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Abstract

0.1. Background

COVID-19 case counts are the predominant measure used to track epidemi-
ological dynamics and inform policy decision-making. Case counts, however,
are influenced by testing rates and strategies, which have varied over time
and space. A method to consistently interpret COVID-19 case counts in
the context of other surveillance data is needed, especially for data-limited
settings in low- and middle-income countries (LMICs).

0.2. Methods

We leverage statistical analyses to detect changes in COVID-19 surveillance
data. We apply the pruned exact linear time change detection method for
COVID-19 case counts, number of tests, and test positivity rate over time.
With this information, we categorize change points as likely driven by epi-
demiological dynamics or non-epidemiological influences such as noise.
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0.3. Findings

Higher rates of epidemiological change detection are more associated with
open testing policies than with higher testing rates. The non-pharmaceutical
intervention most correlated with epidemiological change is workplace clos-
ing. LMICs have the testing capacity to measure prevalence with precision
if they use randomized testing. Rwanda stands out as a country with an effi-
cient COVID-19 surveillance system. Sub-national data reveal heterogeneity
in epidemiological dynamics and surveillance.

0.4. Interpretation

Relying solely on case counts to interpret pandemic dynamics has important
limitations. Normalizing counts by testing rate mitigates some of these limi-
tations, and open testing policy is key to efficient surveillance. Our findings
can be leveraged by public health officials to strengthen COVID-19 surveil-
lance and support programmatic decision-making.

0.5. Funding

This publication is based on models and data analysis performed by the
Institute for Disease Modeling at the Bill & Melinda Gates Foundation.
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Research in Context

Evidence before this study

We searched for articles on the current practices, challenges, and pro-
posals for COVID-19 surveillance in LMICs. We used Google Scholar
with search terms including “COVID surveillance.” Existing studies
were found to be qualitative, anecdotal, or highly location-specific.

Added value of this study

We developed a quantitative method that makes use of limited infor-
mation available from LMICs. Our approach improves interpretation
of epidemiological data and enables evaluation of COVID-19 surveil-
lance dynamics across countries.

Implications of all the available evidence

Our results demonstrate the importance of open testing for strong
surveillance systems, bolstering existing anecdotal evidence. We show
strong alignment across LMICs between workplace restrictions and epi-
demiological changes. We demonstrate the importance of considering
sub-national heterogeneity of epidemiological dynamics and surveil-
lance.

> 1. Introduction

s The virus known as SARS-CoV-2 was first identified in Wuhan, China in De-
+ cember 2019. Since then, countries have scrambled to monitor the severity
s and trajectory of the COVID-19 outbreak and to control its progression using
s non-pharmaceutical interventions (NPIs). Disease surveillance has mostly
7 relied on case counts to inform public health policies.! There has not, how-
s ever, been a robust evaluation of case counts as a metric for epidemiological
o dynamics, nor the varied surveillance approaches used to track disease tra-
10 jectories.

u Case-based surveillance systems have known weaknesses, including the strong
1> influence of testing rates, which vary widely across space and time.? Case


https://doi.org/10.1101/2021.02.11.21251590
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.02.11.21251590; this version posted February 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

13 counts can be inconsistently measured, testing capacity limited, and eligibil-
14 ity policies variable. It is critical to understand the limitations of available
15 data and to identify metrics that are robust to these challenges, particularly
16 for low- and middle-income countries (LMICs).

v There is general recognition that surveillance system performance can be
18 a challenge in LMICs, and that understanding disease surveillance is key
1 to system improvement and production of representative data.® Existing ef-
20 forts to evaluate LMIC surveillance systems, however, are largely qualitative,
2 country-specific, or based on commentary.* Further, most national-level
» studies of NPI impacts focus on high-income countries,” ! but there is evi-
» dence that these insights cannot be readily generalized to LMIC settings. 2
2 This leaves an important knowledge gap in understanding how to evaluate
»s and interpret COVID-19 epidemiological data from LMICs.

s 'To address the gap in systematic interpretation and evaluation methods, we
a7 leverage statistical analysis techniques to detect changes in underlying prop-
s erties of COVID-19 time series surveillance data across 31 LMICs. With this
2 information, we categorize detected change points as likely driven by epi-
s demiological changes or non-epidemiological influences such as noise. This
a1 provides a quantitative and automated approach to analyzing epidemiolog-
2 ical surveillance data. We make use of imperfect information despite data
13 weaknesses, deriving insights from information available in LMICs that may
s otherwise be overlooked. The approach is fast and highly portable, well
55 suited to looking across countries, and has minimal data requirements.

s In this article, we first present the methods for our analysis, including the
s statistical model, change point categorization, and evaluation of epidemio-
s logical change co-occurrence with NPIs. We follow with validation of our
s method, the usefulness of open testing, comparisons of country surveillance
w0 characteristics, and consideration of sub-national dynamics. Finally, we elab-
s orate on the significance of our results, broader conclusions, and relevance
22 for public health applications.
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s 2. Methods

s The methods are outlined in Figure 1 for two example countries: South Africa
s and Bangladesh. Details about each step are presented in the following sub-
s sections.

