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A variant of the SIR model for an inhomogeneous population is introduced in order to account
for the effect of variability in susceptibility and infectiousness across a population. An initial for-
mulation of this dynamics leads to infinitely many differential equations. Our model, however,
can be reduced to a single first-order one-dimensional differential equation. Using this approach,
we provide quantitative solutions for different distributions. In particular, we use GPS data from
∼ 107 cellphones to determine an empirical distribution of the number of individual contacts and
use this to infer a possible distribution of susceptibility and infectivity. We quantify the effect of
superspreaders on the early growth rate R0 of the infection and on the final epidemic size, the total
number of people who are ever infected. We discuss the features of the distribution that contribute
most to the dynamics of the infection.

I. INTRODUCTION

A strong temptation in modeling a system consisting
of many similar parts is to make the assumption that
these parts have identical properties. Accordingly, the
classical models in epidemiology assume (often implic-
itly) that everyone has the same propensity to be in-
fected and, if infected, the same propensity to infect oth-
ers [1]. This assumption may be justified when differ-
ences in the salient parameters are small. However, one
of the interesting features of the current COVID-19 pan-
demic is the huge variation in infectivity: small numbers
of infectious events or individuals seem to be responsi-
ble for a large number of cases [2–7]. This feature seems
to be present in other coronavirus epidemics including
SARS [8–10] and MERS [11–13]. One can point to dif-
ferent explanations for this phenomenon: individual vari-
ations in viral shedding [14], in droplet production (see
the review in [15]), in contact networks [16], and dif-
ferences in the features of ventilation systems at certain
events and venues [17, 18]. Inhomogeneity seems to have
played an important role for other epidemics as well [19–
21], leading to the rule of thumb that “20% of patients
produce 80% of infections” [22]. However, it seems that
for coronavirus-related infections the variability is even
higher than that heuristic. In a recent book [23], the his-
torian Lepore has noted that “the study of the human
condition is not the same as the study of the spread of
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viruses and the density of clouds and the movement of the
stars,” which is incontrovertible. The converse, however,
is not: it appears that the spread of viruses is dependent
on at least one aspect of the human condition, namely
the intrinsic variability and lack of uniformity of human
behavior.

There are two related, but distinct, notions of su-
perspreading in this literature, namely, superspreading
events and superspreading individuals. Superspreading
events are events that produce many infections. Super-
spreading individuals (superspreaders) are specific people
that produce many infections (such as Typhoid Mary in
the early 1900s). As one might imagine, in reality, some
combination of these two processes is present. In this pa-
per, however, we set our sights on the latter phenomenon:
a superspreader is always an individual, rather than an
event.

It is reasonable to assume that a variability in infec-
tivity is accompanied by a variability in susceptibility.
Common explanations of variability in individual infec-
tivity — increased shedding, increased exposure period,
and increased personal contacts — all suggest that in-
creased infectivity may correlate with increased suscep-
tibility. Thus superspreaders might be more prominent
at the early stages of an epidemic. During the course of
an epidemic, the fraction of superspreaders will typically
decrease with time. This would lead to a change in the
apparent value of the average transmission rate, which
could make it difficult to evaluate the effectiveness of mit-
igation measures. This effect might be quite large and is
not captured by many standard models. John Cardy has
observed that some models seem to be unaware that the

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2021. ; https://doi.org/10.1101/2021.02.08.21251386doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:These authors contributed equally to this work.
https://doi.org/10.1101/2021.02.08.21251386
http://creativecommons.org/licenses/by/4.0/


2

mean of an exponential growth is not the exponential of
the mean [24]. Understanding the effect of inhomogeneity
would increase the fidelity of models based on real-world
data, and lead to more effective public policy.

Several recent works (see, e.g., [25–27]) have addressed
the issue of heterogeneity in the population, but they
either concentrate on specific distributions or treat the
variability in infectivity and susceptibility separately,
without considering the effect of a possible correlation
between the two.

In this work we discuss the epidemic dynamics for a
population with variable infectivity potential accompa-
nied by variable individual susceptibility. We obtain the
results for the general case of an arbitrary distribution
of susceptibility and infectivity. We also give a nonintu-
itive calculation of R0 that quantifies the effect of super-
spreaders on the early growth rate of the epidemic and
find that it depends strongly on the correlation between
susceptibility and infectivity.

Moreover, one of the distributions holds a special in-
terest. If we assume that the main driver of inhomo-
geneity is diversity in the number of social contacts for
an individual, then data [28] on the distribution of these
contacts suggests a very wide distribution of infectivity
and susceptibility.

An important question for modeling the inhomogene-
ity is whether the result depends only on the moments
of the distribution (mean, variance, skewness, . . . ) or on
the behavior of the tails of the distribution. The answer
to this question could inform the construction of real-
istic predictive models in the future. We discuss both
the cases of fat tails and skinny tails, and the transition
between these regimes.

The rest of the paper is organized as follows: In Sec-
tion II, we give a mathematical description of the dynam-
ics of our model. In Section III, we reduce our model
to a one dimensional integro-differential equation, ana-
lyze the long time dynamics, and describe an early time
criterion for epidemic outbreak. In Section IV, we com-
pare the results of our model for different distributions
of population attributes, including an empirical one from
anonymized cell phone data. We end with our discussion
and conclusions in Section V. In the Appendices, we pro-
vide derivations which are relevant to the main text and
we discuss some of the methodological aspects of our em-
pirical data.

II. THE MODEL

Classic SIR models [1] divide the population into three
compartments: susceptible S, infected I, and recovered
(or dead) R. The rate of new infections in this model is

proportional to the number of encounters of susceptible
persons with the infected persons, while the rate of re-
covery is proportional to the number of infected persons.
This gives us the well-known SIR equations

İ = βSI − γI,
Ṙ = γI,

(1)

where S, I, and R are the fractions of susceptible, in-
fected, and recovered persons to the constant population
size, dot means the time derivative, β and γ are non-
negative constants, and we use the fact that, with our
normalization, the fraction of susceptible persons S sat-
isfies the equation

S + I +R = 1. (2)

We use the simplest version of the model, which accounts
neither for additional births and deaths, nor for popula-
tion migration. Additionally, we do not allow for the
possibility of recovered individuals being reinfected.

We now allow the parameters to be different for dif-
ferent individuals. Namely, let the infection rate β in
equation (1) be the product of individual susceptibility
s and infectivity σ. To obtain the rate of infection, we
integrate over the values of s for susceptible individuals
and over the values of σ for infected individuals. Note
that in our model the values of s, σ, and γ are fixed for
each person and do not change with time.

