
1 

Negative-Binomial and Quasi-Poisson regressions between COVID-19, mobility and environment in São Paulo, 

Brazil 

 

Sergio Ibarra-Espinosa 

Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade 

de São Paulo, Brazil  

 

Edmilson Dias de Freitas 

Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade 

de São Paulo, Brazil 

 

Karl Ropkins 

Institute for Transport Studies, University of Leeds, UK 

 

Francesca Dominici 

Harvard Data Science Initiative, Harvard University, Boston, MA 02138, USA 

 

Amanda Rehbein 

Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade 

de São Paulo, Brazil 

 

Corresponding author 

Sergio Ibarra-Espinosa 

Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade 

de São Paulo, Brazil  

Phone +55 (11) 934 909 778 

E-mail: sergio.ibarra@usp.br 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 3, 2021. ; https://doi.org/10.1101/2021.02.08.21250113doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:sergio.ibarra@usp.br
https://doi.org/10.1101/2021.02.08.21250113
http://creativecommons.org/licenses/by/4.0/


2 

 

Negative-Binomial and Quasi-Poisson regressions between COVID-19, mobility and environment in São Paulo, 

Brazil 

Sergio Ibarra-Espinosa¹, Edmilson Dias de Freitas¹, Karl Ropkins2, Francesca Dominici3, Amanda Rehbein¹ 

¹ Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade 

de São Paulo, Brazil 

2 Institute for Transport Studies, University of Leeds, UK 

3 Harvard Data Science Initiative, Harvard University, Boston, MA 02138, USA 

Author correspondence: sergio.ibarra@usp.br 

Abstract 

Brazil, the country most impacted by the coronavirus disease 2019 (COVID-19) on the southern hemisphere, use 

intensive care admissions per day, mobility and other indices to monitor quarantines and prevent the transmissions of 

SARS-CoV-2. In this study we quantified the associations between residential mobility index (RMI), air pollution, 

meteorology, and daily cases and deaths of COVID-19 in São Paulo, Brazil. We applied a semiparametric generalized 

additive model (GAM) to estimate: 1) the association between RMI and COVID-19, accounting for ambient 

particulate matter (PM2.5), ozone (O3), relative humidity, temperature and delayed exposure between 3-21 days, and 

2) the association between COVID-19 and exposure to for ambient particulate matter (PM2.5), ozone (O3), accounting 

for relative humidity, temperature and mobility. We found that an RMI of 45.28% results in 1,212 cases (95% CI: 

1,189 to 1,235) and 44 deaths (95% CI: 40 to 47). Increasing the isolation from 45.28% to 50% would avoid 438 cases 

and 21 deaths. Also, we found that an increment of 10 μgm-³ of PM2.5 results in a risk of 1.140 (95% CI: 1.021 to 

1.274) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths, while O3 produces a relative risk of 1.075 (95% CI: 

1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, respectively. We compared our results with 

observations and literature review, finding well agreement. Policymakers can use such mobility indices as tools to 

control social distance activities. Spatial distancing is an important factor to control COVID-19. Small increments of 

air pollution result in an increased number of COVID-19 cases and deaths. 

Keywords: COVID-19, SARS-CoV-2, residential mobility index, air pollution, meteorology 
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1. Introduction 

The world has been facing an unprecedent critical health crisis due to COVID-19 pandemic caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the Johns Hopkins University (JHU) Center for 

Systems Science and Engineering (CSSE), on February 20th, 2021, there were 110,810,601 confirmed cases of 

COVID-19 worldwide, and 2,454,047 deaths (Dong et al. 2020). Many countries implemented social isolation and 

quarantine strategies, while internet companies released anonymized aggregated location data to provide information 

on the effectiveness of quarantine and isolation (Google 2021). This new disease demonstrated that developed 

countries such as Belgium, Italy, and Spain were unprepared, which resulted in infection fatality rates (deaths/cases) 

of 15.4%, 13.5%, and 10.2%, respectively. Furthermore, new mutations of SARS-CoV-2 would present higher 

transmissibility and current vaccines might not offer protection against it (Gupta et al. 2021; Kupferschmidt 2021). 

