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Abstract 

 

Purpose. The sudden outbreak of COVID-19 pandemic have shown that medical community needs an 

accurate and interpretable aggregated score not only for an outcome prediction but also for a daily 

patient’s condition assessment. Due to a continuously changing pandemic landscape, a robustness 

becomes a crucial additional requirement for the score. 

Materials and methods. In this research a real-world data collected within the first two waves of 

COVID-19 pandemic was used. The first wave data (1349 cases collected from 27.04.2020 to 

03.08.2020) was used as a training set for the score development, while the second wave data (1453 cases 

collected from 01.11.2020 to 19.01.2021) was used as a validating set. For all the available patients 

features we tested their association with an outcome using a robust linear regression. Statistically 

significant features were taken to the further analysis for each of which their partial sensitivity, specificity 

and promptness were estimated. The sensitivity and the specificity were further combined into a feature 

informativeness index. 

Results. The developed score was derived as a weighted sum of the following 9 features showed the best 

trade-off between informativeness and promptness: APTT (> 42 sec, 4 points), CRP (> 146 mg/L, 3 

points), D-dimer (> 2149 mkg/L, 4 points), Glucose (> 9 mmol/L, 4 points), Hemoglobin (< 115 g/L, 3 

points), Lymphocytes (< 0,7*10^9/L, 3 points), Total protein (< 61 g/L, 6 points), Urea (> 11 mmol/L, 5 

points) and WBC (> 13,5*10^9/L, 4 points). Thus, the proposed score ranges between 0 and 36 points. 

Internal and temporal validation showed that sensitivity and specificity over 90% may be achieved with 

an expected prediction range >7 days. Moreover, we demonstrated a high robustness of the score to the 

varying peculiarities of the pandemic. For the additional simplicity of application we split the full range 

of the score into five grades delimited with 9, 14, 19 and 24 points which determine expected 

death:discharge odds 1:100, 1:25, 1:5 and 1:1 correspondingly.  

Conclusions. An extensive application of the score within the second wave of COVID-19 pandemic 

showed its potential for the optimization of patients management as well as improvement of medical staff 

attentiveness during a high workload stress. The transparent structure of the score as well as tractable cut-

off bounds simplified its implementation into a clinical practice. 
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Introduction 

 

As of February 2021, there are over 100 million confirmed cases of SARS-CoV-2 

infection worldwide [1]. In addition to the avalanche-like increase in infections, we see a 

significant number of deaths – more than 2 million, which is about 2% of the number of cases. In 

some regions one can see even higher mortality rates: for example, in Italy the mortality rate is 

currently 3.4%, in the UK – 2.8%.  

Due to a frequent uncontrollable course of the infection, many medical workers are 

wondering about the possibility of creating an effective and flexible system for assessing the 

severity of patients’ conditions. Such assessment systems are necessary both for an accurate 

prediction of a treatment results, and for determination of indications for the use of certain 

therapy regimens that may have multidirectional effects. Summarizing the experience of 

managing patients with COVID-19, the researchers came to the conclusion about the different 

power of various existing scales for adverse outcomes prediction (SOFA, qSOFA, SAPS III, 

APACHE II) [2]–[4]. Recently, special attention has been paid to the tools for assessing the risk 

of a lethal outcome based on machine learning algorithms [5], [6].  

According to the literature, several indicators are the most interesting for predicting a 

lethal outcome: aspartate aminotransferase [7], conjugated bilirubin [8], creatinine, urea [9], 

procalcitonin [10], CRP [11] and lymphocytes [12]. These indicators are useful for death 

prediction both separately and in combination as was shown with use of automatic feature 

selection tools based on such machine learning algorithms as logistic regression, SVM, random 

forest, etc. [13]  

However,  in  spite  of  all  the  advantages,  the application  of  these  tools  in  a broad 

clinical  practice remains very limited. We consider the following main reasons for it. 

1. An evaluation of some components of the scores may be complicated due to a high cost 

or the complexity of a measurement procedure. For example, the respiratory index 

included in SOFA score can be calculated only by means of artery blood taking for an 

acid-base balance assessment. 

2. Usually, in the published papers devoted to prognostic scores development, the 

evaluation of a patient state is performed only once (e.g. at the moment of admission into 

a hospital or ICU). However, the application of a score for a patient regular monitoring is 

another important use case (e.g. for a treatment strategy optimization) which requires an 

accurate examination of its temporal characteristics such as prediction range. 