Let p(σ, s, γ) dσ ds dγ be the probability that a person
selected uniformly at random from the population has
susceptibility s, and, when infected, has infectivity σ and
recovery rate γ. Note that p does not change with time
in our model. We will have reason to make repeated use
of the averaging operator E: for any function f(σ, s, γ),
we define

E[f ] ≡
∫
f(σ, s, γ)p(σ, s, γ) dσ ds dγ. (3)

Equations (1) and (2) should now be rewritten, be-
cause I, R and S are not just functions of time t, but also
depend on s, σ, and γ. Namely, let I(σ, s, γ, t) dσ ds dγ
be the probability that a person selected uniformly from
the entire population at time t is infected and has (ini-
tial) susceptibility s, infectivity σ and recovery rate γ.
Similarly we introduce S(σ, s, γ, t) and R(σ, s, γ, t). Then
equation (2) becomes

S(σ, s, γ, t) + I(σ, s, γ, t) +R(σ, s, γ, t) = p(σ, s, γ), (4)

and equations (1) become
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İ(σ, s, γ, t) = S(σ, s, γ, t)s

∫
ηI(η, q, κ, t) dq dκ dη − γI(σ, s, γ, t), (5)

Ṙ(σ, s, γ, t) = γI(σ, s, γ, t). (6)

When the proportion of infected individuals is small,
S(σ, s, γ, t) in equation (5) is close to p(σ, s, γ), giving a
linear approximation of equation (5). For distributions
where is γ a constant, it can be shown (Appendix B)
that the early behavior of an epidemic is determined by
R0 = E[σs]/γ.

The total fraction Ω(t) of persons who have ever been
infected at time t is the sum of currently infected and
recovered individuals. If we stratify Ω by s, σ, and γ, we
can write down

Ω(t) =

∫
T (σ, s, γ, t) dσ ds dγ (7)

with

T (σ, s, γ, t) = I(σ, s, γ, t) +R(σ, s, γ, t). (8)

The final epidemic size is

Ω∞ = lim
t→∞

∫
T (σ, s, γ, t) dσ ds dγ. (9)

We will use index 0 for the initial conditions in equa-
tions (5) and (6), so I0(σ, s, γ) = I(σ, s, γ, 0) etc.

III. ANALYTIC RESULTS

In this section we discuss the general properties of our
model. We assume that the distribution of infectivity
and susceptibility is such that the moments E[σ], E[s],
and E[σs] as defined in equation (3) exist. If the dis-
tribution is so heavy tailed that these moments do not
exist then important integrals in our analysis will not
converge. This is not a merely technical restriction. For
instance the short time behavior of the model should be
quite different if E[σs] is infinite.

Let us introduce the notation:

φ(t) =
1

E[σ]

∫
σI(σ, s, γ, t) dσ dsdγ, (10)

ψ(t) =
1

t

∫ t

0

φ(t′)dt′. (11)

An individual has infectivity σ if infected and 0 if not.
Therefore E[σ] is the maximal average infectivity (when
everyone is infected simultaneously), and φ(t) is the ratio
of the current average infectivity and the maximal one.
Further, ψ(t) is the historical average of φ(t). Both these
quantities are thus between zero and one. In our model
(without births or immigration and no persons with zero
recovery rate) there are no infected persons at t→∞, so
in this limit

lim
t→∞

φ(t) = 0, lim
t→∞

ψ(t) = 0. (12)

It is shown in Appendix A that the stratified fraction
of people who ever have been infected at time t [see equa-
tions (7) and (8)] is

T (σ, s, γ, t) = p(σ, s, γ)− S0(σ, s, γ) e−sE[σ]ψ(t)t. (13)

For outbreaks started with a small number of infected
persons, almost all remaining individuals are susceptible,
so S0 ≈ p. The number of currently infected individuals
is

I(σ, s, γ, t) =− S0(σ, s, γ) e−sE[σ]ψ(t)t

+ e−γt
(
p(σ, s, γ)−R0(σ, s, γ)

)
+ γS0(σ, s, γ)

∫ t

0

dt′e−γ(t−t
′)−sE[σ]ψ(t′)t′ .

(14)

Therefore, if we know ψ(t), then we know the full solu-
tion. It is shown in Appendix A that ψ(t) is a solution
of the equation

E[σ]
d(tψ(t))

dt
=

∫
σ

[
I0(σ, s, γ)e−γt − S0(σ, s, γ)

∫ t

0

dt′e−γ(t−t
′) d

dt′

(
e−sE[σ]ψ(t

′)t′
)]

dσ ds dγ. (15)

To study the behavior of equation (15) we will make several simplifying assumptions. First, we assume a con-
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stant recovery rate across the population:

p(σ, s, γ′) = p(σ, s)δ(γ − γ′). (16)

This means that the other variables (S, I, R) are also
proportional to δ(γ − γ′); we will use the same notation
for them as functions of σ and s.

Second, we assume the initial number of recovered in-
dividuals is zero,

R0(σ, s) = 0. (17)

Third, we assume that the initial distribution of in-
fected persons is proportional to p(σ, s), and is small:

I0(σ, s) = εp(σ, s),

S0(σ, s) = (1− ε)p(σ, s),
0 < ε� 1.

(18)

To see why any other initial distribution I0 that is small
should behave similarly see Appendix B.

With these assumptions equation (15) can be further
transformed from an integro-differential equation to a
first-order differential equation

E[σ](ν̇ + γν) =− (1− ε)
∞∫
0

ds

∞∫
0

dσσp(σ, s)e−sE[σ]ν(t)

+ E[σ], (19)

for the function ν(t) = ψ(t)t (See equation (A14)).
To numerically solve equation (15) it is convenient to

rewrite it as two first-order differential equations (See
Appendix E). In the rest of this section we discuss the
properties of the solution of this equation.

Let us start with the final epidemic size [equation (9)].
It can be shown (Appendix A) that at t→∞ the function
ψ(t) in equation (11) behaves as 1/t. Choose L so that
at large t,

ψ(t) ≈ L

t
, L ≥ 0. (20)

Then equation (9) with T from equation (13) becomes
(see Appendix A)

Ω∞(ε) = 1− (1− ε)E
[
e−sE[σ]L

]
, (21)

where L is the unique nonnegative root of the equation

F (L) = L− 1

γ
+

1− ε
γ E[σ]

E
[
σ e−sE[σ]L

]
= 0. (22)

We are interested in an infection started with a small
number of initial cases, which corresponds to ε → 0. If
in this limit equation (22) has a strictly positive root, the
final epidemic size

Ω∞ = Ω∞(0) (23)

is non-zero, and does not depend on ε: in other words,
the epidemic takes off. If the limit does not have a strictly
positive root then the infection immediately dies out and
the final epidemic size is 0. In this ε→ 0 limit F (0) = 0
and F (1/γ) > 0, so equation (22) has a positive (non-
zero) root if dF (0)/dL < 0. Taking the derivative, we
see that a non-zero root corresponds to the condition

R0 =
E[σs]

γ
≥ 1. (24)

Given this result, we take a brief detour from our dis-
cussion of t → ∞. Another way to look at epidemic
spread is to study the short term behavior of the solution.
Our analysis (Appendix B) shows that the initial small
infection spreads with exponential rate R0 = E[σs]/γ
determined by equation (24). The upshot is that the
growth rate of the epidemic is highly dependent on how
correlated the infectivity and susceptibility are.