Therefore, it is urgent and crucial to conduct more research to better understand the relationships and associations 

between SARS-CoV-2 transmissibility and environmental factors.  

COVID-19 spread very quickly across Latin America (Bolaño-Ortiz et al. 2020; Tello-Leal and Macías-Hernández 

2020). As of January 4, 2021, Brazil, with an area of 8.5 million km² and a population of 208 million, is the third 

country with more cases (7,733,746) and deaths (196,018) (Dong et al. 2020). The city of São Paulo, the most 

populated city in Brazil with 11.8 million inhabitants (IBGE 2020), presents the highest number of COVID-19 cases 

(404,025) and deaths (15,725, https://covid.saude.gov.br/). In Brazil, only symptomatic cases are tested, hence, the 

real number of SARS-CoV-2 infections could be much higher. A recent study shows that COVID-19 death notification 

in Brazil is underreported (Alves et al. 2020). On March 24th, 2020 (GESP 2020), São Paulo’s government 

recommended social distancing for suspected cases and introduced a local quarantine to reduce virus transmission. 

Brazil adopted containment measures such as close contact and limited mobility as protective measures, however 

"quarantine" was the official term used by São Paulo state government. Consequently, air pollution levels dropped 

during the quarantine. For instance, the concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), PM10, and 

PM2.5 were reduced by -35.70%, -29.56%, -17.80%, and -25.02%, respectively, while O3 increased by 53.25% between 

21:00-03:00 Local Time (LT) (Dantas et al. 2020; Freitas et al. 2020; Nakada and Urban 2020). Other studies showed 

reductions in China (30% of NO2 and 25% of CO2) (Dutheil et al. 2020). However, there are indications that COVID-

19 and air pollution interactions may be more complex. Some early reports suggest that longer-term exposure to air 

pollution increases susceptibility and severity upon infection (Tosepu et al. 2020; Wu et al. 2020). Similarly, 
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meteorological interactions are likely to be important, for example, some studies have suggested that high humidity 

and temperature would reduce virus transmission (Wang et al. 2020a, 2020b). Furthermore, the biological inactivation 

rate of SARS-CoV-2 is sensitive to humidity, with minimum half-life at 65% and higher at 40% and 85%, and its 

decays at 27 ⁰C is 10 times faster than at 10 ⁰C (Morris et al. 2020). However, estimations for the Amazonian city of 

Manaus, which have a climatology1 temperature 27 ⁰C of and relative humidity 80.2% for July, show that between 

44% and 66% of the population was infected with SARS-CoV-2 by July (Buss et al. 2020). Then, more research is 

needed to better understand the interactions between SARS-COV-2 and environmental factors. 

Some studies have evaluated the effect of mobility on COVID-19, mainly in China. Kraemer et al., (2020) found 

correlation of 0.94 between real-time mobility data and COVID-19 cases from Wuhan, China, confirming the 

exportation of cases from Wuhan to other provinces and the effectiveness of the sanitaire cordon. Tian et al (2020) 

found that Wuhan shutdown delayed the appearance of COVID-19 in 2.9 days. Zhu et al (2020b) found that increasing 

the human mobility increased 6.45% daily confirmed cases. In the US, Badr et al (2020) associated county-level 

origin-destination matrices and COVID-19 cases finding that counties with more mobility presented higher number 

of cases. In a related correspondence, Gatalo et al (2020) found that the absence of a strong correlation between growth 

of cases and mobility may be related to other factors, such as wearing mask, keeping distance in encounters and also, 

the existence of superspreading events.  

Our study investigates the associations between RMI and COVID-19, and air pollution and COVID-19 on a particular 

day, having accounted for environmental and meteorological factors. We analyzed the effects of mobility, air 

pollution, and meteorology on the daily COVID-19 cases and deaths in the city of São Paulo. We applied 

semiparametric generalized additive models to study the effect of each predictor by isolating confounding factors 

(Peng and Dominici 2008). To the best of our knowledge, few studies have associated mobility air pollution, 

meteorological factors, and COVID-19 simultaneously especially in Latin America. 

