
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Research in Context

Evidence before this study

We searched for articles on the current practices, challenges, and pro-
posals for COVID-19 surveillance in LMICs. We used Google Scholar
with search terms including “COVID surveillance.” Existing studies
were found to be qualitative, anecdotal, or highly location-specific.

Added value of this study

We developed a quantitative method that makes use of limited infor-
mation available from LMICs. Our approach improves interpretation
of epidemiological data and enables evaluation of COVID-19 surveil-
lance dynamics across countries.

Implications of all the available evidence

Our results demonstrate the importance of open testing for strong
surveillance systems, bolstering existing anecdotal evidence. We show
strong alignment across LMICs between workplace restrictions and epi-
demiological changes. We demonstrate the importance of considering
sub-national heterogeneity of epidemiological dynamics and surveil-
lance.

1

1. Introduction2

The virus known as SARS-CoV-2 was first identified in Wuhan, China in De-3

cember 2019. Since then, countries have scrambled to monitor the severity4

and trajectory of the COVID-19 outbreak and to control its progression using5

non-pharmaceutical interventions (NPIs). Disease surveillance has mostly6

relied on case counts to inform public health policies.1 There has not, how-7

ever, been a robust evaluation of case counts as a metric for epidemiological8

dynamics, nor the varied surveillance approaches used to track disease tra-9

jectories.10

Case-based surveillance systems have known weaknesses, including the strong11

influence of testing rates, which vary widely across space and time.2 Case12
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counts can be inconsistently measured, testing capacity limited, and eligibil-13

ity policies variable. It is critical to understand the limitations of available14

data and to identify metrics that are robust to these challenges, particularly15

for low- and middle-income countries (LMICs).16

There is general recognition that surveillance system performance can be17

a challenge in LMICs, and that understanding disease surveillance is key18

to system improvement and production of representative data.3 Existing ef-19

forts to evaluate LMIC surveillance systems, however, are largely qualitative,20

country-specific, or based on commentary.4–6 Further, most national-level21

studies of NPI impacts focus on high-income countries,7–11 but there is evi-22

dence that these insights cannot be readily generalized to LMIC settings.12,223

This leaves an important knowledge gap in understanding how to evaluate24

and interpret COVID-19 epidemiological data from LMICs.25

To address the gap in systematic interpretation and evaluation methods, we26

leverage statistical analysis techniques to detect changes in underlying prop-27

erties of COVID-19 time series surveillance data across 31 LMICs. With this28

information, we categorize detected change points as likely driven by epi-29

demiological changes or non-epidemiological influences such as noise. This30

provides a quantitative and automated approach to analyzing epidemiolog-31

ical surveillance data. We make use of imperfect information despite data32

weaknesses, deriving insights from information available in LMICs that may33

otherwise be overlooked. The approach is fast and highly portable, well34

suited to looking across countries, and has minimal data requirements.35

In this article, we first present the methods for our analysis, including the36

statistical model, change point categorization, and evaluation of epidemio-37

logical change co-occurrence with NPIs. We follow with validation of our38

method, the usefulness of open testing, comparisons of country surveillance39

characteristics, and consideration of sub-national dynamics. Finally, we elab-40

orate on the significance of our results, broader conclusions, and relevance41

for public health applications.42
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2. Methods43

The methods are outlined in Figure 1 for two example countries: South Africa44

and Bangladesh. Details about each step are presented in the following sub-45

sections.46
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     changes
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Figure 1: Methods Overview. Time series for cases (orange), tests (blue) and positivity
(green) for case study countries South Africa and Bangladesh. Vertical lines indicate
detected change points on each series. National changes in testing policy are shown as
blue bars; see Section 2.1 for policy descriptions. Positivity change points are overlaid
with case and test changes. Change points from the three time series are grouped in time;
shading on positivity changes indicates grouping tolerance. Category labels for change
point groups are shown above positivity and described in Figure 2. Black arrows indicate
NPI changes; arrow direction indicates increase or decrease in stringency. For categories D
and E, Y(es) and N(o) in boxes below positivity indicate whether there is a co-occurring
NPI change inverse to the change in slope of positivity.
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2.1. Data47