South Africa Bangladesh
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Figure 1: Methods Overview. Time series for cases (orange), tests (blue) and positivity
(green) for case study countries South Africa and Bangladesh. Vertical lines indicate
detected change points on each series. National changes in testing policy are shown as
blue bars; see Section 2.1 for policy descriptions. Positivity change points are overlaid
with case and test changes. Change points from the three time series are grouped in time;
shading on positivity changes indicates grouping tolerance. Category labels for change
point groups are shown above positivity and described in Figure 2. Black arrows indicate
NPI changes; arrow direction indicates increase or decrease in stringency. For categories D
and E, Y(es) and N(o) in boxes below positivity indicate whether there is a co-occurring
NPI change inverse to the change in slope of positivity.
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s 2.1. Data

s We use national-level case and testing data as well as records on national
w policies for testing and NPIs.'31* We calculate test positivity by dividing
so case rate by test rate. Testing policy is indicated by ordinal values: zero
51 indicates no testing policy; one indicates testing of those with symptoms
2 who meet specific criteria (e.g. known contact with a positive individual);
53 two indicates testing of any symptomatic individuals; three indicates open
s« public testing. For South Africa, we also use provincial-level data on COVID-
55 19-confirmed deaths, cases and testing rates, and excess mortality. 518

s We selected countries for analysis based on three conditions: available case
s» data, available testing data, and human development index (HDI) score. Of
ss those with data, we included the countries in the lowest third of HDI score,
so all of which are considered low- or middle-income in 2020-2021 by the World
s Bank. All data used in this research are public. Further details on data and
&1 definitions found in Appendix A.1l.

o2 2.2. Change point detection

o3 2.2.1. Pruned Ezact Linear Time (PELT) change detection

s« Change point detection is a set of approaches for identifying points in time
s where the statistical properties of a time series change.'® We apply change
e point detection to epidemiological time series (cases, tests, and positivity)
e and national policy time series; details in Appendix A.2. Without a priori
¢ knowledge of the appropriate number of changes, the PELT algorithm must
s be assigned a penalty for the number of changes to identify. In the absence
70 of an established method for this parameterization when working across time
n series, we developed a novel systematic approach for penalty selection which

72 enables comparison among time series and countries; described in Appendix
73 A3

u 2.2.2. Method validation

7 We applied PELT to synthetic data generated by the stochastic agent-based
75 Epidemiological Modeling software (EMOD),?° verifying PELT as a robust
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77 method for change detection in epidemiological time series. The EMOD
7z model used for our validation analysis is parameterized to represent transmis-
70 sion characteristics in Ethiopia. The model scenario inputs include step-wise
so increases in social distancing stringency, along with temporary decreases in
&1 stringency representing immunization campaigns. The model outputs a sim-
&2 ulated time series of cases per thousand people. The change point detection
&z methods described above are applied to the seven-day mean of the case rate
s« time series to align with the data smoothing used with our empirical time
85 Series.

s 2.3. Change type categorization

sz Change detection identifies changes that may be related to data quality,
s stochasticity, and testing dynamics, in addition to epidemiological changes.
s We classify the likely cause of changes identified by the PELT algorithm based
o on which changes co-occur. This categorization simplifies the interpretation
a1 of epidemiological surveillance, separates signal from noise, and enables broad
e comparison across countries and testing dynamics.

s We combine detected change points across cases, tests, and positivity time
u series to create change point groups. The tolerance for temporal association
s is set at + seven days to account for seven-day smoothing and weekly data
o6 reporting practices. These change groups are then categorized as shown in
o Figure 2, with details of the interpretation described in Appendix B. To
e capture all changes that may be epidemiological, we include both categories
o D and E as epidemiological change in our analysis. We note that these cate-
wo gories are heuristically defined, however they are informed both by validation
1w using the EMOD simulations and a qualitative understanding of epidemio-
2 logical surveillance dynamics.
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(A) c / . / B Single variable change Data issues/noise
(B) Cc + . Cases and tests move together | Likely non-epi
©) . + P Tests drive positivity change | Likely non-epi
(D) c + P Cases drive positivity change | Likely epi