2. Material and Methods 

The Brazilian Ministry of Health reports the official daily time-series of cases and mortality associated with COVID-

19 at https://covid.saude.gov.br/ updated once a day around 19:00 Brazilian official time (-3 GMT). This information 

is gathered from the 26 states and the federal district health secretaries and provided at the national, state, and 

 

1 Climatology between 1981-2010 https://portal.inmet.gov.br/ 
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municipality levels. The availability of data using the web site was interrupted on June 07 th, 2020, and returned on 

June 08th, 2020 after judicial demand (G1 2020). When returned, it included the data obtained when the web site was 

offline. To check the trustworthiness of that data, we compared it with the dataset from BrasilIO 

(https://brasil.io/covid19/). The BrasilIO is an independent organization made of voluntaries that also gathers COVID-

19 data from state health secretaries. Both datasets are very similar, in effect, we applied the Wilcoxon test (R Core 

Team 2021) for cases and deaths getting p-values of 0.7798 and 0.922, meaning that there are no significant differences 

between the two datasets. Therefore, we used the official data from the Brazilian Ministry of Health. The day July 29th 

the number of cases reported included July 28th; therefore, we distributed the number of cases and deaths equally in 

both days. Figure 1shows the daily cases and deaths from COVID-19 in São Paulo State between March 27th, 2020 

and January 03rd, 2021. The daily mean cases are 1432 and deaths is 55, with a maximum of 7063 on August 13rd, 

2020 and 179 on June 23rd, 2020, respectively. Furthermore, the variances are 1511183 for cases and 1889.89 for 

deaths, indicating overdispersion in the data. In effect, the dispersion parameter for cases is 1035.86 and for deaths 

33.84 (both p-value<0.05) (Kleiber and Zeileis 2008).  

We obtained mobility datasets from Google mobility trends (Google, 2020) and the Intelligent Monitoring System for 

the city of São Paulo (SIMI-SP). The Google data is based on the use of smart devices such as cellphones, vehicle 

trackers, and other GPS enabled systems2. The data reported by Google consists in mobility trends related to places 

as percentage change from baseline, with baseline as the median value, for each day of the week, during the 5-week 

period January 3rd and February 6th, 2020. We selected the mobility trend "residential", because it better represent the 

situation of spatial isolation (Hereafter Residential Mobility Index, RMI), then, higher values of RMI means higher 

isolation. The SIMI-SP data is collected by network companies which receive cellphone triangulating signals with the 

nearest cellphone communication tower3. This means that SIMI-SP does not need internet to collect mobility 

information. Both indices are shown on Figure 2, meaning that higher values represent more stay-at-home and while 

lower values pre-quarantine conditions. RMI is an indicator that represent exposure in two ways, first, staying out of 

home increases the chances of getting infections with SARS-CoV-2 present in aerosols (Morawska and Milton 2020) 

and second, increases the exposure to air pollution with deleterious effect on human health which could pose a 

synergetic effect. The trend on both RMI shows steady decline ahead of the start of quarantine on March 24th, 2020 

 

2 https://www.google.com/covid19/mobility/ 
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(black vertical line) (GESP 2020). The median RMI for Google data 13.51% and for RMI SIMI-SP is 44.75% for the 

whole period. The median RMI for the pre-quarantine period (first 15 days of March 2020), are -1% for Google and 

31.30% for SIMI-SP and after the quarantine 14% for Google and 45.48% for SIMI-SP. 

Air pollution and meteorology hourly surface measurements were obtained from the air quality system (QUALAR) 

operated by the Environmental Agency of Sao Paulo State (CETESB, 2020). QUALAR archives air quality real-time 

data using several stations spread in São Paulo. Hourly averages of O3 (ug/m³), PM2.5 (ug/m³), relative humidity (%) 

and temperature (°C) are shown in Figure 3, between January 01st, 2019 and January 4th, 2021. Locally estimated 

scatterplot smoothing (or local regression LOESS) show that that the O3 incremented after the quarantine and remained 

higher than 2019 during most of 2020. The concentrations of PM2.5 during 2020 were lower than 2019, related to the 

decrease in human activity and also, as reported by other studies (Bolaño-Ortiz et al. 2020; Debone et al. 2020; Nakada 

and Urban 2020), and just in September concentration increased. The quarantine beginning coincided with the dry 

season beginning at São Paulo, presenting a decline in temperature compared to the early months of 2020. The most 