We use national-level case and testing data as well as records on national48

policies for testing and NPIs.13,14 We calculate test positivity by dividing49

case rate by test rate. Testing policy is indicated by ordinal values: zero50

indicates no testing policy; one indicates testing of those with symptoms51

who meet specific criteria (e.g. known contact with a positive individual);52

two indicates testing of any symptomatic individuals; three indicates open53

public testing. For South Africa, we also use provincial-level data on COVID-54

19-confirmed deaths, cases and testing rates, and excess mortality.15–1855

We selected countries for analysis based on three conditions: available case56

data, available testing data, and human development index (HDI) score. Of57

those with data, we included the countries in the lowest third of HDI score,58

all of which are considered low- or middle-income in 2020-2021 by the World59

Bank. All data used in this research are public. Further details on data and60

definitions found in Appendix A.1.61

2.2. Change point detection62

2.2.1. Pruned Exact Linear Time (PELT) change detection63

Change point detection is a set of approaches for identifying points in time64

where the statistical properties of a time series change.19 We apply change65

point detection to epidemiological time series (cases, tests, and positivity)66

and national policy time series; details in Appendix A.2. Without a priori67

knowledge of the appropriate number of changes, the PELT algorithm must68

be assigned a penalty for the number of changes to identify. In the absence69

of an established method for this parameterization when working across time70

series, we developed a novel systematic approach for penalty selection which71

enables comparison among time series and countries; described in Appendix72

A.3.73

2.2.2. Method validation74

We applied PELT to synthetic data generated by the stochastic agent-based75

Epidemiological Modeling software (EMOD),20 verifying PELT as a robust76
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method for change detection in epidemiological time series. The EMOD77

model used for our validation analysis is parameterized to represent transmis-78

sion characteristics in Ethiopia. The model scenario inputs include step-wise79

increases in social distancing stringency, along with temporary decreases in80

stringency representing immunization campaigns. The model outputs a sim-81

ulated time series of cases per thousand people. The change point detection82

methods described above are applied to the seven-day mean of the case rate83

time series to align with the data smoothing used with our empirical time84

series.85

2.3. Change type categorization86

Change detection identifies changes that may be related to data quality,87

stochasticity, and testing dynamics, in addition to epidemiological changes.88

We classify the likely cause of changes identified by the PELT algorithm based89

on which changes co-occur. This categorization simplifies the interpretation90

of epidemiological surveillance, separates signal from noise, and enables broad91

comparison across countries and testing dynamics.92

We combine detected change points across cases, tests, and positivity time93

series to create change point groups. The tolerance for temporal association94

is set at ± seven days to account for seven-day smoothing and weekly data95

reporting practices. These change groups are then categorized as shown in96

Figure 2, with details of the interpretation described in Appendix B. To97

capture all changes that may be epidemiological, we include both categories98

D and E as epidemiological change in our analysis. We note that these cate-99

gories are heuristically defined, however they are informed both by validation100

using the EMOD simulations and a qualitative understanding of epidemio-101

logical surveillance dynamics.102
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Figure 2: Summary of change group categories as determined by their constituent time
series changes. Cases, tests, and positivity time series are indicated as orange, blue, and
green, respectively. Details of the category interpretations are described in Appendix B.

2.4. NPI alignment103

Change points classified as epidemiological are then assessed for whether they104

are associated with NPI changes. Timings of known NPIs are lagged by nine105

days to account for virus incubation time and the delay from symptom onset106

to test-seeking.21 We consider a change point to be aligned with an NPI when107

two conditions are met: 1) an epidemiological change co-occurs with an offset108

NPI and 2) the change in NPI stringency is inverse to the concurrent change109

in positivity slope. The second condition includes occasions when stringency110

was increased and positivity decreased, as well as occasions when stringency111

decreased and positivity increased.112

3. Results113

3.1. Synthetic modeling validates Pruned Exact Linear Time (PELT) is a114

robust method for change detection in epidemiological time series.115

Before applying the PELT method to the surveillance data, we validate its116

applicability for epidemiological systems. We apply PELT change detection117

to data from the transmission model described in Section 2.2.2. PELT suc-118

cessfully identifies step changes in NPI policies and slope changes in case119

rate, Figure 3.120
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While detection of NPI changes is consistent across a range of PELT penal-121

ties, change point detection is sensitive to parameterization when applied to122

the case rate time series, Figure 3B. When implemented with a high penalty123

(i.e. fewer change points), the PELT algorithm successfully identifies changes124

corresponding to the large-scale social distancing policies and changes in the125

basic shape of the case curve. With this penalty, it does not detect the rela-126

tively transient effects of the immunization campaigns. When parameterized127

with a low penalty (i.e. more change points), the PELT algorithm identifies128

the immunization campaigns as well.129
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Figure 3: Synthetic model time series; detected change points shown as vertical dotted
lines. A) Imposed policy inputs to model: social distancing (purple) and immunization
campaigns (brown). Short-term immunization campaigns represented by a switch in the
immunization time series from one to zero. B) Model output: case rates over time. Upper
plot shows detected change points using a high penalty, thereby promoting sparse change
point detection. Lower plot shows detected change points using a low sparsity penalty.

