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The proportion of SARS-CoV-2 infections ascertained through

healthcare and community testing is generally unknown and

expected to vary depending on natural factors and changes in

test-seeking behaviour. Here we use population surveillance

data and reported daily case numbers in the United Kingdom

to estimate the rate of case ascertainment. We mathemati-

cally describe the relationship between the ascertainment rate,

the daily number of reported cases, population prevalence, and

the sensitivity of PCR and Lateral Flow tests as a function

time since exposure. Applying this model to the data, we es-

timate that 20-40% of SARS-CoV-2 infections in the UK were

ascertained with a positive test with results varying by time

and region. Cases of the Alpha variant were ascertained at a

higher rate than the wild type variants circulating in the early

pandemic, and higher again for the Delta variant and Omi-

cron BA.1 sub-lineage, but lower for the BA.2 sub-lineage.

Case ascertainment was higher in adults than in children. We

further estimate the daily number of infections and compare

this to mortality data to estimate that the infection fatality

rate increased by a factor of 3 during the period dominated by

the Alpha variant, and declined in line with the distribution of

vaccines.

Testing for SARS-CoV-2 in the UK aims to accom-
plish two things - first, to rapidly confirm suspected

cases of COVID-19 disease via symptomatic testing in or-
der to contain outbreak clusters, and second, to establish
the overall burden of infection by taking a random sample
of the population. Since not all infected individuals receive
a test, and some of those who do will receive a false nega-
tive result, the number of positive diagnostic tests provides
a lower estimate of the number of people exposed to the
virus [1]. In contrast, random testing can provide an un-
biased estimate of prevalence, but is an inefficient way to
rapidly identify infection clusters, and may also have biases
depending on the extent to which a positive test indicates
the true infection status of the individual.

Both types of data are available in the UK: the number
of positive tests from people with suspected infection are
published daily on the UK government dashboard [2], and
the Office for National Statistics COVID-19 Infection Sur-
vey (CIS) regularly publishes estimates of the population
prevalence based on unbiased sampling [3]. The existence
of these sources creates an opportunity to answer an im-
portant question: what proportion of all infections are be-
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ing reported through diagnostic testing? Knowing this can
help to estimate true incidence rates, a quantity central to
understanding how the virus is spreading, and determine
the infection fatality rate (IFR) of the disease.
Here we describe how diagnostic case numbers can be

used to model the proportion of the population testing
positive. By calibrating this model against surveillance
data, we estimate the case ascertainment rate, defined as
the proportion of infections that were reported through di-
agnostic testing; the incidence, defined as the number of
newly infected individuals each day; and the IFR. Our dif-
fers from previous work as we do not rely on prior assump-
tions about the IFR to estimate incidence [4,5]. Moreover,
we estimate the IFR using a data set substantially larger
than any that has previously been used [6].
The model incorporates the different types of test and

differences caused by variants of SARS-CoV-2, which have
been shown to result in higher severity and a different range
of clinical symptoms [7, 8]. New variants might have dif-
ferent pathological characteristics that could potentially
affect the test-seeking behaviour of those infected, which
we expect to directly affect case ascertainment. Examina-
tion of age related and regional variation in case ascertain-
ment provides a novel way to consider these developments,
and to enrich our understanding of the epidemiology of the
virus.

1 Methods

1.1 Data We are primarily concerned with daily Pillar 1
and 2 case data [2], hereafter referred to as diagnostic test
cases, which represent tests done in health care settings
and the community, respectively. We use Cq(t) to denote
the number of Pillar 1 and 2 cases from test type q on
day t. Here, q can be PCR or LFD. These counts come
from lab-based PCR tests and lateral flow device (LFD)
testing, as performed in many community settings [9]. We
use data provided for the 12 regions of the UK (9 regions
of England and 3 other nations), and the 19 5-year age
bands, which we aggregate into 7 distinct age bands to be
consistent with the CIS data. Since the age bands for the
the Pillar 1 & 2 data are not perfectly aligned with those
for the CIS data, we first distribute them into 1-year age
brackets, assuming an equal distribution of cases within
each bracket, before re-aggregating.
At the time of writing, the number of cases detected by

test type were available for England, but not provided at
the regional level or for different age bands. We therefore
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approximate the proportion of cases that come from each
test type by partitioning the total case numbers according
to the the proportion calculated at the national scale.