significant feature of the São Paulo dry season (April to November), the wet season counterpart (Vera et al. 2006), is 

the non-significative precipitation amount, caused by weak isolated events, and long periods with no precipitation 

occurring in between (Rehbein et al. 2018), and the very low relative humidity during the daytime (climate reports 

from the Climate Group of Studies - GrEC/USP, http://www.grec.iag.usp.br). Also, a general decreasing in 

temperature occurs according to the austral winter and presenting drops in temperature, associated to the synoptic 

systems crossing São Paulo and generally are not able to organize convection (GrEC/USP, http://www.grec.iag.usp.br) 

or even sea breezes that eventually reaches the interior of São Paulo (Freitas et al. 2007). In 2020, for instance, from 

April 3rd -May 3rd, 2020 there was very few (2 mm at São Paulo-SESC Interlagos station, in the south of São Paulo) 

or no precipitation (at the São Paulo-Mirante de Santana station, in the north of São Paulo) according to the official 

meteorological stations (www.inmet.gov.br), while synoptic systems (such as cold fronts) were observed 

(CPTEC/INPE, https://www.cptec.inpe.br; GrEC/USP, http://www.grec.iag.usp.br). The first semester of 2020 was 

drier and colder than 2019, but during the second semester, relative humidity and temperature remained similar. 

Association between mobility and COVID-19 

The statistical analyses consisted of the application of the generalized additive model (GAM) (Hastie and Tibshirani 

1990). One of the most common applications of this framework consists of a semi-parametric model in environmental 

studies to understand the associations between air pollution and health outcomes by controlling other factors such as 
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meteorology (Dominici et al. 2004; Peng and Dominici 2008). Recently, a study has shown that air pollution can 

increase up to 15% of COVID-19 mortality and worldwide, 27% in East Asia, 19% in Europe and 17% in North 

America (Pozzer et al. 2020). It has been shown that health effects of air pollution is related to previous days' exposure 

(Abrutzky et al., 2013; Carracedo-Martínez et al., 2010; Leitte et al., 2009). In this study we need to consider the 

incubation period for COVID-19, that is the period of time between the exposure to SARS-CoV-2 and the symptom 

onset. Furthermore, in this study we want to characterize how the exposure, measured by the mobility indices, is 

associated with COVID-19. It has been reported that the incubation period for COVID-19 is 5.1 days (95% CI, 4.5 to 

5.8 days (Kraemer et al. 2020; Lauer et al. 2020), Lai et al (2020) found between 2 and 14 days with a mean of 6.4 

days another (Lai et al. 2020). Therefore, we calculated moving averages between 4 and 21 days of mobility and 

environmental factors, and study possible associations with COVID-19. We used thin plate splines for accounting 

confounding factors of PM2.5, O3, temperature, relative humidity, day of the week and time, including interactions 

between the variables with quasi-poisson and negative binomial distributions to capture over-dispersion (Wood 2017; 

Zeileis et al. 2008). For instance, tropospheric O3 is a secondary pollutant generated by reactions between NOX, 

Volatile Organic Compounds and solar radiation (Jacob 1999), and as the diurnal cycle of temperature follows solar 

cycle, we would expect statistical interactions between O3 and temperature. To identify associations between mobility 

and COVID-19, by controlling confounding factors, we used the general equation 1. We performed a detailed 

sensitivity analyses between the variables, shown supplementary material S1 expanding the equation 1 into 18 

configurations. 

(1) 𝑙𝑜𝑔(𝑢𝑖) = 𝛽0 + 𝛽1 ∗ 𝑅𝑀𝐼𝑚,𝑛 + 𝑠(𝑃𝑀2.5𝑚
) + 𝑠(𝑂3𝑚

) + 𝑠(𝑅𝐻𝑚) + 𝑠(𝑡𝑒𝑚𝑝𝑚) + 𝑠(𝑡𝑖𝑚𝑒) + 𝑠(𝑑𝑜𝑤) 