One naive generalization of R0 from the SIR model,
i.e., the average number of secondary infections produced
by a typical infection would be R′0 = E[σ]E[s]/γ. To

explain why R0, rather than R′0, determines the expo-
nential growth rate of the infected population we will
illustrate what the two quantities measure. If we choose
a person from the entire population uniformly at ran-
dom and infect them, then the average number of sec-
ondary infections would be R′0. For instance if a cruise
ship travels somewhere and almost everyone is infected,
then when they return home the expected number of sec-
ondary infections each person produces will be R′0. On
the other hand a person who was infected via community
spread (early in the epidemic) will cause on average R0

secondary infections. The difference between these cases
is that in the first case almost all travelers are infected
so the fact that someone is infected tells us little about
their susceptibility, whereas in the second case people
are infected via community spread which occurs with a
probability proportional to their susceptibility early in
the epidemic. See Appendix B for details.

We will now continue our discussion of the final epi-
demic size with some limiting cases. As mentioned
above, for an epidemic to spread, it is necessary that
R′0 = E[σs]/γ ≥ 1. Near this transition, where R′0 ≈ 1,
we may write down an approximation for L. Again, we
will be interested in the limit of small initial epidemic
size ε → 0, although it is not difficult to generalize the
following result for non-zero ε. Let R0 > 1. Assuming
that L is small, and that p(σ, s) falls off quickly enough
for large s, we may approximate equation (22) as

F0(L) ≈ γ E[σ]L− E[σ]+

+

∫
σp(σ, s)

(
1− sE[σ]L+

(sE[σ]L)2

2

)
ds dσ. (25)

Therefore, if we get close enough to the transition where
E[σs]− γ is small

L ≈ 2

E[σ]E[σs2]
(E[σs]− γ). (26)
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In this regime equation (21) gives the total epidemic size
as

Ω∞ ≈
∫
p(σ, s)(1− e−2s(E[σs]−γ)/E[σs

2]) dsdσ. (27)

Let us now briefly discuss the opposite limit. Instead
of γ being so large that the epidemic almost doesn’t start,
we study γ so small that the epidemic infects almost ev-
eryone. It is expected that if γ = 0, then the entire pop-
ulation will eventually become infected; that is, Ω∞ = 1.
Equation (21) shows that in this case L→∞. It is easy
to show that for small γ, L ≈ 1/γ, and equation (21) pre-
dicts an exponentially small number of individuals not
infected.

This framework allows one to make predictions for a
number of specific distributions discussed in the next sec-
tion. We conclude the general discussion with one very
interesting case: when the distribution has a very small
number of “superspreaders”, individuals with anoma-
lously high infectivity. (Here very small means small
enough to not appreciably change E[σs].) A relevant
question is whether these individuals have an oversized
contribution in the epidemic. Equations (21) and (22)
show that this is not the case, and the contribution of
superspreaders is limited by the linear term in the av-
erage value of E[σs] (see Appendix D). Therefore, while
superspreaders still contribute to the dynamics, they are
only a primary driver of infection in our model when they
significantly change R0. That being said, increasing the
number of superspreaders in a population will increase
R0, which will cause the epidemic to spread faster, and
will also cause a larger final epidemic size.

IV. RESULTS FOR DIFFERENT
DISTRIBUTIONS OF INFECTIVITY AND

SUSCEPTIBILITY

Let us further illustrate the general results using spe-
cific distributions for s and σ. First, consider an N -
component SIR model. That is, there are N different
types of individuals who have parameters σi, si, γi and
represent a portion of the population pi, and

p(σ, s, γ) =
N∑
i=1

piδ(σ − σi)δ(s− si)δ(γ − γi), (28)

δ(x) being Dirac’s delta-function. In the case where
N = 1, this reduces to the standard SIR model. We
see in Appendix B that this model is a limiting case of
the model presented in this paper [29].

Another useful distribution to study is the Gamma dis-
tribution with σ = s. In particular, we are interested in
the distribution

p(σ, s, γ′) = p(s)δ(σ − s)δ(γ′ − γ) (29)

where

p(s) =
βαsα−1e−βs

Γ(α)
(30)

and α, β are positive constants. This system is interest-
ing to study because the integrals involved in solving for
L are analytically tractable. In the case where α = 1
we recover the exponential distribution and we can find
Ω∞ exactly (equation (F6)). We analyze the case of the
Gamma distribution in Appendix F.

We further illustrate the dynamics of epidemics using
several special cases of distributions of infectivity σ and
susceptibility s with the assumption of constant recovery
rate γ. (See Appendix C for an analysis of which distri-
butions lead to the worst outcomes for the final epidemic
size.)

Even with constant γ the answer depends on the
probability distribution p(σ, s). We discuss three lim-
iting cases: (i) completely independent σ and s, with
p(σ, s) = pσ(σ)ps(s); (ii) completely positively correlated
σ and s with σ ∝ s; and (iii) positively correlated σ and
s with a correlation coefficient ρ.

Note that since only the product σs enters the equa-
tions, we always can multiply σ by a constant factor f ,
and s by the factor 1/f . We choose this factor to ensure
that E[σ] = E[s]. In the numerical calculations in this
section we used the following parameters roughly follow-
ing [30–32]

E[σ] = E[s] = 0.6 day−1/2,

γ = 0.125 day−1,

ε = 10−4.

(31)

At present, our understanding of variability in indi-
vidual suceptibility and infectivity is far from complete.
While the consensus is that they have a wide distribu-
tion (see the discussion in the Introduction), the shape
of this distribution is not known, and most studies as-
sume a convenient one for their calculations. Since we
want to explore the dependence of the dynamics on the
distribution itself, rather than on its parameters, we com-
pare two reasonable a priori assumptions: a log-normal
distribution with the parameters µ and σ̃, and a Gamma
distribution with the parameters α and β. Another ap-
proach is to suggest some mechanism for the variability
and choose a distribution that follows this mechanism.
One such mechanism is the variability of individual con-
tacts: the more contacts has a person, the higher is their
s and σ. It is important to note that in this model s is
completely correlated with σ because they are caused by
the same mechanism.

We are fortunate to be able to use empirical data about
the number of contacts from the “path-crossing” network
described in Looi et al. [28]. Their network is constructed
from the mobility data provided by SafeGraph, a com-
pany that aggregates and anonymizes geolocation data
from cell phone applications. SafeGraph collects GPS
location pings for millions of adult smartphone users in
the United States, where each ping represents the lati-
tude and longitude of one user at one timestamp. Looi
et al. [28] transform the set of location pings into a dy-
namic network, where users are represented as nodes, and
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Figure 1. Comparison of empirical, log-normal and gamma
distributions with the same average infectivity E[s] =

0.6 day−1/2 and variance ζ2 with ζ = 4.16 day−1/2.

edges indicate the number of times two users crossed their
paths (see Appendix G for the details). We use the num-
ber of path crossings as a proxy for the number of users’
social contacts, which is in its turn a proxy for suscepti-
bility and infectivity. Due to the number of assumptions
here one should be careful with the interpretation of the
results. We do not claim that the SafeGraph data pro-
vide the distribution of σ and s. Rather we think they
suggest features of the real distribution.

An interesting feature of the SafeGraph distribution
is that it is very wide. The average number of contacts
per user is 0.342 × 103, while the standard deviation is
1.04 × 103. We can try to approximate the empirical
distribution of contacts using a theoretical distribution.
On Figure 1 we show log-normal and gamma approxima-
tions together with the empirical distribution with the
same mean and variance.