The CIS provides estimates for the estimated percentage
of people testing positive for coronavirus for the 9 regions
of England, 3 other nations of the UK, and 7 age bands in
England. Data for nations and age bands represent sam-
ples collected over 14-day intervals. We take the 7th day
as the representative time point of this estimate. Data for
the nations is provided weekly and so we take it to repre-
sent the 4th day of the 7-day period. Population counts
for the 9 regions and the 7 age categories were compiled
from CIS data [10].

There is uncertainty in the CIS which we transfer to
our own analysis as follows. From the CIS, we use the
“rate” and 95% confidence interval over a series of time
points between September 2020 and June 2022 [3]. The
exact distributions are not provided by the CIS source,
so we approximate them with Normal distributions with
mean equal to the CIS rate values and variance calculated
to be as consistent as possible with the CIS confidence
intervals. We construct a sampled time series by taking
a series of samples from the series of distributions. The
sampled time series of percentages is then applied to the
population to give, M(t), the total number of test-positive
people, where t is the midpoint of the time interval that
the data represent. We repeat our analysis on 200 time
series independently constructed in this way to obtain a
distribution of results.

The CIS provides an estimate of the proportion of tests
that achieve different testing targets using the TaqPath
test [11]. We use these to estimate the proportion of infec-
tions that are from wild-type, Alpha, Delta and Omicron
variants (BA.1 and BA.2 sub-lineages) of SARS-CoV-2.
We consider tests that are negative for the S target gene
and positive for the two other targets, known as S-gene
target failure (SGTF), to be a proxy for the Alpha and
Omicron BA.1 variants. Since tests that are positive for S
and exactly one of the other targets (N or ORFab1) may
indicate any lineage [12], we discard those that are negative
on the S target and one other target from our calculation
of the SGTF proportion.

Based on the time points when the SGTF proportion
reached locally maximum or minimum values, we assume
the variant class follows from SGTF as follows. All infec-
tions from the beginning of the pandemic until November
1st 2020, and all infections up to March 1st 2021 that are
not SGTF, are of the wild-type variants. Infections that
are SGTF are of the Alpha variant if they were reported
between November 1st 2020 and November 1st 2021, and
the Omicron BA.1 sub-lineage if they we reported after
November 1st 2021. Infections that are not SGTF are as-
sumed to be the Delta variant if they were reported be-
tween March 1st 2021 and and January 9th 2022, and the
Omicron BA.2 sub-lineage if they we reported after Jan-
uary 9th 2022. We therefore consider 5 variant classes of
interest: Wild-type, Alpha, Delta, Omicron BA.1 and omi-
cron BA.2 whose proportions we denote using pw, pA, p∆,
po1, po2, respectively.

The number of deaths in England of individuals who
have tested positive for coronavirus within 28 days is pro-
vided in 5-year age bands [13]. As with the case numbers,
these data were first distributed into 1-year age brackets as-
suming an equal distribution of cases within each bracket,
before being re-aggregated into age bands consistent with
the CIS.

Modelling the time from exposure to the time of positive test

We define two random variables, X and T , representing the
time an individual was exposed and the time they received
a positive test, respectively. Assuming daily time steps,
we express the probability that an individual who received
a positive test from a sample taken at time t+ was first
exposed to the virus at time x,

P ( X = x | T = t+ ) =
P ( X = x & T = t+ )∑

i≥0

P ( X = t+ − i & T = t+ )
.

(1)
The joint probability distribution P ( X = x & T = t+ )
can be pieced together from various sources by considering
the sequence of events that result in an individual testing
positive.
First, we consider the time the individual was exposed

to the virus and acquired the infection. We denote the
prior probability that the infection was acquired at time
x by B(x). Next, we consider the time between exposure
and the time that they received a test. For symptomatic
cases we assume that the test occurs shortly after symp-
tom onset, i.e. the time since exposure τ = t+ −x is equal
to the sum of the incubation period and a delay parameter
δk that we assume to be a fixed quantity; k ∈ {PCR,LFD}
represents the type of test being performed. The proba-
bility of a test on day t+ is thus R(t+ − δk − x) where
R(i) is the probability that the duration of the incuba-
tion period is i, which we assume to be Log-normal with
a mean of 5.5 days and dispersion parameter 1.52 [15,16].
To get a probability distribution expressing the length of
the incubation period in discrete days, we integrate over
consecutive intervals of length 1.
Once the individual has acquired the infection and has