Where log(u) is the log-transform of the daily cases and deaths of COVID-19 with a quasi-poisson or negative 

binomial distribution i, 𝛽0 is the intercept 𝛽1 is the coefficient that represents the association of 𝑅𝑀𝐼𝑚,𝑛 moving 

average m using mobility data n from Google or SIMI-SP on cases, s the thin plate, and temp temperature, RH relative 

humidity, PM2.5 and O3 atmospheric pollutants, time represents each day to account unobserved factors, s(dow) is the 

cubic spline function with dimension of 7 to account for each day of the week. We used thin-plate splines to avoid 

knot placement and, therefore, avoid overfitting (Wood 2003). The predicted number of COVID-19 cases is then 

𝑒𝑥𝑝(β0 + β1 ∗ 𝑅𝑀𝐼𝑙), which is conditionally to the other predictors. Although more pollutants are reported by São 

Paulo (QUALAR) air quality stations, e.g., NO2, CO, and PM10, we limited the model to PM2.5 and O3 to avoid 

multicollinearity between PM2.5 and these other species. As the objective of this study estimate the associations 
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between daily residential mobility index (RMI), air pollution, and meteorology, and daily cases and deaths for COVID-

19 in São Paulo, Brazil, the data were filtered starting on March 24th, 2020. In order to apply GAM, we used the R 

programming language and the library mgcv (v1.8.31) (R Core Team 2021; Wood 2017). One limitation of our method 

is the limited sample, consisting of 292 days between March 27th, 2020 and December 12nd, 2020. Nevertheless, we 

performed a comprehensive sensitivity analysis, as we evaluated 18 equations with 4-21 moving average lag periods, 

and compared RMI data from Google and SIMI-SP with quasi-poisson and negative binomial distributions, this 

resulted in 1296 regressions. To ensure consistency, we repeated the analyses with data only until November 2020 

finding similar results.  

2.1. Association between air pollution and COVID-19 

We also investigated the effects of air pollution on COVID-19. In this case, we are interested in evaluating the effect 

of specific level of air pollution present on the same or previous specific days, rather than the moving average of air 

pollution. The use of lag models is recommended to identify associations with air pollution and health outcomes 

(Gasparrini 2011; Peng and Dominici 2008). Then, we used lags to account for the delayed effect of air pollution on 

COVID-19 with a quasi-poisson and negative binomial distributions (Wood 2017; Zeileis et al. 2008). We used single-

lag generalized additive models and different configuration for confounding variables with thin plate splines. To 

identify associations between air pollution and COVID-19, by controlling confounding factors, we used the general 

equation 2. A sensitivity analyses is available on supplementary material S2, expanding the equation 2 into 8 

configurations. 

 

(2) 𝑙𝑜𝑔(𝑢𝑖) = β0 + β1 ∗ 𝑃𝐿 + 𝑠(𝑅𝑀𝐼𝐿) + 𝑠(𝑡𝑒𝑚𝑝𝐿) + 𝑠(𝑡𝑖𝑚𝑒) + 𝑠(𝑑𝑜𝑤) 

 

Where P represents the air pollutant concentrations of 𝑃𝑀2.5𝐿
 or 𝑂3𝐿

, 𝑡𝑒𝑚𝑝𝐿 , 𝑅𝐻𝐿 , and 𝑅𝑀𝐼𝐿  are the delayed 

environmental quantities at different lags l. The methodology is similar as we presented to calculate the effect of the 

RMI index, but in this case, we controlled all the variables except air pollution. This is useful to compare with other 

studies and to see the importance of exposure to air pollution and its effects on COVID-19 cases. Then, we calculated 

the relative risks of new cases by the increment of 10 µg·m-3air pollution with the expression ex p(β1 ∗ 𝑝ollutant). 

3. Results  

3.1. Mobility and COVID-19 cases and deaths 
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The associations between mobility indices RMI SIMI-SP and Google, parameter β1 on equation 1, are shown on Figure 

4. The x-axis represents the model configurations from equations 1-20 and the facet labels 4-21 the delayed effect of 

exposure as moving average. RMI Google was not significantly associated with COVID-19 in any model. This can 

be explained by the low correlation between RMI Google with Cases -0.19 and with Deaths 0.1 (not significant), as 

shown on Table 1 on supplementary material. On the contrary, we did find statistical association between RMI SIMI-