3. Since 2019, the pandemic landscape was continuously evolving: the new paradigms of 

treatment changed the old ones, the more dangerous viral strains appeared and widely 

spread. This makes it necessary to perform a regular validation of predicting approaches 

and their adjustment if required. 

4. Despite the approaches based on state-of-art machine learning algorithms demonstrate a 

high accuracy (up to 90%), they frequently have a structure too complex for a direct 

interpretation by a doctor. This complicates their acceptance in the medical community.  
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Objective 

 

In this research we aim to develop and validate a novel prognostic score, having a transparent 

structure and suitable for an everyday evaluation of a patient condition. As an additional 

requirement we stated the score robustness, cheapness and the wide availability of laboratory 

tests included in the score. 

 

Materials and methods 

 

Study design and participants 

 

In this research we used real-world data collected within the first two waves of COVID-

19 pandemic at St. Petersburg State Pavlov Medical University. The first wave data (collected 

27.04.2020 - 03.08.2020) was used as a training set for the score development, while the second 

wave data (collected 01.11.2020 - 19.01.2021) was used as a validating set. For both cohorts, a 

SARS-CoV-2 infection was proved using a PCR method. Before analysis we excluded patients 

with a short follow-up period who died or were successfully discharged within the first 2 days of 

hospitalization. Thus, mostly patients with a moderate or severe initial illness status were 

accepted to this research, while patients with a mild or critical status were exclude [14]. The 

patients with a loss of follow-up were excluded from this study as well. The overall study profile 

is given in Figure 1.  

 

Initial features set 

 

In this research we used the following initial features set routinely gathered from hospital 

patients: 

- antropometry: age, sex, BMI; 

- blood differential test: total white blood cells (WBC), lymphocytes, neutrophils, 

monocytes, platelets, hemoglobin; 

- blood biochemical tests: CRP, procalcitonin, creatinine, urea, total protein, sodium, 

potassium, LDG, ferritin, conjugated bilirubin, AST, ALT, troponin I, APTT, glucose, 

amylase, D-dimer, fibrinogen. 

All the data were downloaded from the local health information system (HIS) and manually 

checked for possible outliers. Off-scale values were set to the bound of an equipment dynamic 

range. For the restoration of missed values between two sequential tests, the “last observation 

carried forward” procedure (LOCF) was applied [15]. To compare two cohorts, baseline values 

for the listed parameters were determined for all the patients.  
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Figure 1. Study profile 

Statistical analysis 

 

The analysis was performed based on all the available data from the described cohorts. Sex was 

coded with values 0 and 1 for females and males respectively. Continuous data were 

characterized by their medians and MADs due to their non-normality. Categorical data were 

summarized as proportions. We compared baseline characteristics between the training and 

validating cohorts using the Mann-Whitney U test for continuous data and the χ² test for 

categorical data. Cumulative incidence functions were compared with the Gray test. A 

correlation was estimated with a Spearman’s rank coefficient.  All p-values were two-sided, all 

the confidence intervals – 95 percent. 

To investigate the association between dynamics of the features and outcomes, a ten days 

period before an outcome (death or discharge) was analyzed. For every time-varying feature, we 

fitted a robust linear regression model including a day before an outcome, an outcome itself and 

their interaction as independent variables, whereas the feature value as a dependent one [16]. 

Thus, an interaction coefficient sign was used as an indicator whether a feature increase or 

decrease is more typical in case of expected lethal outcome. Depending on it, either an upper or a 

lower cut-off value was calculated for every feature. For static features (Age, Sex and BMI), a 

day term and interaction were excluded from the model, and a cut-off type was selected basing 

Prognostic score derivation (Wave I)

(27.04.2020 – 03.08.2020)

Prognostic score validation (Wave II)

(01.11.2020 – 19.01.2021)

1565 patients were admitted 

to the hospital

198 (12.6%) patients with early 

death or discharge (2 days or less)

18 (1.1%) patients with loss of 

follow-up due to transfer to other 

hospitals

The prognostic score was 

derived using complete data 

of 1349 patients

1957 patients were admitted 

to the hospital.

299 (15.3%) patients with early 

death or discharge (2 days or less)

196 (10.0%) patients continuing 

treatment as of 19.01.2020

The prognostic score was 

validated using complete 

data of 1453 patients.
Death

n = 81

Discharge

n = 1268

9 (0.46%) patients with loss of 

follow-up due to transfer to other 

hospitals

Death

n = 98

Discharge

n = 1355
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on outcome coefficient sign. When discussing the cut-off level, we didn’t find any unambiguous 

arguments for prioritizing either sensitivity or specificity, that is why this level were chosen to 

minimize their average.  