(E) c + . + [P Cases, tests, positivity change | Confounded

Figure 2: Summary of change group categories as determined by their constituent time
series changes. Cases, tests, and positivity time series are indicated as orange, blue, and
green, respectively. Details of the category interpretations are described in Appendix B.

ws  2.4. NPI alignment

e Change points classified as epidemiological are then assessed for whether they
s are associated with NPI changes. Timings of known NPIs are lagged by nine
ws days to account for virus incubation time and the delay from symptom onset
107 to test-seeking.?! We consider a change point to be aligned with an NPI when
s two conditions are met: 1) an epidemiological change co-occurs with an offset
1w NPI and 2) the change in NPI stringency is inverse to the concurrent change
no in positivity slope. The second condition includes occasions when stringency
m was increased and positivity decreased, as well as occasions when stringency
12 decreased and positivity increased.

13 3. Results

us  3.1. Synthetic modeling validates Pruned Exact Linear Time (PELT) is a
115 robust method for change detection in epidemiological time series.

ue Before applying the PELT method to the surveillance data, we validate its
uz applicability for epidemiological systems. We apply PELT change detection
us to data from the transmission model described in Section 2.2.2. PELT suc-
no cessfully identifies step changes in NPI policies and slope changes in case
o rate, Figure 3.
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121 While detection of NPI changes is consistent across a range of PELT penal-
12 ties, change point detection is sensitive to parameterization when applied to
123 the case rate time series, Figure 3B. When implemented with a high penalty
s (i.e. fewer change points), the PELT algorithm successfully identifies changes
s corresponding to the large-scale social distancing policies and changes in the
126 basic shape of the case curve. With this penalty, it does not detect the rela-
127 tively transient effects of the immunization campaigns. When parameterized
s with a low penalty (i.e. more change points), the PELT algorithm identifies
129 the immunization campaigns as well.
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Figure 3: Synthetic model time series; detected change points shown as vertical dotted
lines. A) Imposed policy inputs to model: social distancing (purple) and immunization
campaigns (brown). Short-term immunization campaigns represented by a switch in the
immunization time series from one to zero. B) Model output: case rates over time. Upper
plot shows detected change points using a high penalty, thereby promoting sparse change
point detection. Lower plot shows detected change points using a low sparsity penalty.

o 3.2. Testing rates and policies impact how surveillance measures should be
131 interpreted.

12 We illustrate the relevance of testing rates and the influence of testing policy
133 using time series for Bangladesh in the context of local events (Figure 1).
14 Case rates peaked in early July, an apparent epidemiological turning point if
135 case rates were considered alone. Simultaneously, however, there was a new
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13 policy implemented to charge for testing and thus a decline in testing rate.?
13z This resulted in no change in positivity and contradicts the interpretation of
s the case reduction as a declining outbreak. Similarly, the dip in case rate in
130 early August was accompanied by a dip in testing rate during the Eid al-Fitr
1o holiday; again there is no change in positivity.

11 While this recommends positivity as a surveillance metric instead of case
12 counts alone, further consideration of testing policy complicates the picture.
13 Test eligibility in Bangladesh is based on symptoms rather than open testing,
s meaning that positivity is influenced by the prevalence of both COVID-19
s and other respiratory illnesses. This limits the potential for positivity to de-
us tect epidemiological changes, and indeed, the positivity curve for Bangladesh
w7 is largely flat. An elaboration of COVID-19 surveillance considerations ap-
us pears in Appendix C.

u  3.3. Epidemiological change detection is more influenced by testing policy
150 than by testing rate.

151 For all 31 LMICs in our dataset, we apply PELT change detection and change
12 point categorization. We quantify surveillance system efficiency as the per-
153 centage of all detected change points classified as epidemiological, i.e. epi-
15« demiological change detection rate. We compare linear fits of epidemiological
155 change detection by testing rate and by testing policy (Figure 4). Results
155 indicate that the ability to identify epidemiological changes has a stronger
157 relationship with testing policy than with testing rate. Open testing is the
158 only testing policy bin with a mean or median epidemiological change detec-
10 tion rate as high as 50%, but with a wide range, indicating that open testing
160 policy is necessary but not sufficient for quality surveillance (with outlier
161 exceptions).

10
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Figure 4: Percent of detected changes categorized as epidemiological for each country by
testing rate (left) and binned by testing policy (right) at the time of change detection.
Linear regression shown as dotted line on left. Box and whisker plots on right show
quartiles, range, and median with means plotted as gray diamonds. Note that binned
calculations cause the maximum epidemiological change detection rate to differ between
the two plots.

