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Abstract 

Robust cost effective and high-throughput tests for early detection of cancer in otherwise healthy 

people could potentially revolutionize public-health and the heavy personal and public burden of 

the morbidity and mortality from cancer. Several studies have delineated tumor specific DNA 

methylation profiles that could serve as biomarkers for early detection of Hepatocellular 

Carcinoma (HCC) as well as other cancers in liquid biopsies. Several published DNA 

methylation markers fail to distinguish HCC DNA from DNA from other tissues and other 

cancers that are potentially present in plasma. We describe a set of DNA methylation signatures 

in HCC that are “categorically” distinct from normal tissues and blood DNA methylation 

profiles. We develop a classifier combined of 4 CG sites that is sufficient to detect HCC in 

TCGA HCC data set at high accuracy. A single CG site at the F12 gene is sufficient to 

differentiate HCC samples from thousands of other blood samples, normal tissues and 31 tumors 

in the TCGA and Gene Expression Omnibus (GEO) data repository (n=11,704). A “next 

generation sequencing”-targeted-multiplexed high-throughput assay was developed, which was 

used to examine in a clinical study plasma samples from HCC, chronic hepatitis B (CHB) 

patients and healthy controls (n=398). The sensitivity for HCC detection was 84.5% at a 

specificity of 95% and AUC of 0.94. Applying this assay for routine follow up of people who are 

at high risk for developing HCC could have a significant impact on reducing the morbidity and 

mortality from HCC.  
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Introduction 

Hepatocellular Carcinoma (HCC) is the fifth most common cancer world-wide [1] and is  

particularly prevalent in Asia; HCC occurrence is highest in areas where hepatitis B is prevalent 

which is a high-risk factor for HCC[2]. Follow up of high-risk populations such as chronic 

hepatitis patients and early diagnosis of transitions from chronic hepatitis to HCC would improve 

cure rates. The survival rate of hepatocellular carcinoma is currently extremely low because it is 

almost always diagnosed at the late stages. Liver cancer could be effectively treated with cure 

rates of >80% if diagnosed early1. Advances in imaging have improved noninvasive detection of 

HCC[3, 4]. However, current diagnostic methods, which include imaging and immunoassays 

with single proteins such as alpha-fetoprotein often fail to diagnose HCC early because of low 

accuracy and many early cancers are missed [2]. These challenges are not limited to HCC but 

common to other cancers as well.  

 

Early detection of cancer in otherwise healthy patients requires noninvasive methods that could 

be administered to the wide public, are high throughput, don’t require sophisticated personnel or 

equipment to administer and are cost effective. Blood is an accessible biological sample and 

could be drawn in almost any location and shipped to centralized labs for further processing.  

 

Molecular diagnosis of cancer is focused on tumors and biomaterial originating in tumor 

including tumor DNA in plasma [5, 6], circulating tumor cells [7] and the tumor-host 

microenvironment [8, 9]. Each of these approaches has its technical limitations. Detection of 

 
1 www.cancer.org/cancer/livercancer. 
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DNA from tumor origins in cell-free DNA (cfDNA) in plasma is an attractive approach, however 

it has its challenges, mainly the small and variable amount of circulating cell free tumor DNA as 

well as a requirement for an adequate method to differentiate tumor DNA from cfDNA that 

originated in other nonmalignant tissue in the plasma. Early studies focused on detecting tumor 

specific mutations by deep sequencing, however the variable abundance of specific mutations in 

tumors resulting from inter- and intra- tumor heterogeneity, which is further limited in the 

heterogenous population of cfDNA, reduces the sensitivity of such detection methods[10]. An 

alternative approach is examining unique tumor DNA methylation profiles by methylation 

specific PCR or next generation sequencing[11]. Aberrant DNA methylation profiles are a 

hallmark of cancer and a wide body of data has established that tumor DNA methylation profiles 

are dramatically different than their normal counterparts[12]. Early markers were based on a 

candidate gene approach utilizing candidate genes hypermethylated in cancer and were based on 

a limited set of tumor DNA methylation profiles. One of the most successful biomarkers that 

emerged from this approach is Sept9 which is used in clinical practice for screening colorectal 

cancer[13]. 

 

Hypomethylation of HCC DNA is detectable in patients’ blood[14] and genome wide bisulfite 

sequencing was recently applied to detect hypomethylated DNA in plasma from HCC patients 

[15].  Methylscape is an assay that takes advantage of the global differences in the genomic 

distribution of methylation positions between cancer and normal tissues, which affect DNA 

physicochemical properties. The assay utilizes the differential interaction between gold and 

methylated and unmethylated DNA to detect cancer[16] . Initial studies with small number of 

samples suggest that it can detect cancer at close to 0.9 accuracy. However, this tool doesn’t 
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provide information on specific cancer origin and it is unclear whether the global amount of 

tumor of cfDNA in plasma will be sufficiently abundant at early stages to be detected by this 

assay which examines global properties of DNA methylation.  

  

More recently several groups performed a comprehensive comparative analysis of genome wide 

DNA methylation profiles of cancer, adjacent tissue DNA and blood in tumors and cfDNA to 

identify tumor specific DNA methylation profiles and compare these in tumor biopsies and 

cfDNA.  An immunoprecipitation method with anti-5-methylcytosine antibody which analyzed 

methylomes of cfDNA in cancer patients revealed thousands of differentially methylated regions 

in cfDNA [17]. The methylation differences in cfDNA corresponded to DNA methylation 

differences in the tumors suggesting that DNA methylation signatures in tumor biopsies could be 

used to identify potential cfDNA tumor markers. A classifier composed of 300 differentially 

methylated regions (DMR) delineated by machine learning training classified cancer blood 

samples with high accuracy, sensitivity and specificity and the performance was similar between 

early and late-stage cancer, suggesting that certain tumor specific methylation profiles emerge 

early in cancer and could potentially be used for early cancer detection [17].  

 

Genome wide bisulfite sequencing is a relatively costly procedure and requires significant 

bioinformatics analysis which makes it unfeasible as a screening tool. The challenge is therefore 

to delineate a small number of CGs that could robustly differentiate tumor DNA from nontumor 

DNA and to develop a high throughput cost effective assay that will enable the screening of wide 

populations in diverse geographic areas. While this study provides robust proof of principle for 

the utility of DNA methylation markers in early detection, it still requires 300 DMRs, which 
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makes it difficult to develop into a widely used biomarker in a public health setting. A more 

recent pan cancer study has short listed 100,000 regions as tumor and tissue specific classifiers 

and validated them in a large multicenter clinical study. Although the test covers many cancer 

types it is significantly complex, and its specificity was low for early-stage cancers. The study 

strongly supports the idea that methylation profiles are more sensitive classifiers of cancer in 

cfDNA than tumor specific mutations [18]. 

 

In a different approach Xu et al., first compared DNA methylation in hepatocellular carcinoma 

HCC with blood DNA methylation Illumina arrays using publicly available datasets and 

established a DNA methylation panel, which was differentially methylated in HCC. This study 

compared methylation profiles of HCC tumor DNA and normal blood leukocytes and showed 

that matched plasma ctDNA and tumor DNA are highly correlated. The number of probes was 

reduced to 10 and they constructed a diagnostic prediction model which had a sensitivity of 

85.7% and specificity of 94.3% for HCC in the training data set of 715 HCC and 560 normal 

samples and a sensitivity of 83.3% and specificity of 90.5% in the validation data set of 383 

HCC and 275 normal samples [19]. However, the probes selected were not tested against normal 

DNA from other tissues that is present in cfDNA or against other cancer types.   

 

The main challenge with many current approaches is that that they have not considered cfDNA 

from other tissues that is found in blood at different levels. Contaminating DNA from another 

tissue that has a similar methylation profile to a cancer tissue could potentially lead to false 

positives. In addition, past approaches have quantitatively compared DNA methylation in normal 

and cancer tissues. This quantitative difference is diluted when tumor DNA is mixed with 
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different and unknown amounts of DNA from other untransformed tissues, which can cause false 

negatives. These deficiencies in current methods necessitate a different approach.  