had a test, the test must be positive to become an ascer-
tained infection. The probability of testing positive varies
as a function, Sk(τ), of the time since exposure τ = t+−x.
We use the functions provided by Hellewell et al. [14] and
shown in Fig. 1. The PCR curve is similar in shape to
the shedding profile found in other studies [17–20] with
viral load typically peaking at day 3-5 and persisting for
a mean duration of 17 days [21]. Variation is associated
with severity of illness but not age or sex [22–24]. Studies
that look for a difference between asymptomatic and symp-
tomatic infections do not report consistent results [18,25].
While one study with a small sample found that the Alpha
variant had a longer viral course than the wild type [26],
studies generally show that shedding profiles do not differ
significantly between variants [27,28]. In contrast, vaccina-
tion has been shown to reduce incidence of high shedding
rates and duration of shedding [28–31] which we address
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Figure 1: (A) The test sensitivity as a function of time from Hellewel et al. [14]. The function, S(τ) gives the probability that a PCR test will
be positive if performed on an infected person τ days after exposure. (B) The incubation period probability distribution from Lauer et al. [15],
shown here are the probability of symptom onset on each day since exposure.

in a later section.
We express the probability that an infected individual

was exposed on day x and tested positive on day t+ by
multiplying the probabilities mentioned above,

P (X = x & T = t+ ) = B(x)R(t+−x−δk)Sk(t
+−x). (2)

If we assume an uninformative prior probability, B(x), of
exposure on day x, then substituting Eq. (2) into Eq. (1)
gives

Pq( X = x | T = t+ ) =
R(t+ − x− δq)Sq(t

+ − x)∑
i≥0 R(i− δq)Sq(i)

. (3)

Substituting τ = t+ − x, and using the notation Pq(τ) =
Pq(X = t+ − τ |T = t+), we have

Pq(τ) =
R(τ − δq)Sq(τ)∑
i≥0 R(i− δq)Sq(i)

, (4)

giving the probability distribution of time between expo-
sure and test for the set of ascertained cases corresponding
to the test types q ∈ {PCR,LFD}.
We justify our choice to disregard the form of B(x) by

examining the the effect it has on Pq(τ) in the most ex-
treme feasible scenarios. Supposing B(x) = Agx where A
is a constant and g is the daily multiplicative growth rate,
Eq.(1) can be solved to get a revised version of Pq(τ) that
now also depends on g (A does not appear in the solu-
tion). The largest observed daily growth rate in the 7-day
average of cases, CPCR(t) + CLFD(t), is g = 1.15. Un-
der the revised formula, the mean values of PLFD(τ) and
PLFD(τ) are respectively 0.58 and 0.35 days shorter than
when Eq.(4) is used. The lowest growth rate observed is
g = 0.85, which results in the mean values of PLFD(τ) and
PLFD(τ) to be 0.98 and 0.52 days longer, respectively. In
general the effect is considerably smaller than in these ex-
amples so we proceed under the assumption that Eq.(4) is
sufficient for our analysis.

Estimating the ascertainment rate We define the ascertain-
ment rate as the proportion of SARS-CoV-2 infections that

result in a positive PCR or LFD test and are recorded
in the Pillar 1 & 2 case data. We introduce the time-
dependent ascertainment rate θ, a vector whose xth ele-
ment, θx, is the proportion of infections that occurred at
time x that get reported through diagnostic testing at any
subsequent time. We also consider the incidence, I(x), de-
fined as the number of newly acquired infections on day
x.
The number of ascertained cases that were exposed at

time x can be expressed in two ways: first, by multiplying
the incidence by the ascertainment rate, and second by
expressing the number of reported cases that were exposed
on day x as a function of the daily case counts. Equating
the two gives

θxI(x) =
∑
q

∑
τ≥0

Cq(x+ τ)Pq(τ). (5)

We estimate the number of individuals in the population
who would test positive (by PCR) on day t, if tested, by
summing over all infections times and weighting by the the
probability that each one is test-positive on day t

M̂(t) =
∑
k≥0

I(t− k)SPCR(k). (6)

Combining with Eq. (5) we can express this as a function
of time and the unknown vector of parameters θ

M̂(t;θ) =
∑
k≥0

(SPCR(k)/θt−k)
∑
q

∑
τ≥0

Cq(t− k + τ)Pc(τ).