12 Further, LMICs have the testing capacity to measure prevalence with pre-
13 cision. Based on the 95th percentile of their daily testing rates, nearly all
e LMIC countries could measure down to 1% prevalence with a margin of er-
165 ror no larger than +£1% if testing were randomly sampled (Figure 5). Only
166 three countries hover around the margin of error to prevalence ratio of one:
17 Malawi, the Democratic Republic of Congo, and Togo. Note that true ran-
s dom sampling is difficult to achieve in any setting, but open testing policies
10 can approximate random sampling more closely than symptomatic testing.

11
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Figure 5: Margin of error for random sampling of 1% prevalence plotted by 95th percentile
of national testing rate and population of each country in our dataset. See Appendix D
for details on standard error calculations.

w  3.4. Change detection rates and NPI alignment frequency vary across LMICs.

i Figure 6 shows frequencies of change category detection across countries.
12 Rwanda is an outlier with high epidemiological detection accompanied by low
173 non-epidemiological and noise detection rates. High rates of noise detection
s are generally associated with low rates of epidemiological change detection,
175 whereas the relationship between noise detection and non-epidemiological
e change detection is not consistent.

12
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Figure 6: Change type ratios by country. The sum of categories D and E (considered
epidemiological changes) normalized by the total number of changes per country on the
y-axis. Category B (non-epidemiological) change detection rate on x-axis. Category A
(noise-related) change detection rate shown in color.

w7 Figure TA shows the wide variation of epidemiological change detection rates
s across LMIC countries, with Rwanda the highest and Ethiopia the lowest.
o The percentage of NPIs that are aligned with an epidemiological change is
1o shown in Figure 7B, again led by Rwanda. Note that Rwanda performs well
11 by these metrics regardless of change detection parameterization, Appendix

182 A4

13
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Figure 7: Epidemiological change detection rates (A) and NPI alignment rates (B) by
country.

83 3.5. Alignment with detected epidemiological changes varies by NPI type.

18« The NPIs most frequently aligned with epidemiological changes are work-
155 place closures, public transport closures, and stay at home requirements.
185 The percentage of these NPIs that are aligned with epidemiological changes
w7 are 15-1%, 14-3%, and 12-2%, respectively. Note that there are substantially
188 fewer total public transit NPIs than workplace closures and stay at home

14
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19 requirements. Cancelling public events has the lowest frequency of epidemi-
10 ological alignment at 6-12%, and also the fewest number of implementation

101 incidences.

NPI alignment by type

15%

ARARALES! B

Aligned / Total NPI type
Total NPI by type

Figure 8: The percentage of each type of NPI aligned with an epidemiological change.
Color indicates the total number of each type of NPI across all countries; error bars show
standard error. NPIs include both easing and tightening of policy restrictions.

12 3.60. National-level results obscure sub-national heterogeneity in epidemiolog-
193 ical dynamics and surveillance.

s To investigate sub-national heterogeneity, we conduct the same analyses as
15 above, but at the province level in South Africa. Figure 9A shows substantial
106 variability in provinces both by NPI alignment rate and by epidemiological
17 change detection rate. In line with results from national-level data, epi-
108 demiological change detection rate is not correlated with mean testing rate.
19 Because of reporting limitations, the NPIs here are national policies only.

20 We select three edge cases from the scatter plot in Figure 9A (Limpopo,

15
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20 Northern Cape, and Western Cape) to compare time series of positivity,
20 COVID-19-confirmed deaths, and total estimated excess mortality (Figure
203 9B). The differences in the timing and trajectories of the time series illustrate
204 strong sub-national variability in underlying epidemiological dynamics that
205 are may be overlooked when time series are aggregated to the national level.

26 Variation among provinces in the difference in magnitude between excess
207 mortality and COVID-19 deaths points to differences in their surveillance
208 systems. Western Cape is the only province where the magnitude of excess
200 deaths resembles that of COVID-19-confirmed deaths throughout the time
20 series. In Northern Cape, the peak of excess deaths is roughly a factor of
au three higher than the COVID-19-confirmed deaths, suggesting substantial
212 under-reporting.