 

To address these challenges, we used thousands of methylation profiles in the TCGA and GEO 

publicly available data repository publica data collections to delineate DNA methylation 

positions that are consistently unmethylated in all the samples in the interrogated tissues and 

blood DNA. We then used this shortlist of ubiquitously unmethylated sites to identify sites that 

were highly methylated in a training set of HCC DNA methylation arrays. These sites exhibit a 

categorical binary difference between HCC and other tissues including blood.  We shortlisted 4 

CGs positions that are sufficient to classify HCC in a mixture of normal tissues and blood cells, 

which we termed “HCC-detect”. We then validated the methylation score composed of these 

sites in a data set composed of DNA methylation profiles of more than 700 HCC samples. We 

used a training dataset to discover a single CG site that was sufficient to differentiate HCC from 

31 different cancers and normal cell types, which we termed “HCC-spec”. This was validated on 

a dataset of more than 8000 cancer samples from the public domain. We termed the combination 

of “HCC-spec” and “HCC-detect” “epiLiver”.  The “epiLiver” test classified HCC samples in 

the public databases with high accuracy. We developed a targeted multiplexed high-throughput 

next generation bisulfite sequencing epiLiver test and applied it to plasma samples from 398 

individuals from Dhaka city in Bangladesh. This novel test classified HCC patients at 95% 

specificity and 84.5% sensitivity and detected 75% of early stage A patients. Our study 

demonstrates the feasibility of a high throughput DNA methylation assay that interrogates a 

small number of CG sites to classify patients with HCC using a small amount of blood. 

Translation of such an assay into a routine early detection tool for people who are at high risk for 
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developing HCC could have a significant impact on reducing the morbidity and mortality from 

HCC in high-risk populations. 

 

Results 

Delineating ubiquitously methylation resistant CG sites in blood and normal tissues 

Tumor cfDNA is mixed with a background of normal and blood cfDNA in plasma at different 

and unpredictable amounts[20]. HCC DNA has both hypomethylated and hypermethylated 

regions that differentiate it from healthy DNA[21]. We reasoned that an ideal cancer marker 

would be a CG position that is ubiquitously unmethylated in normal tissues and blood but is 

methylated exclusively in tumors being categorically different than any normal cfDNA in blood. 

DNA methylation profiles could be heterogeneous across individuals; we therefore examined 

whether we could identify CG positions in publicly available DNA methylation arrays that are 

uniformly unmethylated across all the individuals and across 17 different somatic tissues. We 

first generated a list of 47981 CG positions that were hypomethylated in every single individual 

(beta=<0.1 and median <0.02) in 234 individuals in 17 different somatic tissues using Illumina 

450K array data in GSE42752; GSE52955; GSE53051; GSE60185; GSE63704; GSE65821; 

GSE69852; GSE69852; GSE85464 and GSE85566.  We then generated a list of 68260 

unmethylated CG positions in blood DNA in each of the 312 individuals in GSE40279. We 

overlapped the two lists to obtain a list of CGs that are unmethylated in every single individual in 

both blood and 17 somatic tissues. To increase the robustness of the list and to exclude sites with 

residual variation in methylation across individuals that are derived from sex or age differences, 

we overlapped this list with a list of 60379 of unmethylated CGs in blood DNA in all 656 

individuals males and females aged from 19 to 101 years (GSE40279). This overlap resulted in a 
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final list of 28,775 CGs which are unmethylated across all individuals in multiple tissues at 

different ages and both sexes. The list of ubiquitously unmethylated sites were highly enriched 

for CG islands (10xe-814, Hypergeometric test), Transcription Start sites TSS200(7.7xe-317),1st 

exon (3xe-68), 5’UTR(3.8xe-27), and Phantom High CG density promoters (5.22 fold enrichment 

5.6xe-395) but depleted for the north and south shores of CG islands (3xe-28 and 3xe-20), enhancers 

(a 4.47 fold depletion 6.8xe-145), 3’UTR (a 13 fold depletion 3.8xe-36) and low CG density 

Phantom promoters (a 2.67 fold depletion 6.3xe-5). Thus, our list includes a highly selective 

group of CGs located in CG rich promoters that are uniformly “methylation resistant” across 

tissues and individuals.   

 

Discovery of 4 CG sites that classify HCC samples from healthy blood and other tissues; 

“HCC detect” markers  

We then tested whether any of these ubiquitously “methylation-resistant” CGs become 

methylated in cancer.  We used a dataset of Illumina 450K DNA methylation profiles from 66 

HCC samples from all stages (GSE54503) and 77 control non-HCC liver samples (fibrosis and 

cirrhosis) (GSE61258) to generate a list of sites that show the highest methylation differential 

between HCC and control liver, limiting our analysis to the 28K methylation resistant CGs that 

we shortlisted.  Remarkably, many of these ubiquitously methylation resistant CGs were 

methylated in HCC samples. 286 CG positions were methylated more than 20% in at least 50% 

of the HCC samples. A list of the top 20 CG sites with average difference in DNA methylation 

between HCC samples and non-HCC liver of above 0.2 (heatmap Fig. 1A) was further reduced 

by penalized regression to 4 CG sites; cg02012576 an intergenic region associated with the 

Checkpoint With Forkhead And Ring Finger Domain (CHFR) gene, cg03768777 at the 1st exon 
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of the Vasohibin 2 (VASH2) gene, cg05739190 at the 1st exon of the Cyclin-J gene (CCNJ)  and 

cg24804544 at the body of the Glutamate Receptor, Ionotropic, Delta 2 (Grid2) Interacting 

Protein 1 gene (GRID2IP). A weighted polygenic methylation score for HCC was computed by 

multivariable linear regression equation based on methylation values for these 4 CG positions in 

the training data (Table S1). The polygenic score significantly differentiated HCC and control 

samples (Fig.1B). A Receiver Operating Characteristic Curve (ROC) analysis performed on the 

calculated polygenic scores for the HCC and control samples shows an area under the curve of 

0.9910 (Fig. 1C). Our training cohort included HCC samples from all stages with the goal of 

broad detection of cancer notwithstanding stage.  We termed the 4CG marker set, “HCC detect”.  

 

We validated “HCC detect” using DNA methylation 450K data for 793 HCC samples and 116 

normal adjacent tissue (NAT) (heatmap Fig. 1D). We calculated the “HCC detect” score in 450K 

DNA methylation array data for healthy blood (n=968), healthy liver tissue (n=15), other liver 

disease (158), other healthy tissues (n=234), other normal adjacent tissues (721), cancers from 31 

other tissues (8753), total n=11704 (Fig. 1E) (Table 1 and Table S2). The “HCC detect” 

polygenic score significantly differentiates HCC from all other groups as determined by one-way 

ANOVA after correction for multiple comparisons (F=793, p<0.0001, DF 11696; p<0.0001 for 

all comparisons) (Fig. 1E).  AUC of  0.99 is computed by ROC curve analysis when HCC 

samples (n=739) are compared to Healthy blood (n=968) (sensitivity of 97% and specificity of 

96%) (Fig. 1F), AUC of 0.97 when HCC (n=739) is compared to all healthy and NAT tissues 

including liver (n=2212) (specificity of  95% and sensitivity of 87%) (Fig. 1G), AUC of 0.95 

when HCC samples are compared to 234 DNA methylation samples from healthy tissues 

(specificity of 95% and sensitivity of 85%), AUC of 0.92 when HCC (n=739) is compared to 
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NAT of HCC (n=116) (specificity of 94% and sensitivity of 95%), AUC of 0.966 when HCC is 

compared to healthy liver tissue (specificity of 100% and sensitivity of 88%) and AUC of 0.87 

when HCC is compared to 8753 samples from 31 different types of cancer (Table S2) 

(specificity of 90% and sensitivity of 64%). The HCC-detect methylation score detects early-

stage HCC samples as well as late-stage HCC (Fig. 1H). These results validate that “HCC-

detect” differentiates HCC samples at all stages from healthy tissues.  Similar AUC values were 

obtained when equal weight was given to each CG in the detect score assuming that methylation 

at any of the 4 CGs is sufficient to classify a sample as HCC, though certain CGs are methylated 

(>20%) in a higher fraction of HCC samples than others (59% for Vash2, 57% for CHFR, 50% 

for GRID2IP and 44% for CCNJ) (Table S4). 

