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ABSTRACT 

Background: Digital health applications can improve quality and effectiveness of healthcare, by 

offering a number of tools to patients, professionals, and the healthcare system. Introduction of new 

technologies is not without risk, and digital health applications are often considered a medical device. 

Assuring their safe operation requires, amongst others, clinical validation, which needs large datasets 

to test their application in realistic clinical scenarios. Access to such datasets is challenging, due to 

concerns about patient privacy. Development of synthetic datasets, which will be sufficiently realistic 

to test digital applications, is seen as a potential alternative, enabling their deployment.  

Objective: The aim of work was to develop a method for the generation of realistic synthetic datasets, 

statistically equivalent to real clinical datasets, and demonstrate that Generative Adversarial Network 

based approach is fit for purpose.  

Method: A generative adversarial network was implemented and trained, in a series of six experiments, 

using numerical and categorical variables from three clinically relevant datasets, including ICD-9 and 

laboratory codes from the MIMIC III dataset. A number of contextual steps provided the success criteria 

for the synthetic dataset.  

Results: The approach created a synthetic dataset that exhibits very similar statistical characteristics 

with the real dataset. Pairwise association of variables is very similar. A high degree of Jaccard 

similarity and a successful K-S test further support this.  

Conclusions: The proof of concept of generating realistic synthetic datasets was successful, with the 

approach showing promise for further work.  
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INTRODUCTION 

Digital health has seen a continuously increasing number of innovative applications, aiming to improve 

all aspects of one’s health and care; such as safety, efficacy and monitoring of care plans, empowerment 

of the patient to manage their own condition, as well as discovery of new clinical knowledge. These 

innovations have been made possible by applying state-of-the-art computer science, data science, and 

software engineering technologies in healthcare, resulting in applications such as automated diagnosis, 

self-monitoring, telehealth and clinical decision support. Applications can vary from simple statistics 

viewers, to symptom checkers and diagnostic services, used in both primary and secondary care. Their 

integration with clinical pathways can be seen as introducing Clinical Decision Support (CDS). Failures 

in their operation may cause harm to patients. For example, by offering incorrect advice, by making the 

wrong diagnosis, or recommendation to a healthcare professional. This potential for harm is 

increasingly recognised and has been incorporated in regulation, where software is seen as a medical 

device [1,2,3]. Software applications may expose patients to risks, due to unintended or erroneous 

behaviour, or lack of clinical validation that may create unknowns, in whether these applications are 

fit-for-purpose and acceptably effective. Understanding risks and establishing clinical validation is 

necessary, for software manufacturers to be able to meet certification and regulation requirements, in 

order to offer their products to the healthcare system and patients. Clinical validation entails comparing 

the application against datasets, typical of the patients who will use it. This can be problematic as large 

patient datasets are not readily available to manufacturers due to regulations and law governing patient 

privacy [4]. The problem is aggravated, as datasets need to be suitable for the context of an application, 

with manufacturers often resorting to buying compiled data. An increasing number of applications 

requiring datasets also increases demand and hence waiting times. Furthermore, even if manufacturers 

can access data, either through a source or produced by themselves, validation is still difficult as the 

regulator will need to have access to the same dataset (or a common dataset based on which to exchange 

information about the fitness of the application). As a result, patients may be deprived of digitally 

enabled applications improving the healthcare quality they receive. Use of Realistic Synthetic Datasets 

(RSDs) is seen as a promising solution [5, 6, 7, 8, 11], addressing privacy challenges, whilst overcoming 

issues with alternatives; such as anonymized data that may skew the results of validation due to missing 

fields [4]. Natural Language Processing can enhance datasets by adding synthetic clinical notes, based 

on real records [9, 10]. RSDs consist of software-generated data points, which overall demonstrate 

equivalent statistical properties as a real clinical dataset. In the context of clinical validation, use of the 

two datasets should result in the same conclusions, with the same confidence. Contrary to using de-

identified or anonymized datasets, RSDs: 1) do not need prolonged preparation and approval process, 

something that is required even with anonymized data; 2) can include variables that may be considered 

sensitive with respect to patients’ privacy and are not included in anonymized and de-identified datasets; 

3) are highly resistant to cross-referencing with other datasets (although some concerns still remain to 
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be addressed). The most common approach, to developing synthetic datasets, looks at the associations 

and the distributions of variables of interest, and develops probabilistic models that will then generate 

the synthetic data [12-15]. A potential drawback of this is that they often use a driving variable, which 

is generated first, and then drives the associations with the others [8], potentially skewing the dataset to 

conditions represented by these variables, and omitting other variables that may hide unearthed 

associations.  