Basing on the conventional Bayesian approach [17], the resulting partial sensitivity and 

specificity of a feature were combined into a feature informativeness index (FII) as follows (see 

Supplement A for details): 

 
 Also for every particular feature we estimated a median prediction time range (defined as 

a time between the first true positive prediction for a patient and their death). Afterwards, a 

subset of features with the best informativeness and/or prediction range was selected to be 

combined into the proposed risk score (see section Results below). The score may be represented 

as a weighted sum of individual predictions, made with a particular feature. The rounded values 

of FII’s were used as weights in the score. The detailed description of rationales underlying the 

described procedure may be found in Supplement A. 

For the validation of the proposed score we compared its sensitivity, specificity and 

prediction range between training and validating cohorts. Also, a testing rate influence on the 

score was examined by means of formation of a separate patients group, in which every score 

component was intentionally tested not only according to a doctor daily decision but also for 

ensuring the testing period to be no more than 3 days. A quantile-quantile plot (QQ-plot) was 

used for the comparison of score values distributions in this group and in the control group in 

which testing rate was chosen in a conventional fashion (according to the doctors daily decisions 

only). The control group was chosen with a propensity score matching algorithm basing on 

baseline score components values.  

For the analysis of the relationship between a patient score and their individual mortality 

risk we fit logistic regression with terms including wave, maximal score during hospitalization 

and their interaction. The second and the third terms were included for the evaluation of the 

relationship robustness to the score application conditions. The obtained with this model 

expected death:discharge odds were split into 5 sub-ranges (grades) with boundary values 1:100, 

1:25, 1:5 and 1:1 reflecting very low, low, average, high and very high risks correspondingly. 

Finally, we used the small amount of available data related to various cytokines tested 

occasionally since the beginning of the pandemic for the analysis of correlations between the 

score and the cytokines levels. The correlations were estimated not only for the coinciding 

moments but also for a few time lags between the score calculation and the cytokines testing. It 

is worth noting that these cytokines were measures with a research purpose only and were not 

used for a treatment strategy improvement. 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.09.21249859doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.09.21249859
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

Results 

 

Comparison of cohort 

 

The baseline cohort characteristics of patients analyzed in the study are given in Table 1. 

As we can see, a noticeable part of patients from the considered cohorts have never experienced 

such tests as Ferritin, Procalcitonin, Troponin I and LDG. Moreover, a separate analysis showed 

that these tests were taken mostly for senior patients and patients in a severe status. Hence, to 

avoid the omitted variable bias, they were excluded from the further analysis. Comparing other 

features, we may conclude that even in cases with detected statistically significant difference, the 

clinical difference was considerably low. As a result, the differences between cumulative 

incidence functions for both events (death and discharge) were statistically insignificant (see 

Figure 1). However, we should note a slightly worse condition of the 2
nd

 wave patients on 

average. 

 
Figure 1. Comparison of cumulative distribution functions for events “Death” and 

“Discharge” between two waves of COVID-19 

 

Estimation of clinical laboratory parameters dynamics before outcome 

 

The analysis of features behavior before an outcome allowed highlighting two groups of 

features with significant association between lethal outcome and increased/decreased value: 

 Increased: Age, Amylase, APTT, AST, Conj. bilirubin, Creatinine, CRP, D-dimer, 

Glucose, Neutrophils, Sex, Sodium, Urea, WBC; 

 Decreased: BMI, Hemoglobin, Lymphocytes, Monocytes, Platelets, Total protein. 

p = 0.43 p = 0.70 
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For the remaining features their associations with an outcomes were insignificant, which caused 

there exclusion from the further analysis. The full summaries of regression results, as well as 

plots of features variation before an outcome are given in Supplement B. 

 

Evaluation of features informativeness and prediction range 

 

Basing on the first wave data, for every patient we found the worst detected value of 

every feature (highest or lowest, depending on its behavior given in Table 2). These values 

allowed fitting a set of partial prediction models (one per feature) and derive cut-offs, providing 

the minimum of FPR and FNR arithmetic mean – (FPR+FNR)/2. Thus for every feature we 

calculated its partial specificity, sensitivity, precision, informativeness index FII (according to 

the procedure, described in Supplement A) and prediction range. The summary of this procedure 

is given in Table 2 and depicted in Figure 2. 
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Table 1. Characteristics of the training (Wave 1) and validation (Wave 2) cohorts 

Test 

Patients with known 

baseline values 

Patients tested 

at least once 

Average testing period 

(days) 