 

Discovery of a single CG site whose methylation state classifies HCC samples correctly 

from tumors of different cell-type origins; “HCC-spec” marker 

Several of the previously published early cancer detection DNA methylation biomarkers were 

were not tested across different cancers. Thus, these markers might detect several different kinds 

of cancers as well as HCC. The “HCC-detect” score developed for HCC preferentially detects 

HCC amongst 31 cancers in TCGA (Fig. 2A), however it detects other cancers as well, reducing 

the specificity and sensitivity of differentiating HCC from other tumors (specificity 90% and 

sensitivity 66%).  To discover a set of markers that distinguishes tumors originating in the liver 

from other tumors we trained a cohort of 240 randomly selected DNA methylation samples from 

TCGA representing 16 different cancers, 10 HCC samples and 10 healthy blood samples. In this 

case, we didn’t limit our search to the 28,775 methylation-resistant CGs, in order not to miss 

liver-specific methylated CGs.  
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We calculated the differential methylation between the average methylation across the HCC 

samples and the average in all other cancers for each CG and its t-statistics. We shortlisted 7 CGs 

using a very strict threshold of (delta >0.5 and adjusted p value after Bonferroni correction for 

multiple testing of Q<10-20) (Heatmap in Fig. 2B).  A multivariable linear regression with the 7 

CGs as co-variates revealed that cg14126493 at the body of the F12 gene has the largest effect. 

A weighted methylation score for F12 computed by a linear regression equation (Table S3) 

classified all HCC samples correctly within a mixture of 240 samples in the training cohort. ROC 

curve (HCC:all other samples) revealed an AUC of 0.9973 with sensitivity of 99% and 

specificity of 100% (Fig. 2C). We designated cg1412693 as “HCC-spec” marker. 

 

We then validated the “HCC-spec” as classifier of HCC DNA within a mixture of other tumors 

in a set of 11,692 samples that included 31 different cancers, non-malignant tissues and HCC 

samples (Table S2).  “HCC-spec” is a liver specific marker. It differentiates HCC from 31 other 

cancers (scatter plot in Fig. 2D).  The “HCC-spec” score is significantly different between HCC 

and healthy blood (p<0.0001), healthy tissues (p<0.0001), normal adjacent tissue (NAT) samples 

from 31 cancers (p<0.0001), and 31 cancers (p<0.0001) but is not significant between HCC and 

healthy liver tissue, liver-disease or HCC NAT (nonparametric Kruskal–Wallis one-way analysis 

of variance with Dunn’s multiple comparisons test) (Fig. 2E).  The “HCC-spec” score accurately 

classified HCC samples (n=739) versus all other cancers (n=8754 for other cancers) with an 

AUC of 0.988 (99% specificity and 97% sensitivity) (Fig. 2 F). The AUC for HCC and normal 

blood (n=968) is similar 0.981 (100% specificity and 97% sensitivity) (Fig. 2G) and similarly the 

AUC for classifying HCC from healthy tissues (n=234) is 1 (100% specificity and 100% 
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sensitivity). Remarkably, the DNA methylation level of a single CG site is sufficient to classify 

DNA as derived from liver tissue and not from other tissues or cancers. The “HCC spec” score 

however is not as accurate as expected for classifying HCC DNA and other non-malignant liver 

DNA as it is a liver-specific rather than cancer specific marker (Fig. 2E). The AUC for healthy 

liver tissue is 86% with specificity of 100% and sensitivity of 73%, and AUC for liver disease 

tissues of 0.84 with specificity of 95% and sensitivity of 71%.  However, by combining the 

“HCC-detect” which accurately differentiates HCC and other liver DNA and “HCC spec” scores 

which differentiates HCC from other cancers (“HCC-detect”+”HCC-spec”=combined 

methylation score) we are able to accurately detect HCC DNA in a mixture of samples that 

included 31other cancers, normal tissue and liver tissues. AUC for HCC against all other tissues 

combined, including 31 cancers and liver tissues is 0.9862 with a specificity of 94% and 

sensitivity of 95% (Fig. 2G). At the threshold calculated by this ROC (a combined score of 0.87) 

the specificity against blood is 100%, against other 31 cancers is 95%, against normal tissue is 

100% and against other cancers-NAT is 98.9%. However, at this threshold other liver tissues and 

liver disease DNA will be detected as well at the rate of 50%. To establish a threshold that 

differentiates HCC from other liver diseases we performed an ROC with HCC and other liver 

disease; the AUC is 0.937 at a sensitivity of 87% and specificity of 95% (using a higher 

threshold of a combined “HCC-detect” and “HCC-spec” score of 1.1). 

 

We compared “HCC-spec” and “HCC-detect” DNA methylation markers (Fig. 3A) to two other 

extremely promising sets of HCC biomarkers that were recently described [22] [19] (Fig. 3B,C) 

using DNA methylation values for the respective CGs in Illumina 450K arrays from the 11701 

samples described above. The heat maps presented in Fig. 3 show that although previously 
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published markers display dramatic differences in methylation between HCC and HCC-NAT 

samples as previously reported, there is a high background of DNA methylation across other 

cancers and normal tissues. The combined “HCC-detect” and “HCC-spec” markers delineated 

here show a categorical differentiation between high methylation in HCC and extremely low 

methylation in other tissues and most cancers. While two of the “HCC-detect” markers are 

methylated to different extent in several cancers (Fig. 3B, C), F12 is exquisitely methylated in 

HCC and liver disease samples but not in other cancers, normal tissues or blood (Fig. 3A).   

 

We tested whether the differential methylation of the 5 differentially methylated CGs discovered 

by analyzing DNA methylation data in Illumina 450K arrays will be differentially methylated in 

other publicly available methylation data derived by a different method.  Wen et al., [23] 

examined both cfDNA and tumor tissue as well as NAT-HCC and plasma from liver cirrhosis 

and normal patients, by bisulfite conversion followed by methylated CpG tandem amplification 

and sequencing which enriches for methylated CGs (n=191) (GSE63775). We examined the 

count of methylated reads in genomic regions containing each of the 5 CGs of the “HCC-detect” 

and “HCC-spec” markers in this data set (57 tissue samples and 94 plasma samples). The 5 genes 

were significantly differentially methylated in all HCC tissue samples compared to HCC-NAT 

and in HCC plasma samples compared to plasma from cirrhosis and normal livers  (Fig. 

4A,B,D.E insets) with the exception of GRID2IP which showed a difference in methylation 

which didn’t reach significance in plasma because of the low number of reads in the serum 

sample (Fig. 4. C inset), but nevertheless it was significantly differentially methylated in HCC 

tissue samples (Fig. 4C). These data confirmed in an independent data set that the “HCC-detect” 

and “HCC-spec” CGs are methylated in HCC and in plasma cfDNA in HCC patients. 
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Validation of HCC-detect and HCC-spec DNA methylation in a clinical study examining 

plasma cfDNA in 398 people (Clinical trial gov ID:NCT03483922)  

We recruited 402 people from Dhaka city in Bangladesh which included healthy controls, 

chronic hepatitis B patients as well as patients at different stages of HCC from stage 0 to stage D 

according to the EASL–EORTC Clinical Practice Guidelines (Clinical data summary Table 2).  

In difference from examining DNA methylation in a tumor biopsy where a significant fraction of 

DNA is derived from the tumor (as in the TGCA methylation database), tumor DNA in plasma is 

mixed with DNA from potential other sources and the extent of dilution of tumor DNA in other 

DNA is unknown. Thus, the level of methylation of plasma DNA might reflect an unpredictable 

dilution of tumor DNA;the level of methylation of cfDNA is therefore a function of the state of 

methylation of DNA in the tumor and the unknown and stochastic mixture with other DNA. 

Thus, it is anticipated that the level of methylation is lower than what we derived from 

examining tumor DNA methylation data.  However, if the methylation profile of the tumor DNA 

is categorically distinct from the methylation profile of other potential sources of DNA in plasma 

as anticipated by the analyses above (Fig. 1-3), we expected that it would be detectable even on a 

high background. We used bisulfite mapping combined with next generation sequencing, which 

provides DNA methylation profiles at a single DNA molecule resolution.    

