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Abstract

The occurrence of multiple strains of a bacterial pathogen such as M. tuberculosis or C.
difficile within a single human host, referred to as a mixed infection, has important
implications for both healthcare and public health. However, methods for detecting it,
and especially determining the proportion and identities of the underlying strains, from
WGS (whole-genome sequencing) data, have been limited.

In this paper we introduce SplitStrains, a novel method for addressing these
challenges. Grounded in a rigorous statistical model, SplitStrains not only
demonstrates superior performance in proportion estimation to other existing methods
on both simulated as well as real M. tuberculosis data, but also successfully determines
the identity of the underlying strains.

We conclude that SplitStrains is a powerful addition to the existing toolkit of
analytical methods for data coming from bacterial pathogens, and holds the promise of
enabling previously inaccessible conclusions to be drawn in the realm of public health
microbiology.

Author summary

When multiple strains of a pathogenic organism are present in a patient, it may be
necessary to not only detect this, but also to identify the individual strains. However,
this problem has not yet been solved for bacterial pathogens processed via
whole-genome sequencing. In this paper, we propose the SplitStrains algorithm for
detecting multiple strains in a sample, identifying their proportions, and inferring their
sequences, in the case of Mycobacterium tuberculosis. We test it on both simulated and
real data, with encouraging results. We believe that our work opens new horizons in
public health microbiology by allowing a more precise detection, identification and
quantification of multiple infecting strains within a sample.

Introduction 1

Bacterial infections by pathogens such as Mycobacterium tuberculosis and Clostridium 2

difficile often occur as mixed infections [1, 2], whereby a single patient is infected by 3

several different strains of the same organism. Eukaryotic pathogens such as the main 4

etiological agent of malaria, Plasmodium falciparum, can also cause mixed infections [3]. 5
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The identification of such mixed infections can be important for reasons including both 6

patient-level decisions [4] as well as public health measures [5]. In the latter setting, if 7

the tracing of the origins of the mixed infection is needed, it may be additionally 8

required to separate the mixed infection into its constituent strains. The separation may 9

also be informative when the mixed infection is hetero-resistant [6], namely, when some, 10

but not all, the strains are resistant to a particular antimicrobial drug. Moreover, a 11

failure to identify the within-host pathogen diversity can lead to misdiagnosing a relapse 12

and reinfection [7]. However, so far, the problem of identifying mixed infections and 13

separating them into their constituent strains has not received a sufficient amount of 14

attention in the literature. 15

Although older techniques based on the detection of specific regions, such as VNTR 16

(variable-number tandem repeats) [8], are often able to detect such a mixed infection [9], 17

this is not always the case with next-generation sequencing. The main challenge is that 18

the presence of two alternative alleles in a given genomic position may signal a 19

sequencing error as well as the presence of multiple strains. The key distinguishing 20

feature of a mixed infection is the consistency of the fraction of the sample attributable 21

to the sub-dominant strain across most of the variable positions. Thus, depending on 22

the depth of coverage, the similarity between the constituent strains and the 23

proportions in which they are mixed, the problem of detecting and separating mixed 24

strains may vary from straightforward to nearly infeasible. 25

Several methods for this problem have appeared over the past decade. Eyre et al [10] 26

propose a Mixed Infection Estimator, a two-step approach for mixture proportion 27

estimation using a maximum likelihood analysis and mixed strain identification using a 28

custom database. Even though the paper presents results for C. difficile, the mixture 29

estimation algorithm can be generalized to other pathogens such as M. tuberculosis. 30

This method computes a deviance statistic and uses a threshold value for this statistic 31

to detect mixed infections. As this algorithm was initially designed for M. tuberculosis, 32

and relies on a custom database of sequences to identify the constituent strains, it could 33

only be used for mixture proportion estimation in our context. More recently, 34

Sobkowiak et al. [11] developed MixInfect, a method for mixture proportion estimation 35

using a Bayesian model-based clustering technique. This method calculates the ratio of 36

heterozygous calls to total SNPs (single nucleotide polymorphisms) and uses a threshold 37

on this ratio to identify mixed samples. While this algorithm can estimate mixture 38

proportions it does not provide any functionality for resolving the constituent strains. 39

The most recent method, QuantTB by Anyansi et al [12], relies on a specially 40

constructed publicly available database of 2166 M. tuberculosis assemblies from 41

NCBI [13]. This method provides mixture estimates of WGS samples as well as the 42

identification of strains whose sequence is similar to the ones included in the database. 43