In the remainder of this section we discuss the numer-
ical solutions of the model equations for the log-normal,
Gamma, and empirical distributions obtained with the
approach discussed in Appendix E. See Appendix F for
analytical solutions in special cases.

In Figure 2 we compare the epidemic’s progression
for log-normal and Gamma distributions with the same
mean s and varying distribution widths. We see that a
wider distribution leads to a lower epidemic size. When
the width of the distribution decreases, the curve goes
to the one for the classical SIR model. An interesting
feature is that a wide correlated distribution of s and σ
leads to an earlier start of the epidemics instead of the
S-like curve of the standard SIR model.
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Figure 2. Comparison of epidemics spread for log-normal and
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standard deviation ζ and parameters in equation (31). The
cases of independent or completely correlated σ and s are
shown.
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Figure 3. Dependence of final epidemic size Ω∞ on ρ
where (log(s), log(σ)) is a Gaussian vector with mean E[s] =

E[σ] = 0.6 day−1/2 and covariances Var(s) = Var(σ) = ζ2,
Cov(s, σ) = ρζ2. Note that ρ is the correlation coefficient for
log(s) and log(σ) rather than for s and σ.
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Figure 4. Epidemics progression for the distributions shown
on Figure 1 with parameters in equation (31). A classical
SIR solution for the same susceptibility and infectivity is also
shown.

In Figure 3 we study the influence of the positive cor-
relation between infectivity and susceptibility. For sim-
plicity we show just the final size Ω∞. As demonstrated
by this figure, the more correlated these parameters are,
the higher the size is, as predicted by the analysis in the
previous section.

For another comparison we take the empirical num-
ber of contacts between the individuals (Appendix G)
as a proxy for both s and σ. We renormalize the num-
ber of contacts to obtain the average infectivity E[s] in
equation (31). This leads to variance ζ2 = 17.27 day−1

(ζ = 4.16 day−1/2). Then we fit the parameters of log-
normal and Gamma distributions to get the same E[s]
and ζ. All three distributions are shown on Figure 1.

The results are shown in Figure 4 together with the
solution for the classical SIR model with the infectivity
and susceptibility equal to the averages E[s] and E[σ].

The figures suggest that, generally speaking, variabil-
ity in susceptibility and infectivity lowers the final epi-
demic size, and the correlation between them increases
it. Important special cases of this statement are proven
in Appendix C, and based on the figures, we expect it to
hold more generally.

Of special interest is the question of whether individu-
als with high infectivity (“superspreaders”) influence the
epidemic dynamics and final epidemic size. To model the
effect of superspreaders we can discuss a special bimodal
distribution of infectivity,

p(σ) = (1− λ)pn(σ) + λps(σ), (32)
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Figure 5. Final epidemic size for a mix of normal individ-
uals (same distribution as on Figure 2) and superspreaders
described by equation (33). The effect of superspreaders is at
most linear in their proportion.

where pn describes “normal” persons with low σ, and ps
describes superspreaders with high σ. In our numerical
experiments we modeled superspreaders using a power-
law distribution

ps(σ) =

{
0, σ < b,

(a− 1)ba−1σ−a, σ ≥ b
(33)

with the parameters a = 4, b = 1.2 day−1/2. With these
parameters the average infectivity of superspreaders is
1.8 day−1/2, i.e., three times the average infectivity in
our simulations. The results are shown on Figure 5. We
see that the influence of superspreaders is at most linear
in their proportion λ. This is not coincidental: as shown
in Appendix D, the effect of superspreaders is at most
linear.

V. DISCUSSION AND CONCLUSIONS

The aim of any idealized model is to provide insights
about the “real world”. We believe our model provides
several important insights beyond the assumptions in-
volved in its derivation and treatment.

First, the variation in individual susceptibility and in-
fectivity does matter. All examples studied in Section IV
have the same average susceptibility and infectivity—but
the outcomes greatly differ. Generally wider distribution
lead to lower final epidemic size, and, in the case of corre-
lated infectivity and susceptibility, faster initial outbreak.
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Second, the correlation between infectivity and sus-
ceptibility is important: the higher the correlation, the
larger the epidemic size.

Third, the average and the width of infectivity and
susceptibility are not enough to predict the outcome:
the actual shape of the distribution matters too. The
comparisons of log-normal and Gamma distributions in
Figure 2, and of three different distributions having the
same first and second moments in Figure 4, demonstrate
this clearly.

This conclusion shows that a prediction of the epi-
demic’s spread is a hard task from the practical point
of view. Indeed, we never know the exact shape of the
distribution, since it involves the measurement of indi-
vidual infectivity and susceptibility of many people. The
sensitivity to the shape of the distribution beyond a cou-
ple of moments is bad news for precise predictions.

Having said this, we still need to answer the question
of which features of the distribution are the most salient
for predictions. There were a number of works stressing
the importance of superspreaders: individuals or events
with anomalously high potential for spreading (see the
Introduction). Our model suggests a more nuanced view.
On one hand, because the susceptibility and infectious-
ness of individuals are correlated through how many peo-
ple someone interacts with, increasing the number of su-
perspreaders in a way that does not change the average
infectivity or susceptibility will increase R0 = E[σs]/σ,
which greatly increases how fast the infection takes off
and somewhat increases the final epidemic size. In the
unrealistic case where we add pairs of one superspreader
and one unusually careful person so that the variance
increases and R0 is unchanged, adding both these peo-
ple will actually tend to decrease the final epidemic size.
This can be seen in equations (21) and (22) where we have
exponentials suppressing the contribution of individuals
with anomalously high susceptibility (or high infectivity
if these parameters are correlated). This can also be seen
in Appendix C and in Figure 4. The final result is deter-
mined by the average E[σs] and the distribution shape
at low to moderate susceptibilities. It should be noted,
that for wide distributions median s and mean s are quite
different, and our conclusion concerns mean, rather than
median, susceptibility.

These conclusions rely on the fact that in our model a
recovered person can never be infected again. If we allow
for the reinfection of recovered individuals, such as in an
SIRS model, we would expect superspreaders to have a
much greater impact on the course of the epidemic. This
is because their removal from the system at early times
is now only temporary. This is an important limitation
of our model that would be useful to examine in future
investigations.

Perhaps the following analogy may help to understand
the meaning of this result. In comic books the outcome of
a war is determined by a handful of superheroes and su-
pervillains. In reality it is determined by the combined
effort of many people at the lowest rungs of the mili-

tary hierarchy: privates, petty and junior officers, and so
forth. Our conclusion is that epidemic spread is like the
“real war” rather than the “comic-book one”. This has
an essential implication for public health policy. While
the prevention of superspreading is important (it changes
the exponential growth rate R0 = E[σs]/γ and drives
down the averages in equations (21) and (22)), it is the
mundane everyday efforts that matter most.

Lastly, we provide a simple, but efficient mathematical
apparatus to calculate the epidemic dynamics for a pop-
ulation with variable infectivity and susceptibility, and
cast it in a form suitable for numerical estimates. We
hope this apparatus might turn out to be useful beyond
the insights formulated in this paper.
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Appendix A: Derivation of main equations

This Appendix is dedicated to the derivation of the
main equation and the results of the general analysis in
Section III.