 

We developed a multiplexed targeted amplification next generation sequencing bisulfite mapping 

assay, that measures the state of methylation of regions spanning 100 to 200 bp around the 

“HCC-spec” and “HCC-detect” CGs in up to 200 people in parallel.  We first examined whether 

the 5 CG positions in the genes that we have selected are differentially methylated in plasma 

cfDNA derived from HCC patients in comparison to plasma from healthy people or from people 
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with chronic hepatitis B (n=402, 4 samples with sequencing reads below 100 were removed from 

the analysis and we remained with 398 informative samples). The analysis included 46 healthy 

controls, 49 Chronic hepatitis, and 302 patients with HCC at different stages: Stage 0-2, Stage A- 

34, Stage B-86, Stage C-106 and Stage D-76). All “HCC-spec” and “HCC-detect” CGs were 

significantly more methylated in HCC patients than in healthy and chronic hepatitis B patients 

plasma (one way ANOVA with correction for multiple comparisons) with the exception of 

CCNJ which was significantly more methylated in HCC patients than in chronic hepatitis but 

was nominally significant in HCC to controls comparison; while median methylation in control 

and chronic hepatitis B heterogenous was slightly above 0%,  methylation of up to 50 to 80 % 

was noted in the HCC samples (Fig 5A scattered plots).   Hypermethylation was noted even at 

early HCC stages (Fig S1A) similar to the results obtained in the TCGA HCC dataset (Fig. 1H). 

These data confirmed that the “HC-detect” and “HCC-spec” CGs selected using TGCA tumor 

methylation data are differentially methylated in HCC patients’ plasma. 

 

Targeted sequencing allows capturing the methylation state of several CG in the proximity of the 

CGs that were selected using the TCGA data. We noted that in all 5 regions, hypermethylation 

was not limited to the 5 CGs selected in the 450K arrays and that there was a high 

correspondence in methylation levels of the CG included in the “HCC-detect” and “HCC-spec” 

sets and proximal CGs (heatmap Fig. S1B). To evaluate the consistent methylation state across 

the regions, we computed the median methylation in the amplified region for each of the 5 genes 

(heatmap Fig. 5B). We used median rather than average to exclude situations where a high 

average is driven by a spurious high methylation of a single CG. Median values of percentage 

methylation from 0 to 100 were normalized (log 2) and a “HCC-detect” M score was computed 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 9, 2021. ; https://doi.org/10.1101/2021.02.07.21251315doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.07.21251315


 17 

from the SUM of normalized medians of CHFR, VASH2, CCNJ and GRID2IP regions giving 

equal weight to each region. Similarly, the “HCC-spec” M score detecting HCC specificity 

versus other cancers was computed from the median methylation of the F12 region. Both scores 

“HCC-detect” and “HCC-spec” significantly differentiated the HCC group from either the 

healthy control or chronic hepatitis B groups (one-way non-parametric ANOVA with correction 

for multiple comparisons) (Fig. 5C, 5E) but there was no significant difference between the 

chronic hepatitis B (CHB) and the healthy control groups.  Importantly, both the “HCC-detect” 

M scores and the “HCC-spec” M scores were significantly different from control and chronic 

hepatitis B groups at early and late HCC stages (Fig. 5D, F): there are no significant difference 

between HCC stages (one-way non-parametric ANOVA with Dunnett correction for multiple 

comparisons).    

To examine the biomarker quality of the” HCC-detect” M score we analyzed its receiver 

operator characteristics. The AUC for the “HCC-detect” score (302 HCC patients and 46 

controls) was 0.93, the specificity 91% and sensitivity 89% (Fig. 6A).  

We used logistic regression to model “HCC-detect” M score as a predictor of probability of HCC 

(Fig. 6C) and computed a predicted probability for each person using the logistic regression 

equation (scattered plot Fig. 6D). The HCC samples cluster around the probability of 1, few 

CHB samples are predicted a probability of 1 while most of the samples of the healthy and CHB 

samples median is around a predicted probability of 0.5. The AUC for the “HCC-spec” M score 

is 0.89 with specificity of 91% and sensitivity of 72% (Fig. 6D). We computed the logistic 

regression equation for “HCC-spec” M- scores (Fig. 6E) and the predicted probability for each 

person (Fig. 6F).  
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We then computed a combined probability score for cancer detection and HCC specification. We 

computed ROC curve of the combined probability of “HCC-detect” and “HCC-spec” scores of 

46 healthy controls and 302 HCC patients (Fig. 7A). The calculated AUC is 0.9432 the 

specificity is 95% and the sensitivity is 85%. A perfect combined score is 2 which indicates a 

predicted probability of 1 for cancer and predicted probability of 1 that the cancer is HCC. The 

median score for each of the HCC stages including early stages approach 2 and is significantly 

different than the healthy and chronic hepatitis groups, which are not different from each other 

(non-parametric ANOVA and Dunnett correction for multiple comparisons) (Fig. 7B and a 

scatter plot for all individual samples in Fig. 7C). We calculated a threshold sum probability 

from the AUC curve (1.337) and used it to classify the samples as either HCC (1) or no HCC (0) 

(scatterplot Fig, 7D). This threshold accurately classifies 95% of the control samples 75% of the 

Stage A samples, 84% of the stage B samples, 82% of the stage C samples and 94% of the stage 

D samples (heatmap presenting the classification for each of the 398 samples (HCC-red, no 

HCC-blue) is presented in Fig. 7E). Using this threshold, 12% of the chronic hepatitis B (CHB) 

samples are classified as HCC compared with 5% of controls. The higher fraction of chronic 

hepatitis B that are classified as HCC compared to healthy controls might reflect the increased 

risk of conversion of chronic hepatitis B to HCC.     

 

Discussion 

The main challenge for cfDNA based cancer prediction is the limited amount of tumor DNA in 

plasma and its dilution with DNA from blood and other tissues. Although recent technological 

advances cited above have boosted the feasibility of this approach, cfDNA still possess a 

formidable challenge particularly its translation into a widespread health management instrument 
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which needs to be cost effective, high throughput and specific for cancer type in order to have an 

impact on public health. DNA methylation profiles can accurately differentiate tumor DNA from 

normal adjacent tissue and blood. However, tumor DNA methylation profiles might be like the 

pattern of methylation in unrelated tissue. Since the origin of DNA in cfDNA is unpredictable 

and its relative abundance is unknown, this could potentially confound the results and lead to 

false positives. In addition, quantitative differences in DNA methylation which are clearly 

sufficient to differentiate between relatively homogenous samples are confounded in plasma 

where mixtures of DNA from different origins with different levels of methylation coexist. 

Although algorithms for deriving cell of origin from DNA methylation profiles were developed, 

they require a relatively large number of sites which is unfeasible for a high-throughput and cost-

effective public health tool.  An additional complicating factor is that several cancer DNA 

methylation biomarkers developed to date could detect several tumors beyond HCC (Fig. 3 B, 

C), thus providing no direction as to the treatment response to the potential cancer detection. In 

order to address these challenges, we set a path to discovery that was based on the following 

guidelines: First, reduce cost and increase high throughput by discovering a small number of 

robust DNA methylation positions which are amenable to simple targeted amplification and 

multiplexed next generation sequencing. Second, reduce background of normal tissue DNA by 

focusing on sites that are ubiquitously methylation resistant across tissues and blood. Third, 

combine markers that detect cancer with markers that identify the tissue of origin. Markers of 

tissue of origin are different than cancer specific markers and do not necessarily differentiate 

cancer from normal cells from the same tissue of origin. Hence, the need for using two different 

strategies for discovery of markers that detect cancer and others that identify the tissue of origin.   
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We demonstrate here a shortlist of methylation resistant sites that are ubiquitously unmethylated 

across hundreds of individual samples in 16 tissues and blood. These sites are highly enriched in 

CG dense promoters and depleted in enhancers and other genomic features. The depletion of 

methylation in certain genomic features has been recognized since the discovery of CG islands 

four decades ago [24] and was further confirmed by genome wide bisulfite mapping studies[25]. 