Baseline values 

(median±MAD)* 

I II p 1 2 p I II p I II p 

Age NA NA NA NA NA NA NA NA NA 58±13.3 60±14.8 <0.001 

Sex NA NA NA NA NA NA NA NA NA 
F: 752 (55,7%) 

M: 597 (44,3%) 

F: 752 (51,8%) 

M: 701 (48,2%) 
0,029 

BMI NA NA NA NA NA NA NA NA NA 28.6±5.34 28.3±5.12 0,227 

ALT 
1338 

(99.2%) 

1446 

(99.5%) 
0,385 

1345 

(99.7%) 

1452 

(99.9%) 
0,20 5,3 6,1 <0.001 30±17 30.2±17.2 0,496 

Amylase 
1318 

(97.7%) 

1440 

(99.1%) 
0,005 

1328 

(98.4%) 

1447 

(99.6%) 
0,003 7,5 7,8 <0.001 57±22.2 57±23.7 0,547 

APTT 
1316 

(97.6%) 

1416 

(97.5%) 
0,961 

1326 

(98.3%) 

1424 

(98%) 
0,579 6,9 7,6 <0.001 31.1±4.74 33±5.19 <0.001 

AST 
1338 

(99.2%) 

1446 

(99.5%) 
0,385 

1345 

(99.7%) 

1452 

(99.9%) 
0,202 5,3 6,1 <0.001 36±15.6 37±16.3 0,220 

Conj. bilirubin 
1325 

(98.2%) 

1441 

(99.2%) 
0,038 

1334 

(98.9%) 

1447 

(99.6%) 
0,046 6,9 7,3 <0.001 2.5±1.19 2.5±1.19 0,969 

Creatinine 
1339 

(99.3%) 

1447 

(99.6%) 
0,367 

1346 

(99.8%) 

1453 

(100%) 
0,111 5,4 5 0,014 0.088±0.019 0.089±0.019 0,159 

CRP 
1339 

(99.3%) 

1445 

(99.4%) 
0,693 

1348 

(99.9%) 

1453 

(100%) 
0,481 2,4 2,2 <0.001 46±54 54.1±54.6 0,001 

D-dimer 
1041 

(77.2%) 

1263 

(86.9%) 
<0.001 

1241 

(92%) 

1403 

(96.6%) 
<0.001 4,9 4,3 <0.001 577±391 519±371 0,008 

Ferritin 
799 

(59.2%) 

1003 

(69%) 
<0.001 

976 

(72.3%) 

1269 

(87.3%) 
<0.001 7,2 6 <0.001 304±259 454±372 <0.001 

Fibrinogen 
1304 

(96.7%) 

1410 

(97%) 
0,644 

1319 

(97.8%) 

1422 

(97.9%) 
0,897 6,6 8,8 <0.001 5.1±1.59 5.2±1.5 <0.001 

Glucose 
1332 

(98.7%) 

1445 

(99.4%) 
0,073 

1340 

(99.3%) 

1451 

(99.9%) 
0,033 5,9 5,9 0,356 6.47±0.98 6.8±1.3 <0.001 

Hemoglobin 
1348 

(99.9%) 

1447 

(99.6%) 
0,157 

1349 

(100%) 

1453 

(100%) 
1,000 2,6 2,5 0,001 139±14.8 137±15.6 0,010 

LDG 
740 

(54.9%) 

797 

(54.9%) 
1,000 

962 

(71.3%) 

1035 

(71.2%) 
0,967 6,4 6,3 0,146 268±93.4 265±93.4 0,965 

Lymphocytes 
1348 

(99.9%) 

1447 

(99.6%) 
0,157 

1349 

(100%) 

1453 

(100%) 
1,000 2,6 2,5 0,001 1.2±0.519 1.1±0.45 0,000 
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Monocytes 
1348 

(99.9%) 

1447 

(99.6%) 
0,157 

1349 

(100%) 

1453 

(100%) 
1,000 2,6 2,5 0,001 0.45±0.193 0.44±0.2 0,315 

Neutrophils 
1346 

(99.8%) 

1446 

(99.5%) 
0,405 

1348 

(99.9%) 

1453 

(100%) 
0,481 2,6 2,5 0,001 3.77±1.79 4.21±2.2 <0.001 

Platelets 
1348 

(99.9%) 

1447 

(99.6%) 
0,157 

1349 

(100%) 

1453 

(100%) 
1,000 2,6 2,5 0,001 203±65.2 214±69.2 <0.001 

Potassium 
1340 

(99.3%) 