(7)
We estimate ascertainment by finding the vector θ that
minimizes the difference between the estimated and ob-
served values,

θ = argmin
y

∑
t∈T

∣∣∣M(t)− M̃(t;y)
∣∣∣ (8)

where T is the set of time points for which we have empiri-
cal estimates of prevalence. Eq. 8 combines the daily diag-
nostic case counts, the population positivity from surveil-
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lance, the incubation period distribution, and the time-
dependent test sensitivity of PCR and LFD tests, to pro-
vide an estimate of the proportion of infections being re-
ported at time t.
In practice, we estimate θx at weekly time points and

use linear interpolation to create a daily time series. The
solution to Eq. (8) is found numerically. The optimisation
is made more efficient by inputting an initial guess based
on an approximation to θ given by

θt = M(t+ 9)−1
∑
q

∑
k≥0

SPCR(k)
∑
j≥0

Cq(t− k + j)Pq(j).

(9)
Note that this equation uses the reported prevalence
shifted forward by 9 days which is approximately the time
since exposure of someone who received a positive test re-
sult through random surveillance. We estimate the cred-
ible interval for θ by substituting the upper and lower
bounds of the credible interval for M(t) into Eq (8).

Time-independent ascertainment rate Motivated by the
possibility that variants of concern may have different
pathological characteristics to each other or elicit different
test-seeking responses, we estimate ascertainment rates for
each variant class. Unlike the previous section these rates
are constant for each variant in each region and age band.
We let V = {w,A,∆, o1, o2} to denote the wild-type, Al-
pha, Delta, Omicron BA.1 and Omicron BA.2 variants,
respectively, and ϕ = (ϕw, ϕA, ϕ∆, ϕo1, ϕo2) where ϕv de-
notes the time-independent rate for variant class v. Re-
calling that pv(t) is the proportion of infections caused by
variants of class v, we use a revised estimate of M(t) that
weights the contribution of each variant class by its pro-
portion

M̃(t;ϕ) =
∑
v∈V

pv(t)M̂(t;ϕv) (10)

We can then estimate by taking the value that minimizes
the absolute error between M(t) and M̃(t) taking only the
time points T ′ up to March 1st 2021 when SGTF positive
tests were associated with the Delta variant. Specifically,
the time-independent ascertainment rates are estimated by
numerically solving

ϕ = argmin
y

∑
t∈T ′

∣∣∣M(t)− M̃(t;y)
∣∣∣ (11)

Infection fatality rate The infection fatality rate (IFR) is
defined as the proportion of individuals infected who then
die as a direct result of the infection. For a given monthly
mortality figure, we count the corresponding number of in-
fections from I(x) summed over all corresponding exposure
dates. We include a 21 day time from exposure to death
(5 days to symptom onset and 16 days between onset and
death) to be consistent with previous studies and the time
between peaks in case and death data in England [32]. For
example, the IFR for September is the number of recorded
deaths in that month divided by the number of infections
that occurred between August 10th and September 10th.

Effect of vaccination on ascertainment rate We apply dif-
ferent test sensitivity functions to the proportion of infec-
tions that are in individuals who have received a vaccine
and those who have not. Here we first describe how the
proportion of infections that are in vaccinated, and unvac-
cinated, people is estimated. We then describe how this
was accommodated into our analysis.
Vaccine effectiveness is defined as

e = 1− P (I|vaccinated)
P (I|unvaccinaed)

. (12)

It varies depending on the time since vaccination, the num-
ber of doses, the specific vaccine given, and the outcome
measured e.g. infection, symptoms, hospitalisation. Effec-
tiveness is lowest when the measured outcome is infection
of any kind, regardless of symptoms. This is estimated to
be e = 0.56 (56%) [29]. We choose to use this low value
to avoid underestimating the effect of vaccines; lower esti-
mates of effectiveness results in higher proportions of in-
fections that are subject to the effects of the vaccine.
We want to know the proportion of infections on day t

that are in the population of people that have received the
vaccine by day t, which we denote with π(t). We have that
P (I|vaccinated) = π(t)I(t)/V (t) where I(t) is the number
of new infections on day t and V (t) is the number of peo-
ple vaccinated by day t. Similarly P (I|unvaccinated) =
(1−π(t))I(t)/(N −V (t)) where N is the population. Sub-
stituting into Eq.(12) gives