16
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A) Aligned NPIs vs. Epi changes
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Figure 9: A) South African provinces by aligned NPT fraction versus epidemiological de-
tection rate with mean testing rate in color. B) Time series from three example provinces.
Positivity shown in green on left y-axis. Deaths shown on the right y-axis: excess mortality
in black; COVID-19-confirmed deaths in brown.
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213 4. Discussion

aa We have demonstrated a standardized and quantitative approach to ana-
25 lyzing epidemiological surveillance time series that can be automated for
216 improved interpretation and comparison between countries. We find that in-
217 terpretation of epidemiological trajectories are more informative when cases
218 are normalized by tests and highlight the disadvantages of symptomatic test-
210 ing for outbreak tracking and public health purposes. These findings align
20 with literature emphasizing the importance of positivity and test sampling
o strategies.?*?* Our finding of a strong alignment of workplace closing with
222 epidemiological changes is consistent with existing literature on global NPI
»s impacts. 22526 When we apply our analysis of change types to evaluate the
2 efficiency of national surveillance systems, we find that Rwanda stands out as
25 a country with a strong surveillance system, which is consistent with current
26 qualitative evaluation.?”

27 Our approach substantially broadens the scope of previous analyses of COVID-
2s 19 surveillance data in LMICs. We use statistical change detection methods
29 on COVID-19 surveillance time series from 31 LMICs to differentiate epi-
230 demiological changes from changes related to stochasticity, data quality and
231 non-epidemiological dynamics. This maximizes the insights gained from lim-
2» ited data, reduces erroneous interpretations of epidemiological time series,
213 and enables quantitative comparisons of disease surveillance approaches. We
2 use epidemiological change detection rate as a proxy for surveillance system
235 efficiency, and show that epidemiological change detection is not as strongly
236 associated with testing rate as with open testing policies. There is substan-
237 tial variation in epidemiological and surveillance dynamics across countries
23 and in our sub-national analysis.

230 There are limitations in our analysis related to the data themselves as well
20 as our methods. Simultaneously, these data challenges are precisely the mo-
2 tivation for developing our methods: maximizing information with limited
22 data. Our data are potentially biased by unmeasured factors such as fluctu-
23 ations in testing capacity and undocumented population sampling strategies
24 over time, delays and temporal uncertainty due to reporting systems, and
a5 incentives for case-finding. Defining co-occurrence when working with im-
us precise time series is a challenge, which we partially mitigate by considering
27 uncertainty bounds when defining change groups. We emphasize, of course,
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25 that co-occurrence does not establish causality. In PELT change detection,
29 the changes detected are influenced by the choice of the sparsity parameter.
0 In a sensitivity analysis of our novel parameterization approach, however,
1 we find that Rwanda remains the leader in surveillance system performance,
2 regardless of the parameterization choice.

3 Results from this analysis highlight that surveillance data must be used care-
4 fully to ensure proper programmatic responses. As a sufficient and less
255 Tesource-intensive approximation of random sampling, open testing would
»6 enable better estimation of disease prevalence and examination of NPI im-
57 pacts in geographies without reliable hospitalization data, death records, or
s seroprevalence surveys. NPIs without epidemiological changes may indicate
0 inefficacy of policy, but may also indicate shortfalls of surveillance systems,
0  which undermines policy makers’ ability to make evidence-based decisions.
1 Our methods could be further developed and applied not just to COVID-19
x2  but also to surveillance interpretation for other poorly measured diseases, en-
%3 abling more informed decision-making and targeted improvements in surveil-
x4 lance systems.
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o2 Appendix A. Methods

oz Appendiz A.1. Data and definitions

an The case rate is defined as the number of individuals confirmed positive
s for the SARS-CoV-2 virus per population, regardless of symptoms. The
z6  testing rate per population is defined as the number of people tested (i.e.
xr - excluding duplicate confirmatory tests) divided by the population, regardless
s of the test outcome. To address the dependence of case rate on testing rate,
79 we normalize case counts by the number of tests conducted, creating the
0 alternate metric of test positivity rate.

251 For the purposes of comparing between countries and over time, we define the
22 ‘mean testing policy’ as the average over time of the ordinal value represent-
263 ing the national testing policy. Thus, lower values represent more restricted
280 testing over longer periods of time. Social distancing policies tracked in the
285 dataset include the following: closing schools, closing workplaces, cancelling
26 public events, restricting gathering sizes, closing public transport, stay at
27 home requirements, restricting in-country mobility, and restricting interna-
28 tional travel.

0 Weekly cases, testing, and death data are interpolated using a cubic spline.
200 All daily cases, testing and death data are smoothed using a centered seven-
21 day rolling average. Error bars on plots show standard error.

200 Appendiz A.2. PELT change detection

23 The naive approach to generating an exact solution to time series segmenta-
204 tion is to test all possible solutions. For an unknown number of changes, this
205 also requires testing a sufficiently large set of possible number of changes.
206 We use the Pruned Exact Linear Time (PELT) change detection method to
207 address these computational tractability issues.