1445 

(99.4%) 
0,878 

1346 

(99.8%) 

1452 

(99.9%) 
0,357 5,4 5 0,008 4±0.445 4±0.45 0,019 

Procalcitonin 
892 

(66.1%) 

529 

(36.4%) 
<0.001 

1031 

(76.4%) 

665 

(45.8%) 
0,000 5,2 7,2 <0.001 0.11±0.058 0.12±0.06 0,015 

Sodium 
1340 

(99.3%) 

1445 

(99.4%) 
0,878 

1346 

(99.8%) 

1452 

(99.9%) 
0,357 5,5 5,3 0,149 139±3.26 138±3.11 <0.001 

Toponin I 
765 

(56.7%) 

356 

(24.5%) 
0,000 

910 

(67.5%) 

486 

(33.4%) 
0,000 8,2 8,2 0,671 2±2.97 3±02.97 0,010 

Total protein 
1333 

(98.8%) 

1443 

(99.3%) 
0,240 

1342 

(99.5%) 

1449 

(99.7%) 
0,372 7,3 7,5 0,012 72±5.93 71±5.93 <0.001 

Urea 
1331 

(98.7%) 

1443 

(99.3%) 
0,127 

1339 

(99.3%) 

1449 

(99.7%) 
0,107 6,4 5,8 0,004 5.1±1.93 5.1±1.93 0,668 

WBC 
1348 

(99.9%) 

1447 

(99.6%) 
0,157 

1349 

(100%) 

1453 

(100%) 
1,000 2,6 2,5 0,001 5.7±2.09 6.03±2.28 0,001 

 

* Except sex, for which the data is represented with percentages. 
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Table 2. Partial prediction effectiveness of the features 

Feature Sensitivity Specificity Precision Threshold 
Threshold 

type 
FII 

Median 

prediction  

range, days 

Age 0,59 0,83 0,18 68 Upper 1,95 9,5 

Amylase 0,68 0,89 0,28 104 Upper 2,82 5 

APTT 0,93 0,88 0,32 42,4 Upper 4,49 7 

AST 0,80 0,83 0,23 83 Upper 2,98 5 

BMI 0,41 0,71 0,08 25,95 Lower 0,50 9 

Conj. 

bilirubin 
0,88 0,71 0,16 3,3 Upper 2,87 9 

Creatinine 0,85 0,91 0,39 0,123 Upper 4,11 6 

CRP 0,84 0,81 0,22 146 Upper 3,11 8,5 

D-dimer 0,86 0,86 0,28 2149 Upper 3,64 8 

Glucose 0,91 0,82 0,25 8,9 Upper 3,89 8 

Hemoglobin 0,84 0,82 0,23 114,5 Lower 3,14 7 

Lymphocytes 0,85 0,84 0,26 0,7 Lower 3,44 9 

Monocytes 0,54 0,78 0,14 0,23 Lower 1,47 7,5 

Neutrophils 0,84 0,91 0,36 12,23 Upper 3,91 6,5 

Platelets 0,58 0,87 0,22 129 Lower 2,20 5 

Sex 0,53 0,56 0,07 0,5 Upper 0,38 10 

Sodium 0,74 0,92 0,38 145,1 Upper 3,52 6 

Total 

protein 
0,98 0,89 0,35 61 Lower 5,73 7 

Urea 0,95 0,92 0,44 10,9 Upper 5,43 8 

WBC 0,86 0,88 0,32 13,5 Upper 3,87 7 
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Figure 2. Features informativeness indexes vs. median prediction range. Features with prediction range ≥7 days 

range and weight ≥3 were accepted as the components of the proposed score (circled with red dashed line)  

 

Prognostic score statement and its validation 

 

From all the features listed in Table 3 we heuristically extracted only those, which median 

prediction range was at least 7 days and which information index was at least 3 (circled with red 

dashed line in figure 2). This resulting set of features with corresponding weights calculated as 

rounded FIIs are given in Table 3. 

 

Table 3. The proposed score components 

 Feature Threshold Weight 

APTT > 42 sec 4 

CRP > 146 mg/L 3 

D-dimer > 2149 mg/L 4 

Glucose > 9 mmol/L 4 

Hemoglobin < 115 g/L 3 

Lymphocytes < 0,7*10^9/L 3 

Total protein < 61 g/L 6 

Urea > 11 mmol/L 5 

WBC > 13,5*10^9/L 4 

Total score: 36 max 
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Average score values per day among all the included in this research patients for both waves see 

in Figure 3. In Figure 4 we represent an obtained sensitivity/specificity trade-off for the proposed 

prognostic index as well as its mean prediction range dependence on a chosen threshold level. 