First, we derive equation (13). Let us add equations (5)
and (6) and use the definitions of T (σ, s, γ, t) to obtain

Ṫ (σ, s, γ, t) = [p(σ, s, γ)− T (σ, s, γ, t)]sE[σ]φ(t) (A1)

By inspection, we may verify that Eq.13 is a solution
to this differential equation. We see that this solution
satisfies the initial conditions

T (σ, s, γ, 0) = p(σ, s, γ)− S0(σ, s, γ) (A2)

We now turn to the derivation of equation (14). First,
we use equation (5) and the definitions of T (σ, s, γ, t) and
φ(t) to write down

İ(σ, s, γ, t) =
(
p(σ, s, γ)− T (σ, s, γ, t)

)
sE[σ]φ(t)

− γI(σ, s, γ, t). (A3)

Substituting this expression into equation (A1), we arrive
at

İ(σ, s, γ, t) = Ṫ (σ, s, γ, t)− γI(σ, s, γ, t), (A4)

or, equivalently

d

dt

(
eγtI(σ, s, γ, t)

)
= eγtṪ (σ, s, γ, t). (A5)
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This differential equation admits a solution

I(σ, s, γ, t)

= e−γt

 t∫
0

dt ′eγt
′
Ṫ (σ, s, γ, t′) + I0(σ, s, γ)

 . (A6)

We now integrate the integral in the above equation by
parts. In the second step and the second-to-last step, we
will use our solution for T (σ, s, γ, t) from equation (13).

eγtI(σ, s, γ, t) = eγtT (σ, s, γ, t)− T0(σ, s, γ)−
t∫

0

dt′γ eγt
′
T (σ, s, γ, t) + I0(σ, s, γ) =

eγtT (σ, s, γ, t)− (T0(σ, s, γ)− I0(σ, s, γ))−
t∫

0

dt′ γeγt
′
(p(σ, s, γ)− S0(σ, s, γ)e−sE[σ]ψ(t

′)t′ =

eγtT (σ, s, γ, t)−R0(σ, s, γ)−
(
eγt − 1

)
p(σ, s, γ) + S0(σ, s, γ)γ

t∫
0

dt′ eγt
′
e−sE[σ]ψ(t

′)t′ =

eγt(T (σ, s, γ, t)− p(σ, s, γ)) + (p(σ, s, γ)−R0(σ, s, γ)) + S0(σ, s, γ)γ

a∫
0

tdt′eγt
′
e−sE[σ]ψ(t

′)t′ =

− eγtS0(σ, s, γ)e−sE[σ]ψ(t)t + (p(σ, s, γ)−R0(σ, s, γ)) + S0(σ, s, γ)γ

t∫
0

dt′ eγt
′
e−sE[σ]ψ(t

′)t′ , (A7)

and therefore

I(σ, s, γ, t) =

− S0(σ, s, γ)e−sE[σ]ψ(t)t + e−γt(p(σ, s, γ)−R0(σ, s, γ)) + S0(σ, s, γ)γ

t∫
0

dt′ e−γ(t−t
′)e−sE[σ]ψ(t

′)t′ . (A8)

This final line matches Eq. (14).

Finally, we derive the equations of motion for tψ(t) as written in (15). We begin by substituting in our solution for
I(σ, s, γ, t) into the definition of φ(t) in equation (10):

φ(t) =
1

E[σ]

∫
σI(σ, s, γ, t)dσ dsdγ =

∫ (
σγS0(σ, s, γ)

∫ t

0

dt′ e−γ(t−t
′)−sE[σ]ψ(t′)t′

)
dσ ds dγ+∫

σ
{

e−γt
[
p(σ, s, γ)−R0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

}
dσ ds dγ. (A9)

Noticing that φ(t) = d(ψ(t)t)/dt, we get

E[σ]
d(tψ(t))

dt
=

∫ (
σγS0(σ, s, γ)

∫ t

0

dt′ e−γ(t−t
′)−sE[σ]ψ(t′)t′

)
dσ dsdγ+∫

σ
{

e−γt
[
p(σ, s, γ)−R0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

}
dσ dsdγ. (A10)
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Integrating this equation by parts, we get

E[σ]
d(tψ(t))

dt
=

∫ ((
σS0(σ, s, γ)

(
e−sE[σ]ψ(t)t − e−γt −

∫ t

0

dt′ e−γ(t−t
′) d

dt′

(
e−sE[σ]ψ(t

′)t′
)))

+∫
σ
{

e−γt
[
I0(σ, s, γ) + S0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

})
dσ ds dγ =∫

σ

[
I0(σ, s, γ)e−γt − S0(σ, s, γ)

∫ t

0

dt′e−γ(t−t
′) d

dt′

(
e−sE[σ]ψ(t

′)t′
)]

dσ ds dγ, (A11)

which matches equation (15).

Let us now derive equation (22) and propose an itera-
tive algorithm for its numerical solution.

Assuming constant γ (equation (16)), we multiply both
sides of equation (15) by eγt and take a time derivative
of both sides:

d

dt

(
E[σ]

d(ψ(t)t)

dt
eγt
)

=

−
∫ [

σS0(σ, s)eγt
d

dt

(
e−sE[σ]ψ(t)t

)]
dσ ds. (A12)

Taking the derivative of the left hand side, multiplying
by e−γt and integrating over time, we get

E[σ](ψ̇t+ ψ + γψt) =

−
∫ (

σS0(σ, s)e−sE[σ]ψ(t)t
)

dσ ds+ C, (A13)

where C is a constant based on initial conditions. With
the initial conditions (18), we get C = E[σ]. As an aside,
we may alternatively write equation (A13) as a first-
order, time-independent equation using ν(t) = ψ(t)t.

E[σ](ν̇ + γν) =

−
∫ (

σS0(σ, s)e−sE[σ]ν
)

dσ ds+ E[σ], (A14)

We already know that limt→∞ ψ(t) = 0 (equa-
tion (12)). Suppose that

∫∞
0
φ(t) dt converges, and thus

the following limit exists:

lim
t→∞

ψ(t)t = L. (A15)

Then in the case S0(σ, s) = 1−ε we obtain equation (22).
To justify the assumption (A15) we construct an algo-

rithm to calculate L and prove it converges to a non-
negative root of equation (22). We use the following
iterations We will find the solution using the following
iterations:

L0 =
1

γ
, (A16)

Li =
1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]Li−1

]
, i = 1, 2, . . . .

(A17)

Below we will prove that the sequence Li converges to
the relevant root.

Lemma 1. Suppose equation (22) has non-negative

roots, and L̃ is the largest root. Then the sequence
L0, L1, . . . converges to L̃.