3.2. Testing rates and policies impact how surveillance measures should be130

interpreted.131

We illustrate the relevance of testing rates and the influence of testing policy132

using time series for Bangladesh in the context of local events (Figure 1).133

Case rates peaked in early July, an apparent epidemiological turning point if134

case rates were considered alone. Simultaneously, however, there was a new135
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policy implemented to charge for testing and thus a decline in testing rate.22136

This resulted in no change in positivity and contradicts the interpretation of137

the case reduction as a declining outbreak. Similarly, the dip in case rate in138

early August was accompanied by a dip in testing rate during the Eid al-Fitr139

holiday; again there is no change in positivity.140

While this recommends positivity as a surveillance metric instead of case141

counts alone, further consideration of testing policy complicates the picture.142

Test eligibility in Bangladesh is based on symptoms rather than open testing,143

meaning that positivity is influenced by the prevalence of both COVID-19144

and other respiratory illnesses. This limits the potential for positivity to de-145

tect epidemiological changes, and indeed, the positivity curve for Bangladesh146

is largely flat. An elaboration of COVID-19 surveillance considerations ap-147

pears in Appendix C.148

3.3. Epidemiological change detection is more influenced by testing policy149

than by testing rate.150

For all 31 LMICs in our dataset, we apply PELT change detection and change151

point categorization. We quantify surveillance system efficiency as the per-152

centage of all detected change points classified as epidemiological, i.e. epi-153

demiological change detection rate. We compare linear fits of epidemiological154

change detection by testing rate and by testing policy (Figure 4). Results155

indicate that the ability to identify epidemiological changes has a stronger156

relationship with testing policy than with testing rate. Open testing is the157

only testing policy bin with a mean or median epidemiological change detec-158

tion rate as high as 50%, but with a wide range, indicating that open testing159

policy is necessary but not sufficient for quality surveillance (with outlier160

exceptions).161
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Figure 4: Percent of detected changes categorized as epidemiological for each country by
testing rate (left) and binned by testing policy (right) at the time of change detection.
Linear regression shown as dotted line on left. Box and whisker plots on right show
quartiles, range, and median with means plotted as gray diamonds. Note that binned
calculations cause the maximum epidemiological change detection rate to differ between
the two plots.

Further, LMICs have the testing capacity to measure prevalence with pre-162

cision. Based on the 95th percentile of their daily testing rates, nearly all163

LMIC countries could measure down to 1% prevalence with a margin of er-164

ror no larger than ±1% if testing were randomly sampled (Figure 5). Only165

three countries hover around the margin of error to prevalence ratio of one:166

Malawi, the Democratic Republic of Congo, and Togo. Note that true ran-167

dom sampling is difficult to achieve in any setting, but open testing policies168

can approximate random sampling more closely than symptomatic testing.169
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Togo

Malawi
DRC

South Africa India

Bangladesh

Rwanda

Figure 5: Margin of error for random sampling of 1% prevalence plotted by 95th percentile
of national testing rate and population of each country in our dataset. See Appendix D
for details on standard error calculations.

3.4. Change detection rates and NPI alignment frequency vary across LMICs.170

Figure 6 shows frequencies of change category detection across countries.171

Rwanda is an outlier with high epidemiological detection accompanied by low172

non-epidemiological and noise detection rates. High rates of noise detection173

are generally associated with low rates of epidemiological change detection,174

whereas the relationship between noise detection and non-epidemiological175

change detection is not consistent.176
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Bangladesh

South Afric
a
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Figure 6: Change type ratios by country. The sum of categories D and E (considered
epidemiological changes) normalized by the total number of changes per country on the
y-axis. Category B (non-epidemiological) change detection rate on x-axis. Category A
(noise-related) change detection rate shown in color.