π(t) =
(1− V (t))e

1− eV (t)
(13)

Vaccination has been reported to reduce the time un-
til viral clearance of those infected [28]. It was reported
that the time from viral peak to viral clearance was 2 days
shorter for vaccinated individuals. To model this we as-
sume that there is no viral shedding detectable by either
PCR or LFD test 10 or more days after exposure, short-
ening the time to viral clearance considerably more than
the reported effect to ensure we do not underestimate the
effect of vaccines in this sensitivity analysis. For infections
in vaccinated people we denote these modified functions
using S′

q(τ), and P ′(τ) for the equivalent of Eq.(6) with S’
substituted for S. The modified version of Eq.(7) is

θxI(x) =(1− π(t))
∑
q

∑
τ≥0

Cq(x+ τ)Pq(τ)

+ π(t)
∑
q

∑
τ≥0

Cq(x+ τ)P ′
q(τ)

(14)

and finally the modified Eq.(8) is

M̂(t) =(1− π(t))
∑
k≥0

I(t− k)SPCR(k)

+ π(t)
∑
k≥0

I(t− k)S′
PCR(k).

(15)
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2 Results

The percentage of cases ascertained estimated with Eq. 8
varies by time, region, and age band (Fig. 2). These results
are sensitive to variation in surveillance data, particularly
when infection levels are low and there is less data to in-
form the estimate. For example, from the time that the
infection survey began until September 2020, which is not
shown in the figure, the results are highly variable and
occasionally produce estimates of ascertainment that are
above 100%. In general, when case rates are low we see
an increase in variability due to the smaller sample size,
whereas when case rates are relatively high the estimated
ascertainment rate becomes more reliable.

Case ascertainment is related to the proportion of infec-
tions that lead to symptomatic infection. This is apparent
from the low ascertainment rates observed in the lowest
age categories, which are known to be less likely to de-
velop symptoms [33]. There were notable increases after
March 2021 in school age children, possibly indicating that
the mass testing in that age category that coincided with
school reopening caused a higher detection rate of asymp-
tomatic infections. Similarly, since vaccination is effective
at preventing infections from becoming symptomatic, the
decreasing ascertainment rate seen in the two highest age
bands from January to April 2021 may have resulted from
vaccination in those groups.

Increases from April to June 2021 occur in every group
and appear to coincide with the rise in cases of the Delta
variant. While this could imply that the Delta variant is
more likely to cause symptomatic infection, it could also be
the result of behavioural factors as restrictions to physical
contact were being removed and lateral flow tests were be-
ing more widely used. There is similarity between the time
series of age bands that are close to each other, whereas
changes in the ascertainment rate in any given region ap-
pears to be unaffected by neighbouring regions (Fig. S3).

To compare regions, ages, and different phases of the
pandemic, we consider 5 different variant classes: the wild-
type that existed before the emergence of the Alpha vari-
ant, the Alpha and Delta variants, and the BA.1 and
BA.2 sub-lineages of the Omicron variant, where we have
used S-gene target failure to approximate the proportion
of cases belonging to each class. Modelling a different
time-independent ascertainment rate for each variant pro-
vides remarkable agreement between the modelled popu-
lation prevalence and the value reported by the surveil-
lance study (Fig. S1). The best-fit ascertainment rates are
shown in Fig. 3. Differences between variants may reflect
varying symptomatic responses, or they may reflect other
behavioural factors that have changed over time.

The ascertainment rate for the wild-type is lower than
the rate for the Alpha, Delta and Omicron BA.1 variants
across almost all age bands and regions of the UK. While
the difference between Alpha, Delta and Omicron BA.1 is
less clear, it is typically the case that ascertainment in-
creased for the Delta variant over the Alpha and increased
again for the Omicron BA.1 variant before decreasing sub-
stantially for the Omicron BA.2 variant during a time when

free access to LFD and PCR tests was no longer available.
Ascertainment rates are lowest in the youngest age band
and increases with age up to the 25 to 34 band. Dur-
ing times when free access to testing was widely available,
around 30% to 40% of cinfections were ascertained. This
is lower than the percentage of infections that are symp-
tomatic, estimated to be around 70% [34, 35], implying
that a considerable number of symptomatic infections do
not get ascertained.