Figure 5 represents a QQ-plot with the score quartiles comparison between samples with 

an experimental (regular) and a conventional testing rate. A fitted linear regression line is 

depicted for the estimation of potential systematic biases introduced with a testing rate practice. 

 

 
Figure 3. Average score variation within 3 weeks before outcome: points represent mean score values at particular 

days, error bars – 95% confidence intervals for the mean values 
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Figure 4. Results of score validation: a) sensitivity/specificity trade-off for various threshold levels; b) Prediction 

range dependency on a chosen threshold level 

 

 
Figure 5. The comparison of score values distributions obtained by means of conventional (according to daily doctor 

decisions) and experimental (at least once per three days) testing strategies 
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Choice of score grades according to a patient individual risk 

 

 For a simplification of patient individual risk estimation we introduced the following four 

risk grades: low, medium, high and very high. Basing on a training cohort data we adjusted the 

score bounds for their matching with expected death/discharge odds 1:4, 1:1 and 3:1. These 

bounds as well as odds confidence intervals for both cohorts are given in Table 5 and Figure 6. 

 

Table 5. Risk grades according to the prognostic score 

Score range 
Expected death/discharge 

odds 
Risk grade 

<9 < 1:100 Very low 

[9, 14) 1:100 – 1:25 Low 

[14, 19) 1:25– 1:5 Average 

[19, 24) 1:5 – 1:1 High 

≥24 > 1:1 Very high 

 

 
Figure 6. Five risk grades based on proposed prognostic score: very low (death:discharge odds < 

1:100), low (1:100 – 1:25), average (1:25– 1:5), high (1:5 – 1:1) and very high (> 1:1)  

 

Prognostic score and cytokines landscape 

 

In Figure 7 we represent the result of analysis of associations between various cytokines levels 

and the proposed score. As one can see, the score value has significant correlation with IL-1RA 

(positive) and IL-1α (negative) measured 5-7 days before. For IL-6 and IL-8 the largest positive 

correlation was detected for the 3-5 days prior period. 
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Figure 7. Correlations between the proposed score and 10 various cytokines for different time lags (a negative lag 

represents cytokins testing preceding to the score calculation, while a positive one – on a contrary, succeeding) 

 

 

Score application examples 

 

In this subsection three cases are given for illustrating a routine application of the 

proposed prognostic score. For all the patients COVID-19 pneumonia was diagnosed with a PCR 

test and a CT scan on hospital admission. The score variations for the considered cases are given 

in Figure 8.  

Patient I (upper part of the figure) was admitted to the hospital with a moderate 

respiratory failure (room-air SpO2 – 94%). Within the first four days of hospitalization, the 

patient's condition gradually worsened which expressed in increasing of lymphopenia, WBC, 

neutrophils, CRP and ferritin levels. Moreover a glucose levels was poorly controlled. Therefore 

therapy with tocilizumab was undertaken in combination with antibiotic therapy (point 1). This 

resulted in a temporal general improvement which included all the key laboratory parameters 

except for lymphocytes and ferritin. Room-air SpO2 remained at 89-90%, and the second CT 

scan was performed. A significant negative trend was found, and it was decided to transfer the 

patient to the intensive care unit (ICU) for a plasma exchange session and a high-flow oxygen 

therapy (point 2). After this treatment, there was a significant positive dynamics of clinical and 

laboratory parameters. The patient was transferred to the general observation unit, where the 

mitigation of respiratory failure was continued using non-invasive ventilation (point 3). Soon the 

patient's condition stabilized and he could be discharged home. 
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Patient II (middle part of the figure) was hospitalized with a concomitant uncontrolled 

arterial hypertension and type 2 diabetes. She had severe respiratory failure (room-air SpO2 – 

88-90%), extreme fatigue and unsteady gait. For correction of respiratory failure, 

glucocorticosteroid therapy was undertaken (point 1), followed by the infusion of the immune 

anti-SARS-CoV-2 plasma and antibiotic therapy (due to the increased procalcitonin level). Then, 

clinical and laboratory improvement occured. The target blood pressure was reached and the 

oxygen saturation recovered to 94%. However, during a preparation to a discharge on the 13th 

day of hospitalization, the sporadic growth of the score was detected. The discharge process was 

delayed and soon an unsteady gait as well as deterioration of respiratory function, and increasing 

weakness. An examination of the patient showed decrease in hemoglobin, accompanied with 

CRP elevation. During CT with contrast enhancement (point 2), the formation of a rounded area 

of a fluid accumulation with smooth, clear contours in the left pectoralis minor was found. The 

lesion spread totally from the left axillary region to the level IV-V of the sternocostal joint, with 

signs of unsharp infiltration of the surrounding tissue. The formation of a hematoma with an 

element of secondary inflammation was diagnosed. A discontinuation of anticoagulant therapy, 

and maintenance therapy (point 3) were performed. When the patient's condition stabilized and 

improved, she was discharged. 