We show here that some of these highly DNA methylation resistant CGs are consistent across 

hundreds of people and thus offer a clean background.  Using a training cohort from GSE54503 

DNA methylation collection, we show that a fraction of these highly methylation resistant sites 

are methylated in HCC tumors (Fig. 1A).  With main goal of cost efficiency and high throughput 

potential we determined the smallest number of CGs that are sufficient to serve as classifier of 

HCC with great accuracy. We show that methylation of only 4 CG positions is sufficient to call 

98% of the HCC samples with 100% specificity. Although not all HCC samples have all 4 

positions methylated, 98% of the samples have at least one CG methylated. We proposed that 

these 4 CGs serve as “HCC-detect” set of markers. We validated that these markers could 

classify HCC accurately with high sensitivity and specificity using a dataset of 739 HCC and 

samples from 2212 healthy tissues. However, as expected when “HCC-detect” was used against 

a panel of 31, cancers from other tissue origins were detected at different sensitivities (Fig.2A). 

To provide a classifier of liver origin tumor we discovered a single DNA methylation biomarker 

that distinguished DNA from liver origin from other tissues which we termed “HCC-spec”. A 

combined test of “HCC-spec” and “HCC-detect” provides a highly accurate classification of 

HCC and distinguishing it from other tumors providing clear guidance on the location of the 

tumor, which will speed up applying the necessary follow-up and clinical measures. Importantly, 

both “HCC-detect” and “HCC-spec” markers are methylated at the early stages of HCC and 
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remain methylated to the most advanced stages. This will provide a broad-spectrum single test 

for first screening of asymptomatic patients notwithstanding the stage of cancer avoiding missing 

patients who have moved to a later stage or who are at an earlier stage of the disease.    

“HCC-detect” and “HCC-spec” markers were discovered and validated in tumor biopsy material, 

it is important to determine whether they are methylated in plasma cfDNA as well.  We therefore 

validated the methylation state of these markers in a previously published data set that examined 

genome wide methylation of HCC in tumor and plasma (Fig. 4A-E) [23]. These data are 

consistent with other studies that showed correspondence between DNA methylation profiles of 

tumor tissue and plasma cfDNA [17, 19].  

 

We applied the agnostic criteria of ubiquitous methylation resistance in normal tissues and 

methylation in HCC for selecting the “HCC-detect” biomarker set, irrespective of biological 

function. Nevertheless, the fact that we found a set of CGs that are methylated in a large subset 

of HCC patients and at all stages of HCC suggests that these DNA methylation events might be 

important for the early stages of the disease as well as its maintenance. The fact that no single 

marker is methylated in all normal samples but at least one of the 4 markers is methylated in 

almost all HCC patients suggests that at least one of the 4 markers is essential.  Indeed, the 

“HCC-detect” CGs are associated with genes involved in cell cycle regulatory events, EMT 

transition and angiogenesis. CHFR encodes a cell cycle (G2/M) checkpoint, which was 

suggested to be a tumor suppressor gene[26]; methylation of CHFR was associated with non-

invasive colorectal cancer[27], esophageal carcinoma[28],  hepatocellular carcinoma[29], higher 

grade gastric cancer[30] and non-small cell lung carcinoma[31].  Vasohibin 2 (VASH2) gene was 

implicated in angiogenesis in invasive tumors [32] and was previously shown to be methylated in 
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HCC[33]. Vash2 is a promoter of an angiogenesis gene it is therefore expected to promote cancer 

and indeed higher expression of Vash2 is associated with poor progression of pancreatic 

cancer[34], esophageal squamous cell carcinoma[35], breast cancer[36] and epithelial-

mesenchymal transition (EMT) in HCC[37]. We would therefore expect hypomethylation of the 

5’regulatory region of the gene rather than the observed hypermethylation of the1st exon. We 

don’t know how this methylation event is correlated with expression and it needs to be further 

explored. Cyclin-J gene (CCNJ)  encodes the cyclin J protein which was proposed to be involved 

in early embryonic division cycles of Drosophila[38] and was previously found to be methylated 

in liver cancer[39]. Glutamate Receptor, Ionotropic, Delta 2 (Grid2) Interacting Protein 1 gene 

(GRID2IP) is expressed in the brain it interacts with Glutamate receptor delta-2 and was shown 

to be involved in synaptogenesis in fiber-Purkinje cells[40]. However, its role in cancer is not yet 

fully explored. The methylated CG included in our detect marker set in in a CG island in the 

body of the gene and it is unclear whether this CG island has any regulatory role. The role of this 

gene in HCC remains to be determined. The F12 gene encodes coagulation factor XII[41]. The 

CG position in a CG rich island in the body of this gene and was selected here only for its 

exquisite HCC specific methylation and methylation resistance in 31 other tumors (Fig. 2D). The 

relationship between methylation and expression is unclear and needs to be further explored. 

 

 We then examined whether these data could be applied as a high throughput cost effective assay 

to detect HCC in a clinical setting by examining plasma DNA from 402 people which included 

all stages of HCC as well as healthy controls and chronic hepatitis B patients that are at high risk 

of conversion to HCC. By targeting a small number of amplicons, we significantly reduce the 

cost and increase the number of potential reads per sample and our assay is enabled for high 
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throughput and automated formats. We had only 4 cases out of the 402 that didn’t provide 

sufficient reads (a threshold of 100 reads per gene) in at least one of genes. The average coverage 

per sample for each of the gene regions ranged from 3160 to 5181, suggesting that most plasma 

samples from either healthy controls or cases have sufficient DNA to generate methylation 

information on these genes. All 5 CG positions included in  “HCC-detect” and “HCC-spec” are 

significantly more methylated than in either healthy controls, chronic hepatitis B or both (CCNJ 

is nominally significant when compared to healthy controls and significant against chronic 

hepatitis B) . As expected, most control samples are completely unmethylated with a median 

methylation of less than 0.5%. Methylation in HCC is heterogenous ranging from baseline levels 

to 80% (Fig. 5 A). This probably reflects to some extent random heterogeneous mixture of tumor 

and normal cfDNA in plasma but also the heterogeneity of methylation of these sites in the 

original tumor (Fig. 1 and 2).     

 

Our markers are CG rich and by sequencing a 100-200 bp region proximal to the CG IDs that 

were discovered in the Illumina 450K array data we capture information on the state of 

methylation of several neighboring CGs (Fig. S1B). Our data indicates that in HCC samples the 

levels of methylation across CGs in each of the five sequenced regions are correlated while only 

sporadic methylation is detected in the healthy controls which might be biological or just a result 

of spurious infrequent errors in bisulfite conversion or sequencing. By examining the entire 

profile, we can increase our specificity and exclude such cases. To reflect the consistency of 

methylation across the region we calculated the Median for each CG (as is visualized in heatmap 

in Fig. 5B) The medians for each gene region (Fig. 5B) and the “HCC-detect” sum (Fig. 5B) 

clearly separate the HCC samples from chronic hepatitis B and healthy controls (Fig. 5B). Since 
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our training set analysis suggested that methylation in any one of the 4 CGs is sufficient to 

classify a sample as HCC we have given equal weight to each region and used the normalized 

sum of the medians as the “HCC-detect” M score and the normalized median for F12 region as 

the “HCC-spec” M score.  Logistic regression of M scores calculated (Fig. 6B, E) the predicted 

probability of HCC for each sample; 89% of the HCC samples scored close to 1 at all stages in 

contrast to 4% of the healthy controls which were misclassified as HCC (Fig. 6C). A combined 

“HCC-detect” and “HCC-spec” score which accurately classified predicted probability had an 

ROC of 0.9432 (Fig. 7A), (Fig. 2D, E) classified HCC from other cancers in the TCGA data, 

classified 256 out of the 303 HCC samples as HCC (84.5%) and misclassified 2 out of 46 healthy 

controls as HCC (Fig. 7 C,D,E). Our results validated the “HCC-detect” and “HCC-spec” 

markers, in cfDNA clinical samples and provided a way forward for developing a feasible, high-

throughput and cost effective test for noninvasive screening and detection of HCC that is tumor 

specific.  We termed the combined “HCC-detect” and “HCC-spec” “epiLiver”. 