Proof. We will prove that for all i

L̃ ≤ Li ≤ Li−1. (A18)

Then the sequence L0, L1, . . . is bounded and non-
increasing, and therefore converges. The limit of this
sequence is a root of equation (22), and due to inequal-

ity (A18) and the fact that L̃ is the largest root, it con-

verges to L̃.
First, note that from equations (22) and (A16) follows

that L̃ ≤ 1/γ = L0.
For i = 1 we have from the iteration equation (A17)

L1 ≤ L0 and, since L̃ ≤ L0,

L1 ≥
1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]L̃

]
= L̃, (A19)

so inequality (A18) is true.
Suppose this inequality is true for i− 1, i.e.

L̃ ≤ Li−1 ≤ Li−2. (A20)

Then we will prove it for i. Indeed,

Li =
1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]Li−1

]
≤

1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]Li−2

]
= Li−1 (A21)

and

Li ≥
1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]L̃

]
= L̃ (A22)

In other words if the inequality is true for i− 1, it is true
for i, so it is true for all i.

Lemma 2. Equation (22) always has a non-negative root
no smaller than ε/γ.
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Proof. Similarly to the proof of Lemma 1 we can prove
the inequality

ε

γ
≤ Li ≤ Li−1. (A23)

Indeed, for any i we can iteratively prove that

Li ≥
1

γ
− 1− ε
γ E[σ]

E
[
σe−sE[σ]·0

]
=
ε

γ
. (A24)

Therefore the sequence L0, L1, . . . converges to a number
no smaller than ε/γ. This number is a root of equa-
tion (22), which, according to Lemma 1 is the largest
root.

The last lemma shows that the assumed behavior of
ψ(t) at large t is indeed ψ ≈ L/t.

Appendix B: Short-time behavior and initial
conditions

In this section we show that in a mixed population the
parameter that determines whether an infection grows
exponentially or dies out is

R0 =
E[σs]

γ
.

We also show that the long term behavior of the epidemic
does not depend on the initial conditions.

At early time, when the proportion of the population
infected, and the proportion of the population recovered
are very small, equations (5) and (6) can be linearized as

İ(σ, s, γ, t) = p(σ, s, γ)s

∫
ηI(η, q, κ, t)dηdqdκ−

γI(σ, s, γ, t) (B1)

and

Ṙ(σ, s, γ, t) = γI(σ, s, γ, t). (B2)

We consider the case where γ is fixed for the entire pop-
ulation, and the distribution p(σ, s) =

∑n
i=1 piδσi,si(σ, s)

is a finite combination of delta functions. With the nota-
tion Ii(t) = I(σi, si, t), equations (B1) and (B2) become
a finite-dimensional system of equations

dIi(t)

dt
= pisi

 n∑
j=1

σjIj(t)

− γIi. (B3)

We rewrite this as

dI

dt
= AI, (B4)

with I =
(
I1(t), . . . In(t)

)T
and Aij = pisiσj − γ1i=j .

Let

σ =

σ1...
σn

 , (sp) =

s1p1...
snpn

 , (B5)

Let

Aij = |(sp)〉〈σ| − γI. (B6)

From this we see that the largest eigenvalue of A is
E[σs]−γ = 〈σ|(sp)〉−γ =

∑n
i=1 siσipi−γ with the asso-

ciated eigenvector |(sp)〉, and that all other eigenvectors
are perpendicular to σ and have eigenvalue −γ.

Now a general distribution p(σ, s) can be approximated
by a sum of delta masses, to conclude that the linear
equations (B1) and (B2) have the largest eigenvalue

λ = E[sσ]− γ (B7)

with corresponding eigenvector I(σ, s) = sp(σ, s) and all
other eigenvectors negative.

If p(σ, s) is a compactly supported distribution we con-
clude that if a small enough proportion of the total pop-
ulation is infected at time zero, then until the proportion
of the population that is susceptible drops appreciably
below 1, we have

It(σ, s) = et(E[sσ]−γ)sp(σ, s) +O(e−γt). (B8)

The quantity R0 is also what epidemiologists measure
when they measure the number of secondary infections
produced by a typical infection in the very early stages of
the epidemic. The key to understanding why this number
is E[sσ]/γ instead of E[s]E[σ]/γ comes from the word
“typical.” Based on equation (B8), early in the epidemic
the probability q(σ, s) that a person with infectivity σ
and susceptibility s is infected is proportional to sp(σ, s),
so

q(σ, s) =
sp(σ, s)∫
sp(σ, s)dsdσ

=
sp(σ, s)

E[s]
(B9)

To find the number secondary infections per unit time
this ”typical infection” produces, we take this person’s
infectivity and multiply by the average susceptibility in
the population to get σtypical E[s]. Averaging σtypical over
the measure q(σ, s) gives

E[σtypical]E[s] =

∫
sσp(σ, s)dsdσ

E[s]

E[s]
= E[sσ]. (B10)

Multiplying by the typical recovery time 1
γ gives the ex-

pected number of secondary infections.
As with the usual SIR model, if R0 > 1 the infection

will spread and if R0 < 1 the infection will die out. This
allows us to see that the growth rate of an epidemic is
highly dependent on how correlated s and σ are, with
higher correlation leading to a higher growth rate. In a
true population we expect a persons infectivity σ and sus-
ceptibility s to be highly correlated through factors like
how many people someone interacts with. In particular
superspreaders have an outsize effect on the early growth
of the epidemic in the most realistic case where s and σ
are highly correlated, because in this case R0 grows like
the second moment E[σ2] of the infectivity rather than
the first moment.
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The second takeaway is that if the proportion of the
population that is infected at time 0 is small enough,
there is essentially only one possible initial condition for
the system (5), (6). This can be seen by writing the
initial profile of infected I0(σ, s) as a sum of eigenvectors
for equations (B1) and (B2),

I0(σ, s) = Csp(σ, s) + I ′0(σ, s), (B11)

and comparing with (B8) to see that I ′0(σ, s) has minimal
effect, and the long term solution is almost identical to
the solution starting from initial condition

I0(σ, s) = Csp(σ, s). (B12)

Appendix C: Worst-case distributions

In this section we discuss which distributions provide
the highest possible epidemic size Ω∞ (the “worst-case
scenarios”).

We prove two statements

(i) Variability is good. If s and σ are independent, then
the final epidemic size is less than or equal to the
final epidemic size of the classical SIR model with
s0 = E[s], σ0 = E[σ].

(ii) Strong positive correlation is bad. If the marginal
distributions of s and σ are known, then the joint
distribution p(σ, s) that maximizes the final epi-
demic size is given by the “percentile coupling”,
where the nth most infectious person is also the nth
most susceptible person.

Both these statements follow from the following
lemma:

Lemma 3. Let µ and ν be two possible joint distributions
for (s, σ). Let Eµ and Eν denote the expectation with
respect to µ and ν respectively, and similarly for final
epidemic sizes Ωµ∞ and Ων∞. If

Eµ[σ] ≥ Eν [σ], (C1)

and for all c > 0,

Eµ[e−cs] ≤ Eν [e−cs], (C2)

and also

Eµ[σe−sc] ≤ Eν [σe−sc], (C3)

then

Ωµ∞ ≥ Ων∞. (C4)

Proof. Using equations (C2) and (C1) together with
equation (22) we see that for any L > 0,

Fµ(L) = L− 1

γ
+

1

γ Eµ[σ]
Eµ[σe−sE

µ[σ]L] ≤

L− 1

γ
+

1

γ Eν [σ]
Eν [σe−sE

ν [σ]L] = F ν(L). (C5)

Let Lµ be the unique positive zero of Fµ(L) if such a zero
exists, and otherwise let Lµ = 0. Now Fµ(0) = F ν(0) =
0 and both are convex functions of L, which together
with equation (C5) gives Lµ ≥ Lν .