Patient III (lower part of the figure) was admitted with a respiratory failure that required a 

glucocorticosteroid therapy from the first day of hospitalization. After a short-term condition 

improvement, a critical deterioration was detected by means of the proposed prognostic score. 

Due to the fact that there was no progression of a respiratory failure, and the patient did not make 

any complaints, it was difficult to assess his condition by means of daily physical examination. 

Given the high risk of poor outcome, anticytokine therapy with a JAK-kinase inhibitor in 

combination with antibiotic therapy was prescribed (point 1). Subsequently, a dramatic 

improvement in the patient's condition was observed. On the 11th day of hospitalization, the 

additional antimycotic therapy was required due to the colonization of respiratory tract and oral 

cavity with Candida spp. (point 2). Upon completion of the therapy course, the patient was 

discharged. 
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Figure 8. Three examples of the proposed prognostic score application in a routine clinical practice. Patient I: 1 – 

start of anticytokine+antibacterial therapy, 2 – plasma exchange session, 3 – non-invasive ventilation in the general 

observation unit; Patient II: 1 – the  moment of the beginning of glucocorticosteroid therapy, 2 – discovery of the 

hematoma, 3 - a discontinuation of anticoagulant therapy; Patient III: 1 – start of anticytokine+antibacterial therapy, 

2 – start of additional antimycotic therapy. 

 

 

Analysis of the most noticeable prediction failures  

 

For the analysis of the score application limitations we have manually checked the most 

noticeable cases with a prediction failure. In this dataset 3 deaths occurred with a score value less 

than 9 points (“very low” risk grade). In all these cases the deaths were caused by an extremely 

rapid deterioration: in two cases, associated with the acute cardiovascular failure (for patients 

aged 60-65 years and 80-85 years), in the third case – with the development of subdural 

hematoma of the right hemisphere of the brain (for patient aged 90-95 years). Thus, there were 

not enough time for performing the laboratory tests and updating the score. 

Also, we consider 12 cases in which patients had score values more than 30, but survived 

and were discharged. In 5 of 12 patients, the observed decompensation was caused by 

prehospital therapy (in 2 cases antibacterial therapy resulted in pseudomembranous colitis, in 3 

cases intensive anticoagulant therapy – bleeding and formation of hematomas). In 4 of 12 

patients, a severe course of COVID-19 was observed with significant impairment of respiratory 

function and the need to prescribe anticytokine therapy and non-invasive ventilation. This 

therapy successfully delayed the development of acute respiratory distress syndrome. 

Subsequently, the patients required the appointment of antibiotic therapy due to secondary 

bacterial complications after anticytokine therapy, which proved to be effective. In 3 of 12 

patients, the high score values reflected the progression of chronic diseases (stenosing cancer of 

sigmoid colon, breast cancer and polycystic kidney disease). At the same time, a course COVID-
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19 was mild, so, after effective management of chronic diseases, the patients were successfully 

discharged. 

 

 

Discussions 

 

Almost all the selected features were mentioned earlier as prognostic factors for COVID-

19 patients. Thus, in research [18] urea together with creatinine reflects the state of kidney 

function at the time of COVID-19 illness, indicating a higher risk of severe infection in patients 

with chronic kidney disease (CKD) or acute kidney injury (AKI). In addition to indicating the 

current renal pathology and nephrotoxicity of the applied therapy, urea is one of the signs of 

catabolism in critically ill patients. The relationship between urea and catabolism has previously 

been demonstrated in patients with extensive trauma due to persistent muscle 

catabolism/rhabdomyolysis [19]. Later the predictive potential of urea was demonstrated not 

only in patients with polytrauma, but also in severe patients with other conditions [20]. Increase 

in aspartate aminotrasferase (AST) levels in patients with COVID-19 indicates a possible 

contribution of an active inflammatory process to urea metabolism due to the involvement of 

muscle tissue. Inflammatory destruction of muscle tissue can also act as a marker of the severity 

of the SARS-CoV-2 infection. 