Figure 7A shows the wide variation of epidemiological change detection rates177

across LMIC countries, with Rwanda the highest and Ethiopia the lowest.178

The percentage of NPIs that are aligned with an epidemiological change is179

shown in Figure 7B, again led by Rwanda. Note that Rwanda performs well180

by these metrics regardless of change detection parameterization, Appendix181

A.4.182
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Figure 7: Epidemiological change detection rates (A) and NPI alignment rates (B) by
country.

3.5. Alignment with detected epidemiological changes varies by NPI type.183

The NPIs most frequently aligned with epidemiological changes are work-184

place closures, public transport closures, and stay at home requirements.185

The percentage of these NPIs that are aligned with epidemiological changes186

are 15·1%, 14·3%, and 12·2%, respectively. Note that there are substantially187

fewer total public transit NPIs than workplace closures and stay at home188
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requirements. Cancelling public events has the lowest frequency of epidemi-189

ological alignment at 6·12%, and also the fewest number of implementation190

incidences.191
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Figure 8: The percentage of each type of NPI aligned with an epidemiological change.
Color indicates the total number of each type of NPI across all countries; error bars show
standard error. NPIs include both easing and tightening of policy restrictions.

3.6. National-level results obscure sub-national heterogeneity in epidemiolog-192

ical dynamics and surveillance.193

To investigate sub-national heterogeneity, we conduct the same analyses as194

above, but at the province level in South Africa. Figure 9A shows substantial195

variability in provinces both by NPI alignment rate and by epidemiological196

change detection rate. In line with results from national-level data, epi-197

demiological change detection rate is not correlated with mean testing rate.198

Because of reporting limitations, the NPIs here are national policies only.199

We select three edge cases from the scatter plot in Figure 9A (Limpopo,200
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Northern Cape, and Western Cape) to compare time series of positivity,201

COVID-19-confirmed deaths, and total estimated excess mortality (Figure202

9B). The differences in the timing and trajectories of the time series illustrate203

strong sub-national variability in underlying epidemiological dynamics that204

are may be overlooked when time series are aggregated to the national level.205

Variation among provinces in the difference in magnitude between excess206

mortality and COVID-19 deaths points to differences in their surveillance207

systems. Western Cape is the only province where the magnitude of excess208

deaths resembles that of COVID-19-confirmed deaths throughout the time209

series. In Northern Cape, the peak of excess deaths is roughly a factor of210

three higher than the COVID-19-confirmed deaths, suggesting substantial211

under-reporting.212
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Figure 9: A) South African provinces by aligned NPI fraction versus epidemiological de-
tection rate with mean testing rate in color. B) Time series from three example provinces.
Positivity shown in green on left y-axis. Deaths shown on the right y-axis: excess mortality
in black; COVID-19-confirmed deaths in brown.
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4. Discussion213

We have demonstrated a standardized and quantitative approach to ana-214

lyzing epidemiological surveillance time series that can be automated for215

improved interpretation and comparison between countries. We find that in-216

terpretation of epidemiological trajectories are more informative when cases217

are normalized by tests and highlight the disadvantages of symptomatic test-218

ing for outbreak tracking and public health purposes. These findings align219

with literature emphasizing the importance of positivity and test sampling220

strategies.23,24 Our finding of a strong alignment of workplace closing with221

epidemiological changes is consistent with existing literature on global NPI222

impacts.12,25,26 When we apply our analysis of change types to evaluate the223

efficiency of national surveillance systems, we find that Rwanda stands out as224

a country with a strong surveillance system, which is consistent with current225

qualitative evaluation.27226

Our approach substantially broadens the scope of previous analyses of COVID-227

19 surveillance data in LMICs. We use statistical change detection methods228

on COVID-19 surveillance time series from 31 LMICs to differentiate epi-229

demiological changes from changes related to stochasticity, data quality and230

non-epidemiological dynamics. This maximizes the insights gained from lim-231

ited data, reduces erroneous interpretations of epidemiological time series,232

and enables quantitative comparisons of disease surveillance approaches. We233

use epidemiological change detection rate as a proxy for surveillance system234

efficiency, and show that epidemiological change detection is not as strongly235

associated with testing rate as with open testing policies. There is substan-236

tial variation in epidemiological and surveillance dynamics across countries237

and in our sub-national analysis.238

There are limitations in our analysis related to the data themselves as well239

as our methods. Simultaneously, these data challenges are precisely the mo-240

tivation for developing our methods: maximizing information with limited241

data. Our data are potentially biased by unmeasured factors such as fluctu-242

ations in testing capacity and undocumented population sampling strategies243

over time, delays and temporal uncertainty due to reporting systems, and244

incentives for case-finding. Defining co-occurrence when working with im-245

precise time series is a challenge, which we partially mitigate by considering246