Then from equations (C3) and (C1) we obtain

Ωµ∞ = 1− Eµ[e−sE
µ[σ]Lµ ] ≥

1− Eν [e−sE
ν [σ]Lν ] = Ων∞. (C6)

To prove (i) let us take a distribution ν with indepen-
dent σ and s, and let µ = δ(σ − Eν [σ])δ(s − Eν [s]). We
have Eµ[σ] = Eν [σ] by definition. From Jensen’s ineqal-
ity [33, §1.7(iv)]

Eµ[e−cs] = e−cE
ν [s] ≤ Eν [e−cs], (C7)

and from Jensen’s inequality and independence of s and
σ under distribution ν we have

Eµ[σe−cs] = Eν [σ]e−cE
ν [s] ≤ Eν [σe−cs]. (C8)

Thus the final epidemic size for our arbitrary distribution
with independent s and σ is not greater than the final
epidemic size of a delta mass with the same mean.

To prove (ii) let ν be an arbitrary measure with the cor-
rect marginal distributions, and let µ be the percentile
coupling: the most susceptible person is the most infec-
tious, the second most susceptible person is the second
most infectious and so on. In particular if we sample
twice from µ and obtain (s1, σ1) and (s2, σ2), then with
probability 1, the statement s1 ≥ s2 implies σ1 ≥ σ2.
This property implies that if f is an arbitrary decreasing
function, and g is an arbitrary increasing function, then
the percentile coupling is the coupling that minimizes the
expectation E[f(s)g(σ)] for the given marginal distribu-
tions of s and σ. In particular this distribution minimizes
E[σe−sc] for all c > 0, so it satisfies equation (C3). It also
has the same marginals as the other measure ν, thus in-
equalities (C1) and (C2) are satisfied. Thus for the given
marginal distributions of s and σ the percentile coupling
is the worst possible joint law in that it maximizes the
final epidemic size of the infection.

Appendix D: The effect of superspreaders

In this Appendix we discuss the effect of a superspread-
ers: a small subpopulation of people with anomalously
high infectivity.

Consider the distribution of infectivity σ and suscep-
tibility s as a sum of the “normal” distribution pn and
the susperspreaders ps with the latter having support at
σ > σs with large σs, as shown in equation (32).

The short term behavior is determined by the value of
E[sσ], which can be represented as

E[σs] = (1− λ)En[σs] + λEs[σs], (D1)
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where subscripts n and s denote averaging with the distri-
butions pn and ps correspondingly. This equation shows
that (i) the only way superspreaders come into short
term behavior is the renormalization of average σs, and
(ii) their influence is linear in the proporion of super-
spreaders λ.

Let us discuss the case where the number of super-
spreaders is low enough, so the contribution of super-
spreaders to the averages is small, i.e.

λEs[σs]� En[σs]. (D2)

In this case the contribution of superspreaders into the
short term dynamics is small according to equation (3).
We are going to show that there is no anomalous contri-
bution to the long term dynamics either.

We are looking into the final epidemic size, which is
determined by equations (22) and (21).

First, consider the case where superspreaders have the
same susceptibility distribution as the other individuals.
In this case s and σ are independent, and our equations

become

L− 1

γ
+

1

γ
En
[
e−sE[σ]L

]
= 0, (D3)

Ω∞ = 1− En
[
e−sE[σ]L

]
. (D4)

We see that in this case the only way superspreaders
contribute is the changing of E[σ].

Now consider the case where superspreaders have
anomalous suceptibility s, and higher σ corresponds to
higher s. Then the contribution of superspreaders is
asymptotically small in both equations (22) and (21),
i.e., again no worse than linear in the number of super-
spreaders.

Appendix E: Numerically solvable equations

In this Appendix we will recast equation (15) into a set
of differential equations suitable for numerical analysis.

With the constant γ assumption (16) and initial con-
ditions (17) and (18), we can write down equation (15)
as

E[σ]
d(tψ(t))

dt
=

∫ (∫ t

0

e−γ(t−t
′)−sE[σ]ψ(t′)t′ dt′γ(1− ε) + e−γt − (1− ε)e−sE[σ]ψ(t)t

)
p(σ, s)σ dσ ds, (E1)

with

I(σ, s, t) =

(∫ t

0

e−γ(t−t
′)−sE[σ]ψ(t′)t′ dt′γ(1− ε) + e−γt − (1− ε)e−sE[σ]ψ(t)t

)
p(σ, s), (E2)

and

T (σ, s, t) = p(σ, s)
(

1− (1− ε)e−sE[σ]ψ(t)t
)
. (E3)

The initial condition is

ψ(0) = ε. (E4)

We introduce the function ν(t):

ν(t) = tψ(t). (E5)

We multiply both parts of equation (E1) by eγt and di-
vide by E[σ]:

eγt
dν(t)

dt
= 1 +

γ(1− ε)
E[σ]

∫ t

0

(∫
eγt
′−sE[σ]ν(t′)σp(σ, s) dσ ds

)
dt− 1− ε

E[σ]

∫
eγt−sE[σ]ν(t)σp(s, σ) dσ ds. (E6)

We differentiate this equation with respect to t and mul-
tiply by e−γt:

ν̈ + γν̇ = (1− ε)ν̇
∫

e−sE[σ]νsσp(σ, s) dσ ds. (E7)

Let us introduce a new variable

ξ = ν̇, (E8)
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then we can write down equation (E7) as

ξ̇ = ξ

[
(1− ε)

∫
e−sE[σ]νsσp(σ, s) dσ ds− γ

]
,

ν̇ = ξ.

(E9)

We need initial conditions for equations (E9). By
definition (E5), ν(0) = 0. From equations (E8), (E5)
and (E4) we get ξ(0) = ψ(0) = ε, so we can write initial
conditions as

ν(0) = 0, ξ(0) = ε. (E10)

Equations (E9) with the initial conditions (E10) depend
at any moment t on ξ(t) and ν(t) only, and therefore can
be solved by any suitable method for differential equa-
tions.

Appendix F: Special distributions

For several important distributions we can provide an-
alytical results. These results can be used for more
sophisticated models, so we provide them below. We
are particularly interested in the low-γ limit, where out-
breaks are large and not easily controlled.