 

The sensitivity of the CF plasma DNA test was lower than in the TCGA data 85%-89% in the 

clinical study compared to 96 to 98% in the analysis of TCGA DNA methylation values. There 

are a few possible reasons. First, TCGA data is derived from tumor tissue while cfDNA that 

originates from tumors is mixed with DNA from blood and other normal tissues in unpredictable 

ratios. Second, the amount of cfDNA varies across patients. Third, quality of plasma derived in 

clinical settings is probably not even and different levels of mixture of genomic DNA might be 

caused by different handling of samples. Fourth, different genomic regions might be 

heterogeneously represented in cfDNA in different samples. Nevertheless, our assay 

demonstrates high sensitivity and specificity as well as cost effectiveness and high throughput. 
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One of the challenges of early noninvasive tumor detection is defining the tissue of origin. 

Remarkably only one CG was sufficient to accurately reveal the tissue of origin suggesting that a 

cost-effective screen for specific tumor types might be feasible. However, full assessment of the 

clinical value of the “HCC-detect” and “HCC-spec” markers for early detection of HCC requires 

an adequately powered prospective study.  

    

Although the 5 regions included in the “HCC-spec” and “HCC-detect” are devoid of methylation 

in the vast majority of healthy controls as is the case in the TCGA data, a small number of 

healthy normals (2 in the combined “HCC-detect” and “HCC-spec” score) had a profile that 

resembled HCC patients with consistent methylation across all CGs. At this stage we don’t know 

whether these false positives are truly “false” or whether they represent undetected cases. Our 

clinical study did not include follow up of such cases. One of the challenges of early detection is 

to further study and understand these “false positives” as well as deciphering the exact boundary 

between healthy and controls, lowering the threshold will increase the sensitivity of detection but 

this should be done without increasing the level of “false discoveries”.  Although the vast 

majority of hepatitis B patients had very low level of methylation and there is no statistically 

significant difference noted between healthy controls and CHB patients mean M score, there was 

a higher fraction of HCC classifications in the chronic hepatitis B group (12%). The fact that we 

got a higher fraction of HCC calls in the HepB group might be consistent with the higher risk of 

conversion to HepB; follow up of these cases is warranted.   

In summary, our study reveals a feasible, cost effective and accurate noninvasive test for 

detection of HCC. Applying this test for screening people at risk for developing HCC could 
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potentially have an important impact on relieving the burden of this tumor on the individual as 

well as the health system. 
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Materials and Methods 

DNA methylation public data  

Normalized DNA methylation beta values for 450K sites included in Illumina DNA methylation 

arrays for a total of 11,636 samples from healthy blood, normal tissues, cancer tissues and 

noncancer associated tissues NAT were downloaded from TGCA and GEO sites as listed in table 

1. DNA methylation differences at specific CG positions between the groups were computed 

using t statistics adjusted by Bonferroni corrections for 450K multiple tests.  
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Clinical study design 

Study protocol was approved by IRB board of icddr,b (Dhaka, Bangladesh) study protocol PR-

18025. 402 participants were recruited from the Dhaka area to the study included 49 healthy 

controls, 51 Chronic hepatitis B patients and 303 HCC patients from stages 0 to D (HCC O n=2, 

HCCA n=32, HCC B n=86, HCC C n=106, HCC D n=77 (See Table 2 for demographics).  The 

age of the healthy control and the chronic Hepatitis B (CHB) groups were significantly younger 

than the HCC group, however there was no significant effect of age on HCC prediction by DNA 

methylation as determined by a logistic regression in either the HCC or control groups. However, 

in the CHB group age had a significant effect on HCC prediction by the DNA methylation test, 

consistent with the idea of a higher probability for older patients with chronic hepatitis to convert 

to HCC. There were no differences between the groups in the sex distribution. However, there 

was a somewhat significant lower alcohol use and higher fraction of smokers in the HCC groups 

(Table 2).  HCC staging was diagnosed according to EASL–EORTC Clinical Practice 

Guidelines: Management of hepatocellular carcinoma [42]. Hepatitis B diagnosis was confirmed 

using AASLD practice guideline for chronic Hepatitis B 

(https://www.aasld.org/publications/practice-guidelines). All participants were properly informed 

about the study and have signed the informed consent form approved by the icddr,b IRB. 

Inclusions criteria were participants of either sex 18 to 70 years of age, confirmed diagnosis of 

HCC using EASL-EORTC guidelines and chronic hepatitis B using AASLD guidelines, non-

metastatic liver cancer, Hepatitis B surface antigen positive by ELISA and persistence of > 6 

months. Exclusion criteria were unwilling or unable to provide informed consent, unwilling or 

unable to comply with requirements of protocol, participation in a different clinical trial 

investigating a vaccine, drug, medical device or medicinal procedure less than 4 weeks preceding 
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the current study, planned participation in another clinical trial during present study period, 

known case of cirrhosis, any other known inflammatory disease (bacterial or viral infection with 

the exception of hepatitis B or C), known case of diabetes, asthma, autoimmune disease, any 

other diagnosed cancer, for healthy controls any known inflammatory or infectious disease 

including Hepatitis B and Hepatitis C and any diagnosis of chronic disease, cancer medication 

use or drugs of abuse. Patients were assigned an ID that was kept confidential according to 

hospital regulations and identity was revealed only to approved hospital personnel. Participants 

provided consent for DNA methylation biomarker research. Blood sample collection ad plasma 

separation was performed at icddr,b in Dhaka Bangladesh and was then shipped to HKG 

epitherapeutics for further analysis. The HKG epitherapeutics lab team was blinded on the 

identity of the samples throughout the lab analytic procedures. Data was then analyzed in 

Montreal and shared with icddr,b who provided the results to the respective clinical personnel.  

 

Preparation of CF plasma DNA 

Blood was collected in 9-ml tubes containing K3-EDTA and processed within 1 h. Plasma and 

peripheral blood monocyte separation was performed according to GE Healthcare Cat No 

71=7167-00 protocol. Plasma was frozen and shipped. Plasma samples (1 ml) were thawed, and 

DNA was extracted by previously described guanidine isothiocyanate method[43] and binding to 

silica magnetic beads followed by 80% ethanol washes and water elution.  

 

Multiplexed Targeted DNA methylation Illumina amplicon sequencing 

Bisulfate conversion was performed using EZ-96 DNA Methylation MagPrep (D5041, Zymo 

Research) followed by two rounds of polymerase chain reaction. For the first round we used 
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primers that included an anchoring sequence and sequences targeting cg02012576 (CHFR), 

cg03768777 (VASH2), cg05739190 (CCNJ), cg24804544 (GRID2IP) and cg14126493 (F12) 

using Bio-Rad C1000 Touch Thermal Cycler (Bio-Rad Laboratories, CA, USA) (the primers are 

available upon request). 5 microliters of the first PCR reaction were subjected to a second round 

of PCR amplification using primers containing indexes for barcoding the samples (the primers are 

available upon request). PCR products were pooled, and the pooled library was then purified twice 

using AMPure XP Beads (Beckman Coulter Life Sciences, CA, USA) and quantified by RealTime 

PCR using NEBNext® Library Quant Kit for Illumina (New England Biolabs, MA, USA). 

Sequencing was performed on the Illumina platform using MiSeq Reagent Nano Kit V2 (Illumina, 

CA, USA). 