The concomitant appearance of abnormalities of conjugated bilirubin, AST and ALT may 

also indicate an underestimated role of liver dysfunction in pathogenesis of COVID-19 within 

hepatorenal syndrome [21]. Analogously, the dynamic decrease in total protein by the time of 

lethal outcome can also be considered an indirect reflection of both an increasing renal 

dysfunction during COVID-19 in patients with CKD, and a sign of “minor” hepatorenal 

syndrome [22], [23]. 

High levels of C-reactive protein (CRP) and ferritin are frequently considered as a criteria 

for the so-called cytokine storm [24]. Being the main feature of SARS-CoV-2 infection, this 

phenomena also includes a concomitant increase in procalcitonin [25], which indicates a high 

concentration of pro-inflammatory cytokines with a simultaneous low level of IFN-gamma [26]. 

In this situation we have to deal with a difficult differential diagnosis of secondary 

bacterial/fungal superinfection in COVID-19 patients. The difficulty is also associated with 

neutrophilic leukocytosis, which also develops during widely practiced corticosteroid therapy. 

A low level of lymphocytes in the early stages of infection is considered as a criterion for 

subsequent severity of the infection course [27]. Cytokine storm together with a lung injury are 

associated with a decrease in circulating lymphocytes both as a result of their direct depletion 

and their infiltration of the affected lung tissue. Hence, the undulating course of COVID-19 may 

be associated with new episodes of a lymphocyte level decrease [28]. 

A disturbance of glucose metabolism in patients with COVID-19 and its relationship with 

the severity of the course of infection may be the reflection of: i) poorly controlled diabetes in 

patients at the moment of hospitalization; ii) a side effect of glucocorticosteriod therapy during 
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infection; iii) more rarely – de novo development of diabetes as a consequence of SARS-CoV-2 

infection [29]. Hence, persistently elevated glucose levels in COVID-19 patients may be 

associated with a higher risk of secondary bacterial superinfection. 

A decrease in hemoglobin during a COVID-19 has alse been discussed as a predictor of 

an unfavorable course of infection previously [30]. In the early stages of the disease, it can be 

associated with a high concentration of circulating IL-6 and the risk of a cytokine storm. In the 

later stages of the disease, hemoglobin may be an indirect sign of a violation of coagulation with 

a bleeding episode. 

Finally, coagulation abnormalities in COVID-19 patients are almost unavoidable 

satellites of this infection leading to difficult-to-manage complications, such as venous 

thrombosis and thromboembolism. Also bleeding episodes due to a massive anticoagulant 

therapy may occur in these patients [31]. Particularly, a gastrointestinal bleeding due to a steroid 

and an anticytokine therapy in patients with pre-existing pathologies of mucosa may be 

distinguished. For this reason, regular monitoring of both D-dimer and APTT in patients is the 

most effective strategy for controlling the balance between anticoagulant and anti-inflammatory 

therapies. 

Thus, the mentioned features accepted as the score components cover almost all the 

peculiarities of COVID-19 pathogenesis. The comparison of a training and a validating cohorts 

shows, that despite seasonal effects, change of paradigm in COVID-19 treatment and difference 

between baseline feature values, the proposed approach shows a high accuracy and robustness. 

Thus, for both cohorts it was shown that 11-19 points cut-offs provides score sensitivity and 

specificity over 90% with an expected prediction range >7 days (see Figure 4). Moreover, the 

differences in death/discharge odds between the considered cohorts for the selected risk grades 

were shown to be statistically insignificant (see Figure 6).  

 

Study limitations 

 

The study has the following limitations. Firstly, it was a single-center study with a temporal 

validation. Secondly, a few features that showed the efficiency in previous studies (such as 

ferritin, LDH, procalcitonin and troponin), were excluded from the analysis due to insufficiency 

of data. Also, laboratory tests for various features were done asynchronously and with different 

updating periods. This indicates different degrees of the score components relevance at the time 

of its calculation. For this reason, we assume that the score distribution will depend on the rate of 

analyses sampling in each particular hospital. Finally, the score doesn’t contain any components 

reflecting a patient respiratory function. Thus, an objective estimation of a patient condition may 

be performed only in combination with oxygenation parameters. 
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Conclusion 

 

An extensive testing of the score during the second wave of COVID-19 has demonstrated its 

attractiveness for application by a medical staff due to a precision in representing the current 

patient state and interpretability. Besides, it was shown, that the proposed score may be used as a 

tool for automatic detection of patients with a dangerous deterioration and thus help to reduce the 

burden on a staff during high-workload periods.  
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