Machine Learning (ML) has been prominent in producing large RSDs, with similar statistical qualities 

to a real dataset on which they are trained [16, 17, 18]. Generative Adversarial Networks (GANs) are a 

ML approach based on neural networks, recently recognized as able to accurately mimic real datasets 

[19, 20, 21, 22]. GANs, in general, will start their training without relying on statistical models 

representing real dataset, and will establish the statistical properties of the real dataset [23]. This allows 

GANs to be ‘dataset agnostic’ and transferable across multiple datasets. Evaluating the performance of 

GANs requires focusing on statistical properties of the real and the synthetic dataset [24, 25]. This paper 

presents the results of a Realistic Synthetic Dataset Generation Method (RSDGM) using GANs, which 

generated a synthetic dataset suitable for validation of digital health applications.  

 

OBJECTIVES 

A proof of concept of producing realistic, large-scale, scalable, machine-learning generated datasets, 

for validation of healthcare applications used across all levels of care, including:  

- Realistic: the dataset will need to be statistically equivalent to real dataset.  

- Large-scale: the dataset will need to consist of a large number of entries and variables.  

- Scalable: the method should be scalable for larger datasets.  

- Machine learning generated: machine-learning (GANs) should be used to generate the 

dataset, and the optimum hyper-parameters need to be identified.  

- Validation of healthcare applications: the method should generate evidence justifying the 

suitability of the RSD to validate healthcare applications.  

- Levels of care: RSDs for primary as well as secondary care.  

 

METHOD 

The method (Figure 1) consists of four (4) main steps (1, 2, 3, and 4) and three (3) contextual steps (a, 

b, and c). The contextual steps provided the necessary framework for making methodological decisions.  
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Figure 1 – Overview of the Realistic Synthetic Dataset Generation Method (RSDGM) 

The method was defined iteratively over six main experiments (Table 1), each of which consisted of 

numerous runs, which allowed testing aspects such as the GAN hyper-parameters. For example, 

changing the hidden layers twice in experiment #3, which tested three different GANs in parallel, would 

result in six runs. All experiments were run on a computer with 2x Intel Xeon Gold 6144 3.5GHz, 3x 

Nvidia Quadro RTX5000, 8x16GB DDR4 2666MHz RDIMM ECC, and Windows 10 Professional for 

workstations. 

1. Data Scope and Output Definition 

This step defined the content and purpose of the dataset, providing the business goals for the 

experiments, and specifies the success requirements of the RSD:  

- The method needs to be easily scalable to re-train the dataset with additional variables. 

- Allow modelling of large number of variables.  

- Establish associations amongst all variables.  

- Produce both numerical and categorical values.  

- Allow the generation of clinical codes (e.g., ICD-9).  

Table 1 shows an overview of the experiments performed as part of developing the RSDGM. Three 

different datasets (NHS HES [26], NHS A&E [27]. and MIMIC III [28]) were used to ensure the 

transferability of the method. MIMIC III was considered the most complete dataset, and being open, 

was preferred for the final experiments.  
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Table 1 – Overview of the six experiments; the dataset used, the type of GAN implemented, the complexity added in each 

experiment and the approximate duration of each run in the experiment.  

Exp # Dataset Type of GAN Additional Complexity  Appx. Duration 

of a Run  

1 HES GAN Simple GAN, Numerical values.  10 mins 

2 MIMIC-

III 

GAN, CGAN, 

WGAN 

Multiple GAN implementations. Increase in 

epochs. 

25 mins 

3 MIMIC-

III 

GAN, CGAN, 

WGANGP 

Multiple GAN implementations, Increase in 

dataset, categorical values.  

45 mins 

4 A&E GAN, CGAN, 

WGANGP 

Dataset transferability 20 mins 

5 MIMIC-

III 

WGANGP ICD-9 codes. 8 hrs 

6 MIMIC-

III 

WGANGP Lab test codes, and association with ICD-9 

codes. 