 

Statistical methods 

We used the computing environment R version 3.4.4. For penalized regressions we used the R 

statistical package “penalized” [44], for multivariable linear regression analysis we used the lm 

function in R to fit linear models and for genomic feature enrichment we performed a 

hypergeometric test using phyper function in R. For other statistical analyses we used Graph Pad 

Prism 9.01 statistical package. Normality and log normality were tested using Shapiro-Wilk and 

Kolmogorov-Smirnov tests. Nonparametric statistics were used to test significance when data 

failed normality tests. For two group comparisons a two tailed Mann Whitney test was used and 

for multiple group comparisons we used Kruskal-Wallis test followed by Dunn’s multiple 

comparisons test to derive the adjusted p value. ROC was computed using the ROC test in 

GraphPad. To generate heatmaps we used GENE E software from the Broad institute 

(https://software.broadinstitute.org/GENE-E/).  
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Data 

Set 

DNA origin Description Platform N Public 

Availability 

1 Non liver tissue Healthy adjacent tissue 450K 723 TCGA 

2 Liver Healthy liver tissue 450K 6 GSE69852 

3 Liver Healthy liver tissue 450K 10 GSE76269 

4 Liver Liver Cancer 450K 380 TCGA 

5 Liver Healthy adjacent tissue 450K 50 TCGA 

6 Blood Healthy 450K 656 GSE40279 

7 Blood Healthy 450K 312 GSE61496 

8 Liver nonHCC-Diseases 450K 158 GSE61258 

9 Liver Liver Cancer 450K 227 GSE76269 

10 Liver Liver Cancer 450K 66 GSE75041 

11 Liver Liver Cancer 450K 66 GSE54503 

12 Non liver cancer tissues 31 types of non HCC 

Cancers 

450K 8754 TCGA 

13 Blood cfDNA MiSeq 402 This study 

14 Lung Normal 450K 26 GSE63704 

15 Ovaries Normal 450K 6 GSE65821 

16 Stomach Normal 450K 19 GSE85464 

17 airway_epithelial_cells Normal 450K 115 GSE85566 

18 Breast tissue Mamoplastic reduction 450K 15 GSE60185 

19 Pancreas Normal 450K 12 GSE53051 

20 Non liver no cancer tissue Kidney, prostate, bladder 450K 16 GSE52955 

21 Colon Normal 450K 19 GSE42752 

 

Table 1. Data sets used for analysis. 
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Table 2. Demographics of study participants. Significant difference from the control group 

was tested by Kruskal-Wallis non-parametric one-way ANOVA and was adjusted by Dunn’s 
multiple comparisons test.  The two HCC stage O samples were included for statistics in the 

HCC A group.  

  

N mean significance male/female significance fraction users significance fraction users significance 

Control 49 26.14 42/9 0.9999 0.2 0.32

CHB 51 28.71 0.9999 42/7 0.9999 0.21 0.999 0.35 0.999

HCC O 2 62 NA 2/0 0.9999 NA NA NA NA

HCC A 32 49.15 <0.0002 27/5 0.9999 0.088 0.353 0.64 0.0205

HCC B 86 49.12 <0.0003 72/14 0.9999 0.069 0.0473 0.52 0.13999

HCC C 106 49.34 <0.0004 85/21 0.9999 0.037 0.0047 0.54 0.0533

HCC D 77 52.45 <0.0005 76/64 0.9999 0.064 0.0425 0.66 0.0012

Age Sex Alcohol Smoking
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Figure legends 

 

Figure 1. Training and validation of “HCC-detect” DNA methylation marker set.  A. 

Heatmap showing methylation levels of top 20 CGs that are categorically different between 

noncancer liver samples (fibrosis) (n=79) and HCC samples (n=66) in the training cohort 

(GSE61258, GSE54503). B. Scatter plot of “HCC-detect” methylation scores calculated for HCC 
samples (n=66) and controls (n=79) in the training cohort (p<0.0001, Man-Whitney test, two 

tailed).  C. ROC curve of “HCC-detect” methylation scores classifying blood and HCC samples 

from the training cohort. D. Heat map of methylation values for the 4 CG sites included in 

“HCC-detect” in the validation cohort  of blood (n=968), heathy liver (n=16) , liver NAT 
(n=116) and HCC samples (n=739) from TCGA and GEO data repository (see Table 1 for 

details).  E. scattered plot of “HCC-detect” Methylation score (each spot represents one sample) 
in healthy blood (n=968), healthy liver tissue (n=16), liver disease (n=158), nonliver healthy 

tissues (n=234), NAT to nonHCC tumors (n=723), NAT to HCC (n=116), 31 cancers in TGCA 

(n=8754) and HCC (n=739).  F. ROC curve of “HCC-detect” methylation scores classifying 

healthy blood (968) and HCC samples (739) in the validation cohort.  G. ROC curve of “HCC-

detect” Methylation scores of all healthy controls from different tissues and NATs (Table 1) 
(n=2212) and HCC (n=739) samples from the validation cohort.  H. Median + confidence 

intervals of “HCC-detect” methylation scores in HCC NAT s (n=50) and different stages of HCC 

(Stage A 175, stage B 87, stage C 86, stage D 5) in the validation cohort (TCGA). (**** 

p<0.0001, ** p<0.001 Kruskal-Wallis nonparametric ANOVA with Dunn’s multiple 
comparisons test).  

 

Figure 2. Training and validation of “HCC-spec” DNA methylation marker set.  A. 

Scattered plot of “HCC-detect” methylation scores in 31 different cancer types and HCC (Table 
S2 for acronyms and number of samples). B. Heatmap of methylation levels of top 7 CGs 
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shortlisted for discriminating HCC (n=10) from other cancers (10 randomized samples from each 

of 16 different cancers, ESCA, HNSC, TGCT, BLCA, Brain, Breast, CRC, PRAD, Stomach, 

Lung,  Cervical, Pancreatic cancer, KIRC, KIRP, KICH, SKCM,  and 10 blood) in the training 

cohort. C. ROC curve of “HCC-spec” methylation scores HCC (n=10) and other 16 kinds of 

cancer samples in the training cohort (n=210).  D. Scattered plot of “HCC-Spec” methylation 
scores in 31 different cancer types and HCC (Table S2 for acronyms and number of samples per 

cancer). E. scattered plot of “HCC-spec” Methylation scores (each spot represents one sample) 

in healthy blood (n=968), healthy liver tissue (n=16), liver disease (n=158), nonliver healthy 

tissues (n=234), NAT to nonHCC tumors (n=723), NAT to HCC (n=116), 31 cancers in TGCA 

(n=8754) and HCC (n=739) (**** p<0.0001, n.s. nonsignificant,  Kruskal-Wallis nonparametric 

ANOVA with Dunn’s multiple comparisons test).  F. ROC curve of “HCC-spec” Methylation 
score classifying 31 other cancers (n=8754) and HCC samples (739) in the validation cohort.  G. 

ROC curve of “HCC-spec” Methylation score classifying all blood samples (n=968) and HCC 
(n=739) samples in the validation cohort.   

 

Fig. 3. Comparisons of cancer type specificity of “HCC-detect and spec” combination and 
two previously published biomarkers. Heat map presentation of the methylation values for 

shortlisted HCC detection CG sites described here (A) in Liu et al[22] (B) and Zhang et al., (C) 

[19]. 

 

Fig. 4. Validation of differential methylation of “HCC-spec” and “HCC-detect” CG sites in 

(GSE63775). Count of methylated reads in genomic regions containing each of the 5 CGs of the 

“HCC-detect” and “-spec” markers in this data set (57 tissue samples and 94 plasma samples). A. 

CHFR B. VASH2. C. GRID2IP. D. CCNJ. E. F12. Insets represent an enlargement of the charts 

for plasma cfDNA. For tumor tissues, significance was determined by nonparametric two tailed t 

test.  For plasma, we performed Kruskal-Wallis nonparametric ANOVA with Dunn’s multiple 
comparisons test (**** p<0.0001, *** p<0.001, ** p<0.01, *p<0.05, n.s. nonsignificant). 

 

Fig. 5. Validation of “HCC-detect” and “HCC-spec” in plasma samples in the Dhaka 

clinical study. A. Differential methylation of CGs included in the “HCC-detect” markers 
(cg02012576 (CHFR), cg03768777 (VASH2), cg05739190 (CCNJ), cg24804544 (GRID2IP) 

and “HCC-spec” cg14126493 (F12) in healthy controls (n=46), CHB (n=49), HCC (302). Beta 

values for each sample are presented in the scatter plot. B. Heatmap depicting the median 

methylation for each of the 5 regions amplified included in “HCC-detect” and “HCC-spec”. 
“HCC-detect” row shows the sum of median methylation values for each sample. The color 
codes for the groups are listed in the legend. C. Scattered plots of the “HCC-detect” M scores for 
control (n=46), CHB (n=49) and HCC (302). D. Median “HCC-detect” M scores for healthy 
controls (n=46), CHB (n=49) and 4 stages of HCC (Stage A+O- 36, Stage B-86, Stage C-106 

and Stage D-76)+/- confidence intervals. E. Scattered plots of the “HCC-spec” M scores for 
control, CHB and HCC. F. Median “HCC-spec” M scores for healthy controls, CHB and 4 
stages of HCC +/- confidence intervals.    