SP and COVID-19. It is evident increasing the mobility, that is staying out-of-home which results in lower RMI, have 

a delayed effect increasing COVID-19 cases after four to nine days of exposure. It has been reported that the incubation 

period for COVID-19 is between 4.5- 6.4 days (Kraemer et al. 2020; Lai et al. 2020; Lauer et al. 2020). We believe 

that the appearance of cases after more days of exposure than the number reported in other studies, is due to the fact 

that the Reverse transcription polymerase chain reaction (RT-PCR) tests to detect virus takes between 3 days and one 

week. This explanation also applies to the expected cases after seven, eight, nine and 18 days of exposure. Regarding 

the deaths, we found associations after 18-21 days of exposure, which makes sense because more time is needed 

between exposure, severe disease and death outcome. We also found increased deaths after 4 days of exposure, but 

the magnitude is also lower, near to zero. Furthermore, there is a trend after 14 days of exposure decreasing the β1, in 

which most of models signalized the association with mobility and COVID-19 death. These associations were found 

with negative binomial and quasi-poisson regressions, and the reader can reproduce these results following the 

instructions available in this public repository https://gitlab.com/ibarraespinosa/covid191.  

 

After analyzing the coefficients of association RMI and COVID-19, we calculated the expected outcomes with 

different moving average periods. Then, we grouped the results to obtain one curve exposure-response for cases and 

deaths, as shown on Figure 5. They grey points represents the expected cases and deaths under different exposure 

levels, expressed as RMI SIMI-SP and the red curves a smooth LOESS regression with 95% confidence interval for 

all associations. Our results shows that when people stayed home, COVID-19 cases and deaths decrease. Likewise, 

with less RMI or increased outdoor activities, there more cases and deaths for COVID-19. The mean RMI SIMI-SP 

during pre-quarantine (before March 15) was 31.10% and just after the quarantine (between March 27th and April 15th, 

2020) was 54.77%, increasing the isolation. Then, the association between RMI and cases was assessed with the 

median RMI SIMI-SP of 45.28% post-quarantine, presented as the second vertical black line in Figure 5. Under this 

RMI we would expect 1,212 cases (95% CI: 1,189 to 1,235) and 44 deaths (95% CI: 40 to 47). We applied the expected 

outcomes for several RMI values to evaluate the resulting cases for RMI extremes. For example, under the first 
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quantile of RMI SIMI-SP, first vertical black line, that is 41.38%, it would result in 1,757 cases (95% CI: 1,734 to 

1,780) and 80 deaths (95% CI: 77 to 84) and under the third quantile of 48.87%, third vertical black line, it would 

result in 846 cases (95% CI: 823 to 869) and 25 deaths (95% CI: 22 to 29). Analyzing the extreme values shows that, 

if the RMI SIMI-SP were 37.82% would result in 2,311 cases (95% CI: 2,285 to 2,338) and 127 deaths (95% CI: 122 

to 131) and with RMI SIMI-SP of 59.25%, 351 cases (95% CI: 325 to 378) and 8 deaths (95% CI: 4 to 13). We added 

a repeated histogram of RMI SIMI-SP on the top of Figure 5, with the RMI quantiles. Therefore, avoiding unnecessary 

outdoor activities and staying at home would result in a reduction in expected cases and deaths.  

 

3.2. Air pollution and COVID-19 cases 

We assessed the association between COVID-19 and increment of 10 μgm-³ of PM2.5 and O3. Figure 6 shows the 

relative risks of COVID-19 cases and deaths after 1-21 days of exposure. We found that PM2.5 and O3 have positive 

relative risks for cases and deaths with both distributions. Specifically, O3 increments cases after four and 13 days of 

exposure, and deaths after two, four, 19 and 20 days of exposure, and PM2.5 poses positive relative risks after two, 10 

and 13 days of exposure for cases and 17 days of exposure for deaths. Nevertheless, there are some relative risks 

below 1, which would provide protective factors for O3 and PM2.5 after 17 days for cases where more research is 

needed. The order of magnitude of relative risks within lagged group is very similar with different models. Therefore, 

we averaged the relative risks within groups resulting that an increment of 10 μgm-³ of O3 produce cases-relative risks 

of 1.066 (95% CI: 1.005 to 1.131) and 1.084 (95% CI: 1.007 to 1.168) after four and 13 days of exposure, respectively. 