12 hrs 

 

Experiment #1 focused on a vanilla GAN, with numerical values. Experiments #2, #3, #4 compared the 

implementations of three different GANs; a vanilla GAN (GAN) [30], a conditional GAN (CGAN) 

[31], and a Wasserstein GAN (WGAN) [32], subsequently implementing gradient penalty (WGANGP) 

[33]. The WGANGP was considered to have the best performance, and was selected for the last 

experiments, but with the added complexity of generating ICD-9 codes (exp. #5), and lab test codes 

(exp. #6).  

Context A: Scenarios of use: The main scenario was the validation of clinical decision support 

applications, providing recommendations to patients or healthcare professionals [29]. The scope 

encompassed both primary and secondary care. Primary care datasets focus on a relatively low number 

of variables (e.g., weight, age, diagnosis) generally describing bigger population. Secondary care 

datasets need a larger number of variables, relating to the protocol followed during the encounter of the 

patient, including lab tests.  

2. Data Pre-processing 

Pre-processing removed missing and duplicate data. Multiple categorical features were interpreted as a 

collection of binary features, with one-hot encoding. The input to this transformer is a matrix of integers, 

denoting the values of the categorical features. The output is a sparse matrix, where each column 

corresponds to one value of a feature. All variables of the training data are rescaled by applying 

standardisation. We multiply the forecast value of the standardised input by the standard deviation 

calculated in the original series, and then add the mean. Label encoder was used for the categorical 

variables to generate their combined pairwise correlations.  

There are two main challenges in incorporating lab codes and ICD-9 variables in the generation method. 

The first is the complexity of the variables. There are thousands of ICD9 codes in the dataset, providing 

a large amount of values for the GAN to synthesize. Furthermore, the diagnosis variable (where the 

ICD-9 codes are found) is a composite variable, consisting of multiple ICD-9 codes in simple text 
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format. The second is that the method needs to capture the associations between the individual ICD-9 

codes (e.g., co-morbidities of a patient), as well as the combination of ICD-9 codes with the patient 

demographics. In order to achieve an approach that is truly agnostic to the dataset, the method should 

not receive declared associations between these variables, but instead the GAN discern them during the 

learning process.  

In the experiments, we generated ICD-9 codes per hospital admission, using the DIAGNOSIS_ICD.csv 

file of MIMIC-III. In this, each patient has multiple hospital stays and each stay is associated with a 

unique ICD-9 code. The diagnosis variable was expanded in a separate matrix with length equal to the 

number of unique codes, containing binary values capturing the presence or not of an ICD-9 code (Table 

2).  

Table 2 - Excerpt of patient – ICD9 code matrix 

 ICD-9 Codes 

Subject 

ID 

Hadm 

ID 

42 135 486 1917 30401 40301 E8502 V502 … V721 

78 100536 1 0 0 0 1 0 1 0 … 0 

41 101757 0 0 0 1 0 0 0 0 … 0 

109 102024 0 0 0 0 0 1 0 0 … 0 

109 172335 0 0 1 0 0 1 0 0 … 0 

… … … … … … … … … … … … 

16 103251 0 0 0 0 0 0 0 1 … 1 

 

Each patient has a unique id (‘SUBJECT_ID’) and each is associated with a unique hospital admission 

id (‘HADM_ID’).  

3. GAN Design and Configuration 

Table 3 presents the configurations for the GANs, in each experiment. In experiments #2, #3, and #4 

the same configuration was used for all three GANs.  