uncertainty bounds when defining change groups. We emphasize, of course,247
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that co-occurrence does not establish causality. In PELT change detection,248

the changes detected are influenced by the choice of the sparsity parameter.249

In a sensitivity analysis of our novel parameterization approach, however,250

we find that Rwanda remains the leader in surveillance system performance,251

regardless of the parameterization choice.252

Results from this analysis highlight that surveillance data must be used care-253

fully to ensure proper programmatic responses. As a sufficient and less254

resource-intensive approximation of random sampling, open testing would255

enable better estimation of disease prevalence and examination of NPI im-256

pacts in geographies without reliable hospitalization data, death records, or257

seroprevalence surveys. NPIs without epidemiological changes may indicate258

inefficacy of policy, but may also indicate shortfalls of surveillance systems,259

which undermines policy makers’ ability to make evidence-based decisions.260

Our methods could be further developed and applied not just to COVID-19261

but also to surveillance interpretation for other poorly measured diseases, en-262

abling more informed decision-making and targeted improvements in surveil-263

lance systems.264
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Appendix A. Methods272

Appendix A.1. Data and definitions273

The case rate is defined as the number of individuals confirmed positive274

for the SARS-CoV-2 virus per population, regardless of symptoms. The275

testing rate per population is defined as the number of people tested (i.e.276

excluding duplicate confirmatory tests) divided by the population, regardless277

of the test outcome. To address the dependence of case rate on testing rate,278

we normalize case counts by the number of tests conducted, creating the279

alternate metric of test positivity rate.280

For the purposes of comparing between countries and over time, we define the281

‘mean testing policy’ as the average over time of the ordinal value represent-282

ing the national testing policy. Thus, lower values represent more restricted283

testing over longer periods of time. Social distancing policies tracked in the284

dataset include the following: closing schools, closing workplaces, cancelling285

public events, restricting gathering sizes, closing public transport, stay at286

home requirements, restricting in-country mobility, and restricting interna-287

tional travel.288

Weekly cases, testing, and death data are interpolated using a cubic spline.289

All daily cases, testing and death data are smoothed using a centered seven-290

day rolling average. Error bars on plots show standard error.291

Appendix A.2. PELT change detection292

The naive approach to generating an exact solution to time series segmenta-293

tion is to test all possible solutions. For an unknown number of changes, this294

also requires testing a sufficiently large set of possible number of changes.295

We use the Pruned Exact Linear Time (PELT) change detection method to296

address these computational tractability issues.297

PELT minimizes the sum of costs from a criterion function across time series298

segments while balancing model complexity by implementing a linear penalty299

function and change point pruning. At each iteration of cost minimization for300

a potential set of change points, time points that cannot be a global minima301
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are removed from future consideration. The PELT method, developed with302

applications in genetics and finance in mind, is increasingly used for climate303

and epidemiological applications.28–30304

To detect changes in slope of the epidemiological time series, we use the305

first derivative as input for the PELT algorithm. For detection of discrete306

step changes of policy time series, we feed the data directly into the change307

detection algorithm without taking a derivative. For all time series, we use308

the radial basis function kernel for the PELT detection algorithm.309

Appendix A.3. PELT parameterization310

To date, there is no established method for parameterizing the PELT change311

density penalty across time series when the number of changes is not known.312

One of the ways to choose penalty values across time series would be to unify313

the number of changes detected in each time series. This, however, imposes314

the assumption that all time series exhibit the same general change frequency315

and it is only the point in time of a change that is unknown, rather than the316

number of changes.317

We present here a novel approach for systematic parameterization when iden-318

tifying an unknown number of changes in slope over many time series, as in319

our case with multiple epidemiological time series across countries. To ac-320

complish this, we first conduct change detection in a sweep over parameter321

space. The change points detected using a given value in parameter space322

slice the time series into segments, each of which is input into a linear re-323

gression. The standard error for each of those linear regressions is calculated324

and then averaged, weighted by segment length.325

The mean standard error associated with each penalty value, when plotted326

over parameter space, is characterized by a series of plateaus that correspond327