We calculate the IFR for each month for the 4 oldest age
bands (Figure 4). We have chosen not to show lower ages
as the low numbers of deaths in these groups make the
results highly variable do not provide a reliable estimate
of the true IFR. Within the 4 age bands for which data
are sufficient, the IFR increases with age. The increasing
trend in IFR for the two oldest age bands in November
2020 may be a combination of higher severity of the Al-
pha variant [36], the increased pressure on the healthcare
system, or a seasonal affect on immunity. The subsequent
reduction is close to what we would expect to see given that
the vaccines give some protection against infection; while
vaccines reduced the number of deaths considerably, they
simultaneously reduced the number of infected people. For
instance, using 90% effectiveness of vaccines against death
and 56% against infection [29, 37], one can calculate from
the definition of effectiveness that the IFR of the vacci-
nated population should be 22% of the IFR for the unvac-
cinated.

We tested the robustness of these results against reason-
able changes in the assumptions of our model. Firstly, viral
clearance may occur more rapidly in individuals who have
been vaccinated [28]. While we cannot model this effect
precisely, making liberal assumptions about vaccine effec-
tiveness and its effect on the test-sensitivity profile (see
Section 1.1) gives results that are lower by a few percent
(Fig. S2). The most substantial effect is observed in older
age bands. Similarly, the IFR presented in Fig. 4 may be an
overestimate during times when vaccine coverage is high.
Fig. S4 shows the range of values that are plausible given
the duration of viral shedding in vaccinated individuals.

Secondly, the model assumed a delay between symptom
onset and receiving a PCR test of δPCR = 1 day. We do not
have observational evidence to support this and δPCR = 2
is also reasonable. Repeating the analysis with δPCR = 2
yields a mean increase (across all age bands and variants)
of 0.05 percentage points with a standard deviation of 0.89
to the results reported in Fig.3, suggesting relatively low
sensitivity to this modelling decision. Thirdly, we assumed
that the proportion of cases reported from LFD tests, as
opposed to PCR, for England could be applied across all
age bands and regions, whereas in reality they are unlikely
to be proportioned equally. Repeating our analysis un-
der the extreme assumption that 100% of community and
healthcare reported cases are from LFD tests results in an
mean decrease of 0.08 percentage points with a standard
deviation of 1.75, again demonstrating low sensitivity to
this modelling assumption.

Finally, some empirical estimates of test sensitivity are
higher than the maximum of SPCR and SLFD [38,39]. Re-
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Figure 2: Ascertainment rate in the 7 age bands and 12 regions of the UK expressed as a percentage, from Eq. (8). Presented are the median
and confidence intervals from the distribution of solutions to Eq. (8) over 200 samplings of the surveillance data, M(t). Incidence, I(t), is shown
as a percentage of the population.
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peating our analysis using an adjusted versions SPCR and
SLFD that are linearly scaled so that SPCR peaks at 1, we
find ascertainment rates increase by a mean of 7.5 percent-
age points with standard deviation of 3.4, suggesting that
any inaccuracy in our assumption about test sensitivities
could substantially affect the outcomes presented here.

3 Discussion

The extensive efforts in the United Kingdom to monitor
the COVID-19 epidemic have provided the opportunity to
quantify a critically important parameter - the ascertain-
ment rate - defined as the likelihood that an infected indi-
vidual will get tested and receive a positive diagnosis. Here
we compared the daily reported number of cases to an un-
biased estimate of population prevalence to estimate the
proportion of cases that are ascertained through commu-
nity testing and healthcare. We also computed the daily
number of new infections and from this were able to track
the infection fatality ratio across time.

Variation in case ascertainment may result from differ-
ences in clinical presentation, public perception, availabil-
ity of testing, or many other possible reasons. It was re-

vealed to be related to age, with infections in the youngest
age bands being the least likely to be diagnosed. Infections
related to the Alpha, Delta, and Omicron BA.1 variants
were more likely to be ascertained compared to variants
that were circulating earlier in the pandemic (the wild
type) or during a time when access to free tests was no
longer available (BA.2). The IFR showed substantial vari-
ation across time, increasing substantially into winter 2020
before declining with the distribution of vaccines.