In the case of deaths, the O3-related relative risks are 1.067 (95% CI: 1.008 to 1.129), 1.050 (95% CI: 1.003 to 1.100), 

1.070 (95% CI: 1.012 to 1.131) and 1.066 (95% CI: 1.001 to 1.135) after two, four, 19 and 20 days of exposure, 

respectively. Likewise, an increment of 10 μgm-³ of PM2.5 produce cases-relative risks 1.151 (95% CI: 1.048 to 1.264), 

1.113 (95% CI: 1.002 to 1.236) and 1.157(95% CI: 1.012 to 1.323) after three, 10 and 14 days of exposure and the 

risk for death is 1.086 (95% CI: 1.008 to 1.170) after 17 days. Based on these results, air pollution significantly 

increases COVID-19 cases and deaths. The mean relative risks for cases are 1.140 for PM2.5 and 1.075 for O3, meaning 

that PM2.5 increments 1.06 times more COVID-19 cases than O3. In the case of deaths, the relative risk for O3 is 1.063 

and for PM2.5 1.086. 

 

4. Discussion 
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In this study, we used a semiparametric Generalized Additive Model (GAM) to explore possible associations between 

RMI, air pollutants, and COVID-19 cases and deaths in São Paulo, Brazil, for March 27th, 2020 through December 

30th, 2020. We controlled environmental factors such as air temperature, relative humidity, and air pollutant 

concentrations (PM2.5 and O3) with thin splines. Arguably, models like the one used here are more commonly applied 

to much larger datasets. However, we present findings and caveats, to provide early evidence on the transmission of 

COVID-19, and as part of efforts to highlight the potential value of the recently developed mobility indices.  

We found statistical associations between RMI and COVID-19 cases and a lower RMI (i.e., the increase of residents 

staying-at-home) increase COVID-19 cases. Likewise, increased isolation decreases COVID-19 cases. The median 

RMI after quarantine started was 45.28%, which represents most of the period of study. Under this RMI, we would 

expect 1,212 cases (95% CI: 1,189 to 1,235) and 44 deaths (95% CI: 40 to 47). São Paulo’s COVID-19 median values 

are 1,214 and 46 for cases and deaths, which means that our predictions align with our observations and previous 

literature regarding COVID-19 cases (Martins et al. 2020). We analyzed RMI values to provide policymakers with 

several options to mitigate the number of COVID-19 cases and deaths and support public health system. Then, if the 

isolation is increased with the RMI SIMI-SP index from 45.28% to 50.00%, we would expect 774 (95% CI: 751 to 

797) cases and 23 (95% CI: 19 to 26) deaths, representing a reduction 438 cases and 21 deaths, a third of the cases 

and half of the deaths. Therefore, a policymaker can use this information and define RMI targets based on the capacity 

of their health system. 

We evaluated the effect of moving average air pollution on COVID-19 cases and deaths and we found strong 

associations. The average of the significant relative risk over the 21 days of delayed exposure is 1.140 (95% CI: 1.021 

to 1.274) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths due to an increment of 10 μgm-³ of PM2.5, and 1.075 

(95% CI: 1.006 to 1.150) for cases and 1.086 (95% CI: 1.008 to 1.170) for deaths due to an increment of 10 μgm-³ of 

O3. A global study about the association between air pollution and death-risk for COVID-19 found that in South 

America the attributable fraction (AF) of COVID-19 mortality due PM2.5, calculated as 1-1/RR, is approximately 15% 

in São Paulo (Pozzer et al. 2020), while the AF due the increment of PM2.5 in Sao Paulo is 12.28. Another study in 

China showed that 10 μgm-³ of O3 results in relative risk of 1.047 (Zhu et al. 2020a), which is slightly lower than our 

results of 1.075 presented in this study. Zhang et al (2021) found a country-average relative risk for PM2.5 of 1.06 