to plateaus in the number of changes found with each penalty value, Figure328

A.10, top row. Descending through penalty values in the penalty parameter329

space, the lowest penalty associated with each plateau is selected to represent330

that plateau.331

Each time series is thus associated with a sparse set of penalty values, ordered332

from largest penalty (low change point density) to smallest penalty (high333
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change point density). The penalty values are unique to each time series,334

but represent the same ordered progression of plateaus. To illustrate, change335

detection with different ranked penalties for South Africa and Bangladesh336

are shown in green in Figure A.10.337

Penalty values for each unique time series can then be chosen based on their338

order in the ranked plateau list. This enables a principled approach to pa-339

rameterization that creates change density parity across time series, allowing340

for the likelihood that some time series are characterized by more changes341

than others. Among all time series and countries in our analysis, the min-342

imum number of plateaus detected is four. We therefore choose the fourth343

penalty value for all time series.344
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Figure A.10: Top row: change detection results over parameter space for the positivity
time series of South Africa (left) and Bangladesh (right). For each penalty value, the
associated number of changes is plotted in purple on the left y-axis and the mean standard
error of linear regressions of the time series segments are plotted on the right y-axis. The
parameter values selected to represent plateaus are shown as brown dotted vertical lines.
Bottom row: positivity time series for South Africa (left) and Bangladesh (right) plotted
with detected changes as vertical lines for each of the four penalty values selected to
represent plateaus in the top row.

Appendix A.4. Parameterization sensitivity analysis345

To evaluate the influence of penalty selection on our analysis results, we con-346

duct a parameterization sensitivity analysis. We compare results of country347
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ranking by epidemiological change detection rate for different penalty plateau348

selections. Skipping penalty rank one for which no changes may be detected349

(see examples in Figure A.10), we find that regardless of which penalty rank350

we use, Rwanda appears at the top of the list with the highest epidemiological351

change detection rate.352

Figure A.11: Countries ranked by epidemiological change detection rate, as in Figure 7,
shown for different choices of penalty parameterization. Order top to bottom follows order
of time series of Figure A.10, without rank one for which there are often no changes.
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Appendix B. Change categorization353

Appendix B.1. Heuristic interpretation354

Detected change points across cases, testing, and positivity time series are355

combined into groups by temporal co-occurrence. These groups are then356

categorized by their constituent time series, Figure 2. Dynamical interpreta-357

tion of the constituent time series aids in the characterization of each change358

group category, as follows:359

A) Single variable change: Because positivity is defined according to the360

arithmetic relationship, Positivity = Cases/Tests, a change in any one361

of the variables should be accompanied by a change in at least one of the362

other variables. A single change in only one of the variables indicates that363

the change arises from issues in the data or noise. These single variable364

changes often occur early in the time series, when the numbers of cases365

and tests are smaller, signal to noise ratios are lower, and confidence366

intervals are larger.367

B) Cases and tests change: Tests and cases move up or down together.368

What might look like a significant change in cases is associated with a369

change in testing, likely not a change in epidemiology. Factors affecting370

testing include testing capacity, care-seeking behavior, and testing sam-371

pling policy. With this change category, the change in testing could be372

a change in capacity or care-seeking, but the lack of change in positiv-373

ity indicates testing is still sampling the same population the same way,374

without changes in epidemiology.375

C) Tests and positivity change: Positivity change is driven by testing change,376

not a change in cases. An increase or decrease in testing does not impact377

absolute numbers of detected cases, which suggests a change in test sam-378

pling. Dynamics that would produce this pattern include, for example,379

adding population with lower prevalence in the case of open testing, or380

limiting testing to a higher-prevalence population in the case of symp-381

tomatic testing. It is also possible, however, that a change in testing382

sampling masks a simultaneous change in epidemiology. In this situa-383

tion, the change in testing would have to precisely offset the change in384

epidemiology to observe this category of change association. Category C385

is thus designated to likely indicate a non-epidemiological change.386
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D) Cases and positivity change: Positivity change is driven by a change in387