2s  PELT minimizes the sum of costs from a criterion function across time series
200 segments while balancing model complexity by implementing a linear penalty
50 function and change point pruning. At each iteration of cost minimization for
;o0 a potential set of change points, time points that cannot be a global minima
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52 are removed from future consideration. The PELT method, developed with
303 applications in genetics and finance in mind, is increasingly used for climate
¢ and epidemiological applications. 2830

s To detect changes in slope of the epidemiological time series, we use the
206 first derivative as input for the PELT algorithm. For detection of discrete
37 step changes of policy time series, we feed the data directly into the change
w8 detection algorithm without taking a derivative. For all time series, we use
500 the radial basis function kernel for the PELT detection algorithm.

s Appendiz A.3. PELT parameterization

su  To date, there is no established method for parameterizing the PELT change
sz density penalty across time series when the number of changes is not known.
sz One of the ways to choose penalty values across time series would be to unify
s the number of changes detected in each time series. This, however, imposes
a5 the assumption that all time series exhibit the same general change frequency
a6 and it is only the point in time of a change that is unknown, rather than the
sz number of changes.

s1s We present here a novel approach for systematic parameterization when iden-
s tifying an unknown number of changes in slope over many time series, as in
w0 our case with multiple epidemiological time series across countries. To ac-
;1 complish this, we first conduct change detection in a sweep over parameter
12 space. The change points detected using a given value in parameter space
s23  slice the time series into segments, each of which is input into a linear re-
24 gression. The standard error for each of those linear regressions is calculated
»s and then averaged, weighted by segment length.

s The mean standard error associated with each penalty value, when plotted
37 over parameter space, is characterized by a series of plateaus that correspond
»s to plateaus in the number of changes found with each penalty value, Figure
»9  A.10, top row. Descending through penalty values in the penalty parameter
10 space, the lowest penalty associated with each plateau is selected to represent
s that plateau.

;2 Each time series is thus associated with a sparse set of penalty values, ordered
;3 from largest penalty (low change point density) to smallest penalty (high
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;3¢ change point density). The penalty values are unique to each time series,
15 but represent the same ordered progression of plateaus. To illustrate, change
16 detection with different ranked penalties for South Africa and Bangladesh
s are shown in green in Figure A.10.

18 Penalty values for each unique time series can then be chosen based on their
;30 order in the ranked plateau list. This enables a principled approach to pa-
uo  rameterization that creates change density parity across time series, allowing
s for the likelihood that some time series are characterized by more changes
sz than others. Among all time series and countries in our analysis, the min-
w3 imum number of plateaus detected is four. We therefore choose the fourth
sus  penalty value for all time series.
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Figure A.10: Top row: change detection results over parameter space for the positivity
time series of South Africa (left) and Bangladesh (right). For each penalty value, the
associated number of changes is plotted in purple on the left y-axis and the mean standard
error of linear regressions of the time series segments are plotted on the right y-axis. The
parameter values selected to represent plateaus are shown as brown dotted vertical lines.
Bottom row: positivity time series for South Africa (left) and Bangladesh (right) plotted
with detected changes as vertical lines for each of the four penalty values selected to
represent, plateaus in the top row.

us  Appendiz A.4. Parameterization sensitivity analysis

us To evaluate the influence of penalty selection on our analysis results, we con-
a7 duct a parameterization sensitivity analysis. We compare results of country
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us  ranking by epidemiological change detection rate for different penalty plateau
s selections. Skipping penalty rank one for which no changes may be detected
30 (see examples in Figure A.10), we find that regardless of which penalty rank
i1 we use, Rwanda appears at the top of the list with the highest epidemiological
2 change detection rate.

A) Percent of total changes categorized as epidemiological
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Figure A.11: Countries ranked by epidemiological change detection rate, as in Figure 7,
shown for different choices of penalty parameterization. Order top to bottom follows order
of time series of Figure A.10, without rank one for which there are often no changes.
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i3 Appendix B. Change categorization

s Appendixz B.1. Heuristic interpretation

15 Detected change points across cases, testing, and positivity time series are
16 combined into groups by temporal co-occurrence. These groups are then
7 categorized by their constituent time series, Figure 2. Dynamical interpreta-
s tion of the constituent time series aids in the characterization of each change
30 group category, as follows:

30 A) Single variable change: Because positivity is defined according to the

361 arithmetic relationship, Positivity = Cases/Tests, a change in any one
362 of the variables should be accompanied by a change in at least one of the
363 other variables. A single change in only one of the variables indicates that
364 the change arises from issues in the data or noise. These single variable
365 changes often occur early in the time series, when the numbers of cases
366 and tests are smaller, signal to noise ratios are lower, and confidence
367 intervals are larger.