Table 3 - GAN configurations for each experiment 

E# Epochs Learning 

rate 

Hidden  

layers 

Neurons Batch 

size 

Optimiser 

1 10,000 1e-3 3 D, 2 G D[8, 8, 8, 1] 

G[8, 8] 

150 RMSProbOptimiser 

2 30,000 1e-4 1 D, 1 G D[18,1] 

G[21] 

130 Adam 

3 50,000 1e-4 1 D, 1G D[18,1] 

G[21] 

5000 Adam 

4 10,000 1e-4 1 D,1 G D[18,1] 

G[21] 

1000 Adam 

5 30,000 1e-4 2 D, 2 G D[256,128,1] 

G[256, 128] 

150* Adam 

6 50,000 1e-4 2 D, 2 G D[256,128,1] 

G[256, 128] 

379* Adam 

 

The Adam optimiser [34] showed best performance in early evaluation. In the last experiments, two 

hidden layers, both for the discriminator (D) and the generator (G), were used. The number of neurons 
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was the sum of input and output layers multiplied by 2/3 of the value given between the input and output 

sizes. Mean squared loss for numerical variables (e.g., age) and cross entropy loss for categorical 

variables were initially used. However, Wasserstein loss was later used, improving the results. The first 

experiment used the Leaky ReLu activation function, whereas subsequent experiments used Rectified 

Linear Units (RELU), as the activation function of the Generator, except of the output layer where tanh 

was used for numerical variables. For the discriminator, ReLU was used for all activation functions, 

except for the output layer, where the sigmoid function for categorical and tanh for numeric features 

were used [35]. The number of epochs ranged from 10,000 to 50,000. A trial implementation tested the 

network up to 300,000 epochs, showing that, after 50,000 epochs, changes were insignificant. A target 

of 50,000 epochs was considered a good balance between training and computing power. The number 

of discriminator iterations per generator iteration is 10, and the Gradient Penalty (GP) (lambda-penalty 

coefficient) is 10. The raw generated data values were continuous in range 0 to 1, converted to binary 

(0 or 1) through rounding for categorical data classification. For numeric features, the output of 

generator is de-standardised. 

Context B: Performance evaluation: As this was an exploratory, proof-of-concept study, the method 

evolved along with the results of the experiments. The performance evaluation, used for this, was a 

meta-process. It analysed the results and shaped the final form of the experiments in Table 3. After each 

experiment, this approach identified parameters for rapid trial and error, as well as the improvements 

in subsequent experiments (e.g., increase of epochs).  

4. Synthetic Dataset Validation 

This step examined whether the RSD would be fit for purpose for the objective of the study and the 

scenario identified in context A. From the early stages of the experiment, it was clear that the validation 

of the synthetic dataset is a major challenge. Although the dataset contains different data points, its 

overall qualities needed to be equivalent to the real dataset. Qualifying the justification for equivalence 

requires understanding the validation context, in order to identify suitable evidence. This was achieved 

by a parallel, assurance process (Context C). A justification outline was developed, identifying the 

evidence needed to be generated in order to support it [36]. The aspects needed support by evidence 

were recognised by conducting a safety assessment, identifying potential risks using the RSDGM. The 

identified justification comprises of three main arguments. Firstly evidence needs to demonstrate that 

the RSD is a high fidelity representation of clinical knowledge (e.g., prevalence of conditions), 

including potential relationships not represented in existing knowledge. Secondly, there needs to be 

evidence supporting that the synthetic and the real datasets exhibit almost identical statistical properties 

(e.g., associations amongst variables). The final argument of the justification focuses on the technical 

correctness and appropriate application of the generation method. The first argument is beyond the 

scope of this paper, as it focuses on the use of the RSD. The second and third arguments, resulted in a 

process identifying evidence, which would convincingly justify the validation of the RSD. The loss 
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function, as well as scatter plots of the datasets through regular intervals of training the GAN, 

demonstrate that the network performed as predicted by theory. Visual comparison of the data entries, 

association tables, jaccard similarity, and a K-S test, were identified as convincing evidence to support 

statistical equivalence.  

 

RESULTS 

Comparison of the GAN Implementations 

Wasserstein loss consistently produced the best results in the experiments, where multiple GANs were 

implemented. Figure 2 presents the results (selected variables) of experiment #3, where 10 features 

were selected from the ADMISSION, PATIENT and ICUSTAYS tables of the MIMIC-III dataset; 7 

were categorical and 3 numeric, trained for 50,000 epochs. The scatter plots show the real data (points 

in blue) overlapped with the generated data (points in orange). 

 

 

Figure 2 (bottom) – Scatter plots of synthetic data generation process for two selected numerical features for 50,000 epochs: 

(a) GAN, (b) CGAN and (c) WGANGP ; (top) – Scatter plots of synthetic data generation process for two selected 

categorical features for 50,000 epochs: (a) GAN, (b) CGAN and (c) WGANGP 
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The WGAN performed best with the two types of variables. The vanilla GAN did not manage to 

perform well generating categorical values completely missing one dimension, whereas the CGAN was 

very poor generating numerical values.  