cases without a change in testing. This suggests a change in epidemiology,388

but the significance may be different under random vs. symptomatic test-389

ing. Under random testing, this type of change arises only with a change390

in SARS-CoV-2 epidemiology. Under symptomatic testing, the restric-391

tion of sampling to CLI means that a change in the epidemiology may392

be confounded by a change in CLI epidemiology. Note also that symp-393

tomatic testing captures changes only in symptomatic SARS-CoV-2 (i.e.394

cases of COVID-19). Another possible explanation for this combination395

of changes is a change in sampling without a change in the absolute num-396

ber of tests. This might occur, for example in a switch from symptomatic397

to open testing. For this reason, we categorize this change combination398

as likely instead of certainly epidemiological.399

E) All three variables change: With a change in cases, tests, and positivity, it400

remains difficult to disentangle epidemiological from non-epidemiological401

factors. Category E can be considered a combination of categories C and402

D, and the testing and case changes may or may not be independent. To403

capture all changes that may be epidemiological, we consider categories404

D and E to be epidemiological changes, and categories A, B, and C to405

be non-epidemiological changes.406

A principal component analysis (PCA) supporting the separability of change407

categories is detailed in Appendix B.2.408
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Appendix B.2. PCA analysis of change categories409

12 3

Figure B.12: PCA of countries by change category detection rate (i.e. number of changes in
each category divided by total changes detected for each country). A) Explained variance
ratio by PCA component number; B) PCA factor loadings by change categories.

In addition to the dynamical interpretation of constituent time series (Ap-410

pendix B), we show the separability of change categories with a principal411

component analysis (PCA). The surveillance results of different countries are412

quantitatively characterized by a PCA of the relative frequency with which413

they detect different categories of changes. The PCA establishes how cate-414

gories do or don’t represent axes of difference across countries.415

Based on the curve of explained variance ratio by PCA components (Figure416

B.12A), we choose the first three PCA components to examine factor loadings417

(Figure B.12B). Each component is dominated by a single category, in PCA418

component order: category D (epidemiological change); category B (testing419

artifacts); and category E (confounded). Each of these PCA components420

is anti-correlated with category A (noise). These relationships among the421

different change categories is consistent with our dynamical interpretation.422

Figure B.13 shows the frequencies of change categories for those categories423

that dominate the factor loadings for all countries in our dataset.424
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Figure B.13: Change category frequencies by country for categories D, B, and E, chosen
according to the dominant categories in the PCA factor loadings.

Appendix C. Surveillance considerations425

Below we lay out in basic terms considerations for three components of SARS-426

CoV-2 epidemiological surveillance: population, testing, and their role in427

surveillance metrics. We demonstrate that the testing strategy of random428

testing with the surveillance metric of positivity is the combination that best429

represents SARS-CoV-2 prevalence. Here we use the terminology of SARS-430

CoV-2 to include all asymptomatic and symptomatic infections.431

Population is composed of people with and without SARS-CoV-2. Of those432

with SARS-CoV-2, some are asymptomatic, some are symptomatic. Of those433
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without SARS-CoV-2, some are non-symptomatic, others have symptoms of434

non-COVID-like-illness, and some have COVID-like-illness (CLI) symptoms.435

Relevant components of testing include eligibility for testing under a given436

testing framework, as well as testing rate and capacity. Under random sam-437

pling, the general population is eligible for testing; symptomatic testing re-438

stricts eligibility to people with CLI symptoms. Testing rate is a measure439

of tests conducted per total population, while testing capacity indicates the440

proportion of eligible individuals who are actually tested.441

Detected cases as a surveillance metric is a function of number of tests, the442

eligible testing pool, and the total cases within the testing pool. Positivity443

is defined as detected cases per tests conducted.444

Applying these formulations to surveillance metrics, we can see that detected445

cases under symptomatic testing is not only a function of number of tests446

conducted, but also of the number of individuals exhibiting CLI symptoms.447

CLI in turn is a function of non-SARS-CoV-2 CLI and symptomatic SARS-448

CoV-2.449

Positivity under symptomatic testing is normalized for number of tests con-450

ducted, measuring not general prevalence in the population, but the portion451

of CLI that is symptomatic COVID-19. Metrics derived from symptomatic452

testing do not account for asymptomatic SARS-CoV-2 and are confounded453

by non-SARS-CoV-2 CLI.454

As with symptomatic testing, detected cases under random testing are a455

function of number of tests. The sampling, however, is taken from the gen-456

eral population, and thus positivity under random testing is a metric that457

represents prevalence.458

As tests approach eligible under symptomatic testing, cases detected equals459

CLI COVID-19 cases. Note, however, that testing coverage (i.e. tests/eligible)460