We discuss the completely correlated case when σ(s) is
a monotonic function. Since we always can rescale them
keeping σs constant, let us assume σ = s, so

p(σ, s, γ′) = p(s)δ(σ − s)δ(γ′ − γ). (F1)

1. The Gamma distribution

Consider a Gamma distribution with fixed γ and s = σ,
so p(s) in equation (F1) becomes

p(s) =
βαsα−1e−βs

Γ(α)
(F2)

α and β being positive constants. First, let us calculate
L, the root of equation (22). In our case we have

0 = E[σ](γL− 1) +

∫ ∞
0

βαsαe−βs

Γ(α)
e−sE[σ]L ds, (F3)

where E[σ] = α/β. This gives for L the equation

0 = γL− 1 +

(
1 +

αL

β2

)−α−1
(F4)

which can be easily solved numerically. The final epi-
demic size is given by equation 21, and may be written
as

Ω∞ =

∫ ∞
0

p(s)
(

1− e−sE[σ]L
)

ds =

1−
(

1 +
αL

β2

)−α
= 1− (γL− 1)(1 + αL/β2) =(

α

β2
− γ
)
L+

αγ

β2
L2 (F5)

In the case of the exponential distribution (i.e., α = 1)
equation (F5) becomes

Ω∞ =
(3− 4β2γ +

√
1 + 4β2γ)(1− 2β2γ +

√
1 + 4β2γ)

4β2γ
,

(F6)
when R0 > 1. We emphasize that (F5) and (F6) are
exact formulas.

In the low γ limit we may approximate L by L =
1/γ − f(γ) (See equation (A17) and Lemma 1), where
the second term can be written as

f(γ) ≈ β

αγ

∫ ∞
0

βαsαe−βs

Γ(α)
e−sα/(βγ) ds ≈

1

γ

(
1 +

α

γβ2

)−α−1
≈
(
β2

α

)α+1

γα (F7)

Since α > 0, f(γ) is well defined near γ = 0 and the
approximation is well-controlled.

2. Low-recovery-rate limit for the log-normal
distribution

Let us discuss a log-normal distribution with fixed γ
and s = σ, where p(s) in equation (F1) becomes:

p(s) =
1

τs
√

2π
exp

(
− (log s− µ)2

2τ2

)
(F8)

with the constants τ > 0 and µ. Note that due to equa-
tion (F1),

E[s] = E[σ] = exp(µ+ τ2/2). (F9)

Using equations (A17) and (F9), we obtain the itera-
tive equation for ε→ 0:

Li =
1

γ
− 1

γ E[σ]

∫ ∞
0

se−sE[σ]Li−1
1

τs
√

2π
e−

(log s−µ)2

2τ2 ds

=
1

γ
− eµ

γτ E[σ]
√

2π

∞∫
0

dse−se
µ E[σ]Li−1− (log s)2

2τ2

=
1

γ
− eµ

γτ E[σ]
√

2π
Jτ (eµ E[σ]Li−1) (F10)

where we have defined

Jτ (a) ≡
∫ ∞
−∞

e−ae
y+y− y2

2τ2 dy (F11)

In principle, these equations are enough to construct
an iterative solution for L. However, we may take this a
step further for the low γ (large L) limit. In particular,
if L is large, then so is each Li. From here, we will
approximate Jτ (a) for large a, estimate the error from
this approximation, and finally provide an estimate for
L via an approximation of L1.
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We begin by approximating Jτ (a) for large a using a
saddle point approximation in a manner similar to [34].
Let us put in equation (F11)

y(δ) = τ2 + ρ+ δ, (F12)

then

Jτ (a) = eτ
2/2

∞∫
−∞

dδ e−ae
τ2eρeδ− (δ+τ)2

2τ2 (F13)

Now we turn to the saddle point approximation. We will
set ρ such that the term in the exponent of the integrand
is at a saddle point when δ = 0. Assuming that the
contribution of this integral away from δ = 0 is small,
we may Taylor expand the term in the exponent of the
integrand to second order. Then,

Jτ (a) ≈

eτ
2/2e−ae

τ2eρ− ρ2

2τ2

∞∫
−∞

dδe
−δ

(
aeτ

2
eρ+ ρ

τ2

)
− δ22

(
aeτ

2
eρ+ 1

τ2

)

(F14)

Recalling that we are setting the linear term in the ex-
ponent to zero, we see that

−ρe−ρ = −aτ2e−τ
2

ρ = −W (aτ2eτ
2

) (F15)

where W is the Lambert W function. From here, we
easily do the remaining Gaussian integral to obtain

Jτ (a) ≈ eτ
2/2
√

2π√
aeτ2eρ + 1

τ2

e−ae
τ2eρ− ρ2

2τ2 (F16)

Using the fact that e−W (x) = W (x)/x [35],

Jτ (a) ≈ eτ
2/2τ
√

2π√
W (aτ2eτ2) + 1

e−
1

2τ2
(2W (aτ2eτ

2
)+W (aτ2eτ

2
)2)

(F17)

Based on [36], we conjecture that multiplying the right-
hand side of (F17) by (1 +O(1/ log(a)) gives equality.

Returning to our iterative solution for L in Eqn. F11,
we will now plug in the previous expression. Note that

E[σ] = eµ+τ
2/2

Li =
1

γ
− 1

γ
e−

1
τ2

(W (τ2e2µ−τ
2/2Li−1)+W (τ2e2µ−τ

2/2Li−1)
2)

(F18)

In particular,

L1 =
1

γ
− 1

γ
e−

1
τ2

(W (τ2e2µ−τ
2/2/γ)+W (τ2e2µ−τ

2/2/γ)2)

(F19)

One may continue this iteration procedure to arbitrary
precision.

Appendix G: SafeGraph Data

In this Appendix we describe the approach by Looi et
al. [28] to transform the set of location pings into a dy-
namic network. In this network users are represented as
nodes, and an edge (u, v, t) indicates that user u crossed
paths with user v at time t. A path crossing is defined to
occur when two users have pings which are separated by
less than 50 meters and less than 5 minutes. It should
be stressed that a path here is the same as a world line
in relativity theory: it encompasses spatial and temporal
dimensions, so the users cross paths if they are at the
same place at the same time.

To ensure that users are represented accurately, vari-
ous filters are applied; for example, excluding users with
fewer than 500 pings or removing duplicate users, which
could potentially occur if a single person carries multi-
ple mobile devices. To compute the path crossings ef-
ficiently, the authors apply a sliding time window, and,
within each time slice, use a k-d tree to identify all pairs
of points within 50 meters of each other. We refer the
reader to the original paper for details of the network-
construction methodology. The constructed network cap-
tures 1 613 884 111 path crossings between 9 451 697 users
across three evenly spaced months in 2017 (March, July,
and November). The network provides an estimate of
the true contact network, where each user’s number of
contacts represents how many people they could possi-
bly transmit the virus to or from. Thus, we can use each
user’s degree in the path crossing network to estimate
their susceptibility and infectivity.

Previous analyses of SafeGraph data have shown that
it is representative of the US population, in that it does
not systematically over-represent users from certain in-
come levels, racial demographics, degrees of educational
attainment, or geographic regions [37]. Recently, their
mobility patterns have been instrumental in helping re-
searchers study responses to the COVID-19 pandemic
and to model the role of mobility in the spread of dis-
ease [7, 38–40]. Even so, there are caveats to the data
that we use. Most notably, the path-crossing network
covers three months in 2017, but individuals’ mobility
patterns may have changed substantially following the
onset of the pandemic. Furthermore, different types of
noise may affect an individual’s number of observed cross-
ings; for example, the frequency with which their phone
pings. Filtering for only well-represented users can help
to mitigate this issue.
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