 

Figure 3 – Generator and Discriminator losses for 50,000 epochs: (a) GAN, (b) CGAN and (c)WGAN 

Figure 3 presents the losses functions (10 iteration intervals; Generator in blue and Discriminator in 

orange). The WGAN implementation gave a better loss function plot with the Generator achieving 

good response, and the Discriminator not able to confidently discern true and false data. 

RSDGM Validation framework 

The validation approach of the RSDGM consists of a) loss analysis, b) visualisation of real and 

generated data, c) correlations comparison, and d) similarity measurement. The loss functions of the 

discriminator and generator were checked for two common problems: a) the generator collapsing and 

generating only one sample, and b) the generator simply memorizing or being too similar to the training 

data. The discriminator loss is trying to minimize the classification error of the discriminator and 

generator loss is trying to maximize the classification error of the discriminator. Although the loss 

function is not providing direct evidence about the statistical equivalence of the two datasets, it was 

particularly useful in early experiments, as it offered confidence that the network was operating as 

intended. It offered some early evidence and confidence about the algorithmic determinism of the 

implementation. 

Visualisation of data was the first type of evidence produced, able to demonstrate statistical equivalence. 

It offers an intuitive way to understand the datasets, particularly effective in smaller size experiments, 

as it gave sufficient confidence about the similarity of the datasets; whilst giving the opportunity to spot 

potential outliers or over/under fitting. Furthermore, the plots gave an understanding of the behaviour 

of the network during its training, being plotted every 1000 iterations. They visualise how 

the Generator network starts, with a random initial mapping between the input and dataset vector space, 

and then gradually evolves to resemble the real dataset.  

A correlation matrix of each dataset was computed in each experiment. The correlation matrix was 

visualized as a heat map. Correlation matrices provide confidence that the synthetic dataset has 

maintained an equivalent association amongst variables. Pearson correlation was applied for count or 
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label-encoded categorical features. Spearman correlation was applied for binary features, as well as for 

experiments with mixed variables.  

Ensuring whether the RSD learned the distribution of each dimension acceptably, the Mann-Whitney 

U test was applied. The test was used to compare whether the distributions of each variable of real and 

generated dataset come from the same population. Furthermore, two-sample Kolmogorov-Simirnov (K-

S) test, which is a non-parametric test that compares the cumulative distributions of two data sets, was 

used to compare real and generated datasets. The null hypothesis of this test is that both samples 

originate from a population with the same distribution. 

Finally, Jaccard similarity indices were used to compare associations, limited to absence/presence data. 

It is a measure of similarity for the two sets of data, with a range from 0% to 100%. The higher the 

percentage, the more similar the two populations. We considered dichotomic variables with 0 or 1 

values, absence – presence of ICD9-codes or Lab item code per patient admission, and calculate the 

similarities between real and generated data for each code. 

WPGAN Generated Realistic Synthetic Dataset 

The RSDGM used the MIMIC III dataset [37] as the real dataset to train on. The experiment (#6) that 

resulted in the final generated dataset was run using the following hyper-parameters: a) 50,000 epochs, 

b) a ReLU activation function, c) learning rate of 10-4, d) 2 hidden layers D [256,128,1] G [256, 128], 

e) Wasserstein distance as loss function, f) the Adam optimized, and g) penalty gradient 10. The 

experiment used the DIAGNOSIS_ICD and LABEVENTS tables of the MIMIC-III dataset. In total, 

1357 codes (944 ICD9 + 413 Lab item) and 379 common unique hospital admissions of 300 patients 

were used as the real dataset. 