s B) Cases and tests change: Tests and cases move up or down together.
369 What might look like a significant change in cases is associated with a
370 change in testing, likely not a change in epidemiology. Factors affecting
371 testing include testing capacity, care-seeking behavior, and testing sam-
372 pling policy. With this change category, the change in testing could be
373 a change in capacity or care-seeking, but the lack of change in positiv-
374 ity indicates testing is still sampling the same population the same way;,
375 without changes in epidemiology.

ws C) Tests and positivity change: Positivity change is driven by testing change,
377 not a change in cases. An increase or decrease in testing does not impact
378 absolute numbers of detected cases, which suggests a change in test sam-
379 pling. Dynamics that would produce this pattern include, for example,
380 adding population with lower prevalence in the case of open testing, or
381 limiting testing to a higher-prevalence population in the case of symp-
382 tomatic testing. It is also possible, however, that a change in testing
383 sampling masks a simultaneous change in epidemiology. In this situa-
384 tion, the change in testing would have to precisely offset the change in
385 epidemiology to observe this category of change association. Category C
386 is thus designated to likely indicate a non-epidemiological change.
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37 D) Cases and positivity change: Positivity change is driven by a change in

388 cases without a change in testing. This suggests a change in epidemiology;,
389 but the significance may be different under random vs. symptomatic test-
390 ing. Under random testing, this type of change arises only with a change
301 in SARS-CoV-2 epidemiology. Under symptomatic testing, the restric-
302 tion of sampling to CLI means that a change in the epidemiology may
303 be confounded by a change in CLI epidemiology. Note also that symp-
304 tomatic testing captures changes only in symptomatic SARS-CoV-2 (i.e.
305 cases of COVID-19). Another possible explanation for this combination
306 of changes is a change in sampling without a change in the absolute num-
307 ber of tests. This might occur, for example in a switch from symptomatic
308 to open testing. For this reason, we categorize this change combination
399 as likely instead of certainly epidemiological.

wo E) All three variables change: With a change in cases, tests, and positivity, it
401 remains difficult to disentangle epidemiological from non-epidemiological
a02 factors. Category E can be considered a combination of categories C and
403 D, and the testing and case changes may or may not be independent. To
a04 capture all changes that may be epidemiological, we consider categories
405 D and E to be epidemiological changes, and categories A, B, and C to
406 be non-epidemiological changes.

7 A principal component analysis (PCA) supporting the separability of change
ws categories is detailed in Appendix B.2.

4

o
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wo  Appendixz B.2. PCA analysis of change categories

A) PCA component variance B) PCA loadings
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Figure B.12: PCA of countries by change category detection rate (i.e. number of changes in
each category divided by total changes detected for each country). A) Explained variance
ratio by PCA component number; B) PCA factor loadings by change categories.

a0 In addition to the dynamical interpretation of constituent time series (Ap-
a pendix B), we show the separability of change categories with a principal
a2 component analysis (PCA). The surveillance results of different countries are
a3 quantitatively characterized by a PCA of the relative frequency with which
s they detect different categories of changes. The PCA establishes how cate-
a5 gories do or don’t represent axes of difference across countries.

a6 Based on the curve of explained variance ratio by PCA components (Figure
a7 B.12A), we choose the first three PCA components to examine factor loadings
ss  (Figure B.12B). Each component is dominated by a single category, in PCA
so component order: category D (epidemiological change); category B (testing
20 artifacts); and category E (confounded). Each of these PCA components
a1 is anti-correlated with category A (noise). These relationships among the
a2 different change categories is consistent with our dynamical interpretation.
23 Figure B.13 shows the frequencies of change categories for those categories
24 that dominate the factor loadings for all countries in our dataset.
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Figure B.13: Change category frequencies by country for categories D, B, and E, chosen
according to the dominant categories in the PCA factor loadings.

o5 Appendix C. Surveillance considerations

w26 Below we lay out in basic terms considerations for three components of SARS-
27 CoV-2 epidemiological surveillance: population, testing, and their role in
w8 surveillance metrics. We demonstrate that the testing strategy of random
w9 testing with the surveillance metric of positivity is the combination that best
a0 represents SARS-CoV-2 prevalence. Here we use the terminology of SARS-
s CoV-2 to include all asymptomatic and symptomatic infections.