(95% CI: 1.03 to 1.08), while relative risk found in Northeast and Southwest China oscillate around 1.2, similar to our 

result 1.140 and another Chinese study found a relative risk of relative risk of 1.18 for PM2.5 (Zhu et al. 2020b). 
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As this study is based on 292 days of data, future research should consider the potential effects of a more extended 

period to study the effect of air pollution on COVID-19 related cases and deaths. Recent social distancing and 

quarantines have been introduced on unprecedented scales, made necessary by the high transmissivity and severity of 

COVID-19, and the lack of effective vaccines or testing programs (Cohen and Kupferschmidt 2020). This strongly 

suggests that mobility indices can be used to study infectious disease transmission and assess the effectiveness of 

large-scale isolation and quarantine style management activities. Therefore, policymakers can use the new mobility 

dataset to enforce efforts to implement more effective social distancing and quarantine-based management strategies 

for COVID-19 in the other states of Brazil. 

The use of mask could expand these types of studies, to answer the question if increased mobility using appropriate 

masks would increases COVID-19. Unfortunately, to the best of our knowledge, there are no time-series available 

about use of mask in Brazil. Also, the first vaccine applied in Brazil was on January 17, then our study did not include 

the effects of vaccination (SP 2021). Then, future studies which seek to study the effect of exposure using mobility 

indices on COVID-19 would need to control newer variables such as, use of mask and number of COVID-19 vaccines 

applied. 

Conclusion 

Spatial distancing was proven to be a determining factor to control COVID-19 cases and deaths. RMI is also 

significantly associated with COVID-19 cases and deaths. Increased isolation decreases COVID-19 cases while 

increased mobility is related to a higher number of COVID-19 cases and deaths. Our predictions align with mean 

observations of COVID-19 cases. Air pollutant models revealed that an increment of 10 μgm-³ of PM2.5 and O3 

produces a relative risk of 1.140 (95% CI: 1.021 to 1.274) for cases and of 1.086 (95% CI: 1.008 to 1.170), and 1.075 

(95% CI: 1.006 to 1.150) for cases and 1.063 (95% CI: 1.006 to 1.124) for deaths, respectively. 
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Figure captions 

 

Figure 1. Daily cases and deaths of COVID-19 in (a) boxplots and (b) time series in São Paulo, Brazil, between 

March 27th, 2020 and January 12nd, 2021 (Saúde 2021). The smooth lines on panel b) are the LOESS regression 

made with ggplot2 and R (R Core Team 2021; Wickham 2016). 
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Figure 2. RMI values in São Paulo, Brazil, in a) boxplots and b) times series between January 15th and December 

29th, 2020 for RMI Google (Google 2021) and between February 26, 2020 and January 3, 2021. Black vertical line 

shows when started the quarantine in São Paulo on March, 24. The smooth lines on panel b) are the LOESS 

regression made with ggplot2 and R (R Core Team 2021; Wickham 2016). 
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Figure 3. Hourly means of O3 (μg/m³), PM2.5 (μg/m³) and Air Temperature (°C) between January 1st 2020 and 

January 4th, 2021 for the city of São Paulo, Brazil (CETESB 2021). The means considered the parameters from the 

stations Congonhas, Cid.Universitária-USP-Ipen, Santana, Ibirapuera, Mooca, Pinheiros and Parque D. Pedro II. 

The red and blue lines are the automatic LOESS regression made with ggplot2 and R (R Core Team 2021; Wickham 

2016). 
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Figure 4. Coefficient of association between RMI SIMI-SP (%) and Google (%) and COVID-19 cases and deaths 

with a moving average of four to 21 days of delayed exposure with quasi-poisson and negative binomial distribution 

under different model configuration. β1 non-significant associations (p-value > 0.05) are semi-transparent.  
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Figure 5. Association between COVID-19 cases and deaths and the percentage of RMI SIMI-SP (%). The grey 

points show the association between COVID-19 and RMI after different periods of exposure. The red line represents 

the expected cases and deaths and blue lines upper and lower confidence intervals 95%. The vertical black lines 

show the first quantile, median and third quantile of RMI SIMI-SP. The histograms of RMI SIMI-SP are repeated.  
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Figure 6. The relative risks of COVID-19 cases and deaths due to 10 μgm-³ of PM2.5 and O3 after 1-21 days of 

exposure with single-lag models. β1 non-significant associations (p-value > 0.05) are semi-transparent. 
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