is not only influenced by the number of tests processed, but also reporting461

rate. Who shows up for testing is a subset of the people who would be eligible462

for testing.463

Assuming capacity to test all eligible individuals and perfect reporting rates,464

symptomatic testing would still yield only the number of symptomatic COVID-465
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19 cases. For random testing, testing rate is equivalent to testing coverage,466

and case counts depends on testing. The random testing positivity metric467

does not depend on testing rate, and captures both symptomatic and asymp-468

tomatic COVID. The relationship shown empirically in Section 3.3 wherein469

increasingly open testing policies are associated with increasingly effective470

epidemiological change monitoring supports the equation-based result that471

random testing is more suited to epidemiological surveillance.472

Population components:

Population = SARS -CoV -2 + Non-SARS -CoV -2

SARS -CoV -2 = SARS -CoV -2 asympt + SARS -CoV -2 sympt

Non-SARS -CoV -2 = Non-SARS -CoV -2 non-sympt

+ Non-SARS -CoV -2 sympt non-CLI

+ Non-SARS -CoV -2 sympt CLI

Testing components:

Eligiblerand = Population = SARS -CoV -2 + Non-SARS -CoV -2

Eligiblesympt = CLI = Non-SARS -CoV -2 sympt CLI + SARS -CoV -2 sympt

testing rate = Tests/Population

testing coverage = Tests/Eligible
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Surveillance metrics:

Casestotal = SARS -CoV -2

Casesdetected = Tests ∗ Cases

Eligible

Positivity =
Casesdetected

Tests
=

Cases

Eligible

Symptomatic testing:

Casesdetected sympt = Testssympt ∗
Casessympt

CLI

Positivitysympt =
Casessympt

CLI
Random testing:

Casesdetected rand = Testsrand ∗
Casestotal
Population

Positivityrand =
Casestotal
Population

= Prevalence

Appendix D. Summary statistics473

For the purposes of understanding the sensitivity of a given level of testing,474

we define the standard error for positivity, as number of positive tests per475

total number of tests, we calculate standard error as follows:476

SE =

√
p(1 − p)

N
∗ N − n

N − 1

Where n equals total number of tests, N equals population, and p equals the477

number of positive tests per the total number of tests. The corresponding478

margin of error equals one-half the confidence interval, and when calculated479

at the 95% confidence level is as follows:480

ME (95 %) = 1.96 ∗ SE
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Note that this formulation of confidence interval is not reliable when number481

of tests is very small, or probabilities are very close to zero or one. Un-482

der the condition of true random testing, positivity is a direct measure of483

prevalence. At any given prevalence, margin of error can be calculated for484

the number of tests administered and the total population. This calcula-485

tion is carried out for all LMIC countries in our dataset. Margin of error is486

then normalized by the given prevalence rate. Based on these relationships,487

ME (95 %)/Prevalence is higher at lower prevalence. In other words, precise488

measurement becomes increasingly more difficult as prevalence decreases.489

References490

[1] WHO, COVID-19 Weekly Epidemiological Update, 15 Dec, 2020.491

[2] N. Haider, A. Y. Osman, A. Gadzekpo, G. O. Akipede, D. Asogun,492

R. Ansumana, R. J. Lessells, P. Khan, M. M. A. Hamid, D. Yeboah-493

Manu, et al., Lockdown measures in response to COVID-19 in nine494

sub-Saharan African countries, BMJ Global Health 5 (2020) e003319.495

[3] C. A. Petti, C. R. Polage, T. C. Quinn, A. R. Ronald, M. A. Sande, Lab-496

oratory medicine in Africa: A barrier to effective health care, Clinical497

Infectious Diseases 42 (2006) 377–382.498

[4] N. K. Ibrahim, Epidemiologic surveillance for controlling COVID-19499

pandemic: types, challenges and implications, Journal of Infection and500

Public Health 13 (2020) 1630–1638.501

[5] M. Farahbakhsh, A. Fakhari, H. Azizi, E. Davtalab-Esmaeili, Struc-502

ture, characteristics and components of COVID-19 surveillance system,503

Journal of Military Medicine 22 (2020).504

[6] N. A. Alwan, Surveillance is underestimating the burden of the COVID-505

19 pandemic, The Lancet 396 (2020) e24.506

[7] J. M. Brauner, S. Mindermann, M. Sharma, D. Johnston, J. Salvatier,507
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