12 Population is composed of people with and without SARS-CoV-2. Of those
a3 with SARS-CoV-2, some are asymptomatic, some are symptomatic. Of those
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sa without SARS-CoV-2, some are non-symptomatic, others have symptoms of
i35 non-COVID-like-illness, and some have COVID-like-illness (CLI) symptoms.

ss  Relevant components of testing include eligibility for testing under a given
w7 testing framework, as well as testing rate and capacity. Under random sam-
s pling, the general population is eligible for testing; symptomatic testing re-
a0 stricts eligibility to people with CLI symptoms. Testing rate is a measure
a0 of tests conducted per total population, while testing capacity indicates the
a1 proportion of eligible individuals who are actually tested.

a2 Detected cases as a surveillance metric is a function of number of tests, the
w3 eligible testing pool, and the total cases within the testing pool. Positivity
wa 18 defined as detected cases per tests conducted.

us  Applying these formulations to surveillance metrics, we can see that detected
us cases under symptomatic testing is not only a function of number of tests
a7 conducted, but also of the number of individuals exhibiting CLI symptoms.
ws  CLI in turn is a function of non-SARS-CoV-2 CLI and symptomatic SARS-
o CoV-2.

w0 Positivity under symptomatic testing is normalized for number of tests con-
st ducted, measuring not general prevalence in the population, but the portion
2 of CLI that is symptomatic COVID-19. Metrics derived from symptomatic
i3 testing do not account for asymptomatic SARS-CoV-2 and are confounded
s by non-SARS-CoV-2 CLI.

5 As with symptomatic testing, detected cases under random testing are a
sss  function of number of tests. The sampling, however, is taken from the gen-
«s7 eral population, and thus positivity under random testing is a metric that
w8 Trepresents prevalence.

w0 As tests approach eligible under symptomatic testing, cases detected equals
w0 CLI COVID-19 cases. Note, however, that testing coverage (i.e. tests/eligible)
w1 is not only influenced by the number of tests processed, but also reporting
w2 rate. Who shows up for testing is a subset of the people who would be eligible
w3 for testing.

s Assuming capacity to test all eligible individuals and perfect reporting rates,
w5 symptomatic testing would still yield only the number of symptomatic COVID-
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w6 19 cases. For random testing, testing rate is equivalent to testing coverage,
w7 and case counts depends on testing. The random testing positivity metric
w8 does not depend on testing rate, and captures both symptomatic and asymp-
w0 tomatic COVID. The relationship shown empirically in Section 3.3 wherein
a0 increasingly open testing policies are associated with increasingly effective
an  epidemiological change monitoring supports the equation-based result that
a2 random testing is more suited to epidemiological surveillance.

Population components:

Population = SARS-CoV-2 + Non-SARS-CoV-2
SARS-CoV-2 = SARS-Co V-2 4sympt + SARS-Co V-2 gyt
Non-SARS-CoV-2 = Non-SARS-Co V-2 0n-sympt
+ Non-SARS-Co V-2 sympt_non-cri
+ Non-SARS-Co V-2 sympt cLI

Testing components:

Eligible,qnqg = Population = SARS-CoV-2 4+ Non-SARS-CoV-2
Eligiblegymp = CLI = Non-SARS-CoV-2sympt crr + SARS-Co V-2 gy
testing_rate = Tests/ Population

testing_coverage = Tests/Eligible
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Surveillance metrics:

Casesiprg = SARS-CoV-2

Cases
Cases = Tests ¥ ————
detected Elzgzble
Casesgetected Cases
Positivity = =
Y Tests Eligible
Symptomatic testing:
Cases "
Ca'sesdetected,sympt = TeStssympt * #
L Casessympt
Positivitysymp: = —COLI
Random testing:
Casesioral
Casesdetected,rand = TeStsrand * —O-G
Population
. Cases
Positivity,eng = —tOtal = Prevalence
Population

a3 Appendix D. Summary statistics

s For the purposes of understanding the sensitivity of a given level of testing,
a5 we define the standard error for positivity, as number of positive tests per
a6 total number of tests, we calculate standard error as follows:

_ /pl—=p) N-n
SE_\/ N N1

ar Where n equals total number of tests, N equals population, and p equals the
s number of positive tests per the total number of tests. The corresponding
a0 margin of error equals one-half the confidence interval, and when calculated
0 at the 95% confidence level is as follows:

ME(95%) = 1.96 x SE
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w1 Note that this formulation of confidence interval is not reliable when number
w2 of tests is very small, or probabilities are very close to zero or one. Un-
w3 der the condition of true random testing, positivity is a direct measure of
s prevalence. At any given prevalence, margin of error can be calculated for
s the number of tests administered and the total population. This calcula-
s tion is carried out for all LMIC countries in our dataset. Margin of error is
s then normalized by the given prevalence rate. Based on these relationships,
s ME(95%)/Prevalence is higher at lower prevalence. In other words, precise
10 measurement becomes increasingly more difficult as prevalence decreases.
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