Figure 4 illustrates the distribution of a sample of the variables in the RSD and the real dataset. The 

synthetic dataset shows a good representation of both numerical and categorical datasets with very 

similar distributions. The loss function (not illustrated) followed the expected response, similar to 

Figure 3 (right).  
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Figure 4 - Distribution of a selection of numerical values in the two datasets (blue: real, orange: synthetic) 

 

Figure 5 - Correlation matrices of (a) real and (b) generated data for 10 ICD9-codes and 10 Lab item code 

Figure 5 shows an extract of matrices of pairwise Spearman correlation of variables in the RSD and the 

real dataset. The matrices contain an extract of ICD-9 and lab codes. The very large dimensions of the 

full matrix do not allow complete graphical representation; nevertheless, further sample association 

matrices replicated the behaviour, also confirmed by a manual inspection of the associations. The RSD 

has preserved the associations between ICD-9 codes and the lab codes, of the original dataset.   

Figure 6 (left) shows the Jaccard similarity of the ICD-9 and lab item codes. The majority of the 

variables indicated very high Jaccard similarity, and only a fewer lab codes resulted in low similarity. 

A  K-S test was performed with p = 0.05 examining whether the real and synthetic data samples were 

a subset of the same population, failing to reject the null hypothesis.  
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Figure 6 (left) - Histogram of Jaccard scores for lab item codes, icd9 codes and total number of codes; Figure 6 (right) 

Scatter plot of dimension-wise probability results of real binary data (x-axis) vs. synthetic counterpart (y-axis) produced 

The scatter plot of dimension-wise probability results of real binary data vs synthetic counterpart is 

shown in Figure 6 (right). The K-S test failed to reject the null hypothesis with p-value (α = 0.05). Thus, 

there is no significant difference between the distributions for the two samples. Experiment six, being 

the final experiment, provided evidence towards the proof of concept of the RSDGM, using a highly 

complex dataset, with complex associations. 

 

DISCUSSION AND CONCLUSIONS 

Realistic synthetic datasets are an approach recognised as promising, for validation and safety assurance 

of intelligent healthcare applications. This will overcome barriers of using datasets due to privacy 

concerns, enabling development of applications that may increase patient benefit. The GAN based 

method, successfully generated a realistic synthetic dataset. Statistical tests demonstrated that the two 

datasets share very similar qualities. Some differences between the datasets were identified, particularly 

with respect to certain lab and ICD-9 codes. This was attributed to low frequency of certain conditions 

and lab tests. Bigger samples are needed to further explore this aspect. Although the datasets share very 

similar qualities, they are not completely identical. This is was a positive findings as it meant that the 

GAN did not replicate the real seal dataset values, which would compromise privacy. Nevertheless, the 

degree of difference between the two datasets will need to be justified and accepted for the digital health 

application the RSD is intended to validate. Further validation from the point of view of clinical 

conditions would provide additional significant evidence on the equivalence of the two datasets. This 

would allow testing specific applications, and provide opportunities for expert (clinical) review of the 

dataset. Validation of applications using ML-generated RSDs heavily depends on contextual 

information about the application, as well as the generation of the dataset. A justification of use of the 

RSD is necessary, as it will allows the RSD developers to understand the safety implications of the 

generation process. Consequently, evidence need to be identified, supporting the justification. This will 

alleviate implications, offering evidence about fitness of the approach as a means of validation. One 

positive aspect about this approach is that it does not need to be developed for a specific dataset. Other 

approaches need statistical models (e.g., Bayesian networks) to model the real dataset, which then use 
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it to generate the synthetic dataset. In contrast, the GAN-based RSDGM does not need to model the real 

dataset. This allows to have a core approach that can be applied for multiple datasets. This was 

confirmed during the experiments, during which the GAN successfully generated realistic synthetic 

datasets based on three different datasets. An additional advantage of this is that the approach maintains 

associations in the data that may not be yet understood, and hence modelled manually. This can be 

particularly helpful for datasets used for discovery of new clinical knowledge. One identified challenge 

of the approach is the need for significant computing power to train the network and generate the 

dataset. However, this is not considered prohibitive. Future work of the justification includes further 

developing the arguments, also identifying specific evidence for the RSD based on a proof of concept. 

Future work will need to focus on further validation tests of the two datasets, as well as systematically 

testing various configurations and hyper-parameters. Finally, different architectures of the GAN can be 

explored by implementing other machine learning techniques such as SVMs for the discriminator, or 

auto-encoders for the generator. Overall, the GAN based RSDGM showed much promise and is 

considered a viable approach to be used for development of a healthcare dataset.  
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