Significance was determined by Kruskal-Wallis nonparametric one-way ANOVA with Dunn’s 
multiple comparisons test (**** p<0.0001, *** p<0.001, ** p<0.01, *p<0.05, n.s. 

nonsignificant). 
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Fig. 6. Biomarker characteristics of “HCC-detect” and “HCC-spec” M scores. A. ROC 

curve of “HCC-detect” M scores classifying HCC in healthy control (n=46) and HCC cases 

(n=302) in the Dhaka clinical study. B. Logistic regression curve plotting the predicted 

probability of HCC as a function of “HCC-detect” M score. C. Predicted probabilities (0 to 1) for 

each of the samples from the Dhaka clinical study calculated using the logistic regression 

equation for the “HCC-detect” M scores. D. ROC curve of “HCC-spec” M score classifying 
healthy control (n=46) and HCC cases (n=302) samples in the Dhaka clinical study. E. Logistic 

regression curve plotting the predicted probability of HCC as a function of “HCC-spec” M score. 
F. Predicted probabilities (0 to 1) for each of the samples from the Dhaka clinical study 

calculated using the logistic regression equation for the “HCC-spec” M score. 
The clinical study included (controls (n=46), CHB (n=49) and 4 stages of HCC (Stage A+O- 36, 

Stage B-86, Stage C-106 and Stage D-76). Significance was determined by Kruskal-Wallis 

nonparametric one-way ANOVA with Dunn’s multiple comparisons test (**** p<0.0001, *** 

p<0.001, ** p<0.01, *p<0.05, n.s. nonsignificant). 

 

Fig. 7. Classification of HCC by a combined “HCC-detect” and “HCC-spec” probability 

score (“epiLiver”). A. ROC curve of “HCC-detect and spec” sum probabilities score as a 
classifier of HCC (healthy controls, n=46 and HCC cases, n=302) in the Dhaka clinical study. B. 

Median +/- confidence intervals for the sum probabilities scores for the healthy controls, chronic 

hepatitis B and 4 stages of HCC. C. Scatter plot of the sum probabilities score for each of the 

samples in the control, CHB and HCC groups. D. Scatter plot of HCC classifications (1,0) for the 

samples included in the control, CHB and HCC stages groups. E. Heatmap presentation of HCC 

classifications for each of the samples in the Dhaka study. Samples were classified either as HCC 

(red) or nonHCC (blue). Stages are color coded as indicated in the legends. Patient IDs are color 

coded as indicated.    

 

Fig. S1. Differential methylation of “HCC-detect” and “HCC-spec” CGs at different stages 
of HCC in the Dhaka clinical study. Mean methylation and confidence intervals for the 4 CGs 

included in the “HCC-detect” set (cg02012576 (CHFR), cg03768777 (VASH2), cg05739190 

(CCNJ), cg24804544 (GRID2IP) and “HCC-spec” cg14126493 (F12) (n for each group as 

indicated in Fig. 5). B. heat map depicting the methylation values for all CGs that were included 

in the sequenced regions for all 5 genes.    

 

 

Supplemental tables 

Table S1. Model statistics for “HCC-detect”. 
Table S2. List number of samples and acronyms of other cancers analyzed. 

Table S3. Model statistics for “HCC-spec”. 
Table S4.  ROCs for “HCC-detect” sum “HCC-spec” + “HCC-detect” sum scores and 
number of samples with methylation values larger than 0.2. 
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.8108

R Square 0.657396

Adjusted R Square0.647608

Standard Error0.296643

Observations 145

ANOVA

df SS MS F Significance F

Regression 4 23.63907 5.909766 67.15886 1.28E-31

Residual 140 12.31956 0.087997

Total 144 35.95862

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept 0.064169 0.034504 1.859746 0.06502 -0.00405 0.132385 -0.00405 0.132385

cg037687770.751194 0.158781 4.731011 5.4E-06 0.437276 1.065112 0.437276 1.065112

cg248045440.426771 0.136971 3.115776 0.002226 0.155972 0.69757 0.155972 0.69757

cg057391900.639744 0.135595 4.718056 5.7E-06 0.371666 0.907822 0.371666 0.907822

cg020125760.804234 0.17977 4.473677 1.58E-05 0.448818 1.159649 0.448818 1.159649

sensitivity 0.984849

specificity 1

cutoff 0.239724

accuracy 0.993103

AUC 0.990986
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TCGA Study Abbreviation Study Name Cancer Subject number NAT subject numTotal

TCGA-ACC ACC Adrenocortical carcinoma 80 0 80

TCGA-BLCA BLCA Bladder Urothelial Carcinoma 412 21 433

TCGA-BRCA BRCA Breast invasive carcinoma 796 95 891

TCGA-CESC CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 309 3 312

TCGA-CHOL CHOL Cholangiocarcinoma 36 9 45

TCGA-COAD COAD Colon adenocarcinoma 315 38 353

TCGA-DLBC DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 48 0 48

TCGA-ESCA ESCA Esophageal carcinoma 186 16 202

TCGA-GBM GBM Glioblastoma multiforme 153 2 155

TCGA-HNSC HNSC Head and Neck squamous cell carcinoma 530 50 580

TCGA-KICH KICH Kidney Chromophobe 66 0 66

TCGA-KIRC KIRC Kidney renal clear cell carcinoma 325 159 484

TCGA-KIRP KIRP Kidney renal papillary cell carcinoma 276 45 321

TCGA-LAML LAML Acute Myeloid Leukemia 140 0 140

TCGA-LGG LGG Brain Lower Grade Glioma 534 0 534

TCGA-LIHC LIHC Liver hepatocellular carcinoma 380 50 430

TCGA-LUAD LUAD Lung adenocarcinoma 411 22 433

TCGA-LUSC LUSC Lung squamous cell carcinoma 337 36 373

TCGA-MESO MESO Mesothelioma 87 0 87

TCGA-OV OV Ovarian serous cystadenocarcinoma 10 0 10

TCGA-PAAD PAAD Pancreatic adenocarcinoma 185 10 195

TCGA-PCPG PCPG Pheochromocytoma and Paraganglioma 184 3 187

TCGA-PRAD PRAD Prostate adenocarcinoma 503 50 553

TCGA-READ READ Rectum adenocarcinoma 99 7 106

TCGA-SARC SARC Sarcoma 265 4 269

TCGA-SKCM SKCM Skin Cutaneous Melanoma 473 2 475

TCGA-STAD STAD Stomach adenocarcinoma 395 2 397

TCGA-TGCT TGCT Testicular Germ Cell Tumors 156 0 156

TCGA-THCA THCA Thyroid carcinoma 515 56 571

TCGA-THYM THYM Thymoma 124 2 126

TCGA-UCEC UCEC Uterine Corpus Endometrial Carcinoma 439 45 484

TCGA-UCS UCS Uterine Carcinosarcoma 57 0 57

TCGA-UVM UVM Uveal Melanoma 80 0 80

Total 8906 727 9633
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SUMMARY OUTPUT

Regression Statistics

Multiple R 0.798739

R Square 0.637984

Adjusted R Sq0.633674

Standard Erro0.257195

Observation 86

ANOVA

df SS MS F Significance F

Regression 1 9.792313 9.792313 148.034 3.16E-20

Residual 84 5.556524 0.066149

Total 85 15.34884

CoefficientsStandard Error t Stat P-value Lower 95% Upper 95%Lower 95.0%Upper 95.0%

Intercept 0.179496 0.055716 3.221603 0.001814 0.068698 0.290294 0.068698 0.290294

cg14126493 1.346715 0.110687 12.16692 3.16E-20 1.126602 1.566827 1.126602 1.566827
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.0%
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HCC detect sum ROC sensitivity specificity

HCC blood 0.993 95 97

HCC other normal 0.9484 84 95

HCC blood and normal 0.985 91 95

HCC NAT 0.9186 85 95

HCC detect +spec sum HCC blood 0.9981 99 99

HCC other normal 0.9958 95 98

HCC blood an normal 0.996 97 98

HCC NAT 0.9656 92 95

Number of samples with methylation >0.2 Vash2 GRID2IP CHFR CCNJ F12

HCC 420 332 388 305 747

Other blood normal no HCC 0 1 5 0 0

0.586819 0.501901 0.579214 0.442332 0.968314
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