Ascertainment appears to be dependent on the SARS-
CoV-2 variant. It is not possible to determine the extent to
which this variation is caused by changes in symptomatic
response or by external factors that may alter the propen-
sity of the individual to seek a test. After accounting for
the effects of the different variants on the ascertainment
rate, we have shown that the two data sources are largely in
agreement with each other. This suggests a consistency in
test-seeking behaviour over time periods of months, high-
lighting the reliability of the diagnostic test data as mea-
sure of epidemic severity. In general, when cases are in-
creasing, it is because infections are increasing, not because
people have become more likely to receive a tests, although
changes in test-seeking do occur on longer time scales.
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Figure 4: Infection fatality rate (IFR). The estimated percentage of infections that cause mortality. The shaded region shows the 95%
confidence interval computed by using I(x) computed from the upper and lower estimates of prevalence given by the surveillance data. Dashed
lines show the population in the respective age band that had received at least one dose of a COVID-19 vaccine.

The challenge when comparing the trend seen in random
survey data to that seen in reported community cases is
that the former is a measure of prevalence and the latter
a measure of incidence. Our methodology resolves this by
modelling the relationship between the two. Our method
is related to the deconvolution approach previously used to
estimate the incidence of other infectious diseases [40]. In-
deed, this approach could be applied directly to the surveil-
lance data to estimate incidence, however, it would not re-
flect changes in incidence that occur on a sub-weekly time-
scale. Because our method utilises the daily resolution of
the case data, it captures the daily variation in incidence
while achieving almost perfect consistency between the two
data sources.

The estimation of infection incidence performed here of-
fers an alternative to methods that use serological data
[41]. This allows for more accurate representation of key
metrics related to epidemic control such as the reproduc-
tion rate, generation time, case doubling rates, hospitali-
sation and fatality rates. Our analysis revealed consider-
able variability in the IFR that goes beyond that expected
from age and vaccination status alone. The three-fold in-
crease in IFR in the 70+ age band beginning in November
2020 suggests that multiple factors contribute to the risk of
death from infection and therefore there may be multiple
ways to minimize mortality in future winter seasons. The

subsequent decline adds to the body of evidence showing
the effectiveness of vaccinations.

Our results are dependent on on a number of simplifying
assumptions. We have applied a model that assumes all in-
dividuals experience similar viral dynamics once infected,
and the time for between exposure and receiving a test
follows the same distribution regardless of age or location.
We have assumed that testing occurs at the time of symp-
tom onset plus an additional delay, however, since LFD
tests are expected to be used for asymptomatic screening
the time between exposure and receiving an LFD test may
be shorter than we have assumed. This would particu-
larly affect children during periods when LFD testing was
widely used in schools.

We highlight that the methods here may be translated
to a variety of current and future epidemiological stud-
ies. As the COVID-19 pandemic has expanded the scale
and scope of health surveillance data to an unprecedented
level, the methods required to parse such data, and create
interpretations useful to inform decision makers and in-
crease public awareness, need also to adapt. The methods
presented here are novel, although built from established
mathematical concepts, and this reflects constant require-
ment to re-evaluate and refresh the set of mathematical
and statistical tools available to analysts as the landscape
of public health continues to evolve.
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Code availability

https://github.com/EwanColman/

Estimating_SARS-CoV-2_case_ascertainment
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Figure S1: The percentage of people who would test positive if tested. Comparison of the ONS CIS to the modelled value based on reported
cases and the estimated ascertainment rates given in Figure 3.
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Figure S2: Ascertainment rates shown in Fig. 8 compared to the equivalent value that incorporates the effect of vaccination. Modelling assumptions
have been made to provide the largest reasonable deviation from the original ascertainment estimate with the data available. Therefore it is likely
that a precise treatment of vaccination in the model would yield a result within the shaded area between the curves.
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Figure S3: Correlations between the ascertainment rate time series of (A) all age bands and (B) all regions. Values show the Pearson correlation
coefficient, r. Correlations where r < 0 or p > 0.05 are not displayed.
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Figure S4: Infection fatality rates shown in Fig. 4 compared to the equivalent value that incorporates the effect of vaccination. Modelling
assumptions have been made to provide the largest reasonable deviation from the original ascertainment estimate with the data available.
Therefore it is likely that a precise treatment of vaccination in the model would yield a result within the shaded area between the curves.
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