To determine the constituent strains, this method compares the sample to the sequences 44

in the reference database, scoring each of the assemblies. The algorithm then 45

determines how many constituent strains are present in a sample. This approach does 46

not generalize to situations where the underlying strains lack close representatives in the 47

database, which makes its performance highly dependent on the database’s 48

representation of the common strains in the relevant local context. 49

In this paper, we address this problem with a tool called SplitStrains, grounded in 50

a rigorous statistical framework. It is based on formulating, for a given set of WGS 51

reads, two alternative hypotheses, namely: the reads belong to a single strain (null 52

hypothesis) or to a mixture of two strains (alternative hypothesis). We then use the EM 53

(Expectation-Maximization) algorithm [14] to estimate the parameters of both 54

hypotheses, and compare their likelihoods to draw a conclusion. As a result, we 55

simultaneously obtain: 56

• A call to decide whether the sample represents a single (pure) or a mixed infection, 57
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• A likelihood ratio between the alternative and the null hypothesis for the call, and 58

• If mixed, the proportion of each constituent strain and a Sequence Alignment 59

Map (SAM) file grouping the reads belonging to each constituent strain. 60

Our results on both simulated and real M. tuberculosis data show that 61

SplitStrains is effective at identifying mixed infections, and continues to perform well 62

even at a relatively low depth of coverage (60x) and low genetic distance (20 SNPs) 63

between strains. Moreover, SplitStrains outperforms previously published tools Mixed 64

infection estimator, MixInfect and QuantTB on simulated data. Furthermore, our 65

results show that SplitStrains accurately separates the constituent strains provided 66

that their proportions are not too close to each other and they are not too similar. 67

SplitStrains is available on GitHub: https://github.com/WGS-TB/SplitStrains. 68

Results 69

For simplicity, a WGS sample will be called pure if it contains a single strain of the 70

sequenced organism, and mixed otherwise. The SplitStrains algorithm classifies a 71

sample as being pure or mixed. If the sample is classified as mixed, the algorithm 72

detects the proportion of each strain and separates the reads according to which strain 73

they belong to. In order to accomplish this, the algorithm proceeds through three stages. 74

First, SplitStrains uses the sample’s SNPs to infer the parameters of a Gaussian 75

or Binomial Mixture Model (GMM), which identifies the number and the proportions of 76

the constituent simple strains. The likelihood ratio statistic produced in the process 77

provides a rigorous quantification of the confidence about its status as a pure or mixed 78

sample. The algorithm then uses the model’s estimated parameters in a Näıve Bayes 79

classifier to assign each read to one strain. Finally, it produces a SAM file for each 80

constituent strain. The process is shown in Figure 1. 81

Fig 1. SplitStrains workflow overview.

In principle, it would be possible for SplitStrains to partition the SNPs instead of 82

the reads. However, we choose to partition the reads for two reasons. First, there is 83

generally more information to classify a read than there is to classify a SNP, because a 84

single read can contain multiple SNPs, as we explain in the Methods. Second, an 85

assembly program (either reference-based or de novo) can be applied directly to the 86

SAM files representing each strain, which can make the downstream analysis more 87

accurate in cases where the variation present in some of the strains is not limited to 88

SNPs, but also includes indels or copy number variants. 89

Although SplitStrains is primarily designed for samples containing one or two 90

strains, we also apply it to situations, rarely seen with M. tuberculosis but more 91

common with other bacteria, where three strains are present in a single sample. We 92
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note that our likelihood ratio statistic is calibrated to distinguish between the pure and 93

the mixed case, but is not in general sensitive enough to distinguish between two-strain 94

and three-strain samples. For this reason, we consider our mixed sample detection to be 95

correct if it classifies a mixed sample as mixed, regardless of the number of underlying 96

strains. 97

To evaluate the strain proportion estimation in a uniform way, we consider the 98

accuracy of the proportion estimation for the major strain (which, in the case of a 99

two-strain sample, is equivalent to the accuracy for the minor strain). Lastly, to evaluate 100

the assignment of reads to constituent strains, we separately analyze the samples with 101

two and three strains, and explicitly specify the number of constituent strains as 2 or 3. 102

We evaluate the performance of the SplitStrains algorithm by quantifying the 103

accuracy of its mixture proportion estimation and strain separation on several datasets: 104

Dataset A 48 in vitro samples, including 12 pure and 36 artificially mixed 2-strain samples 105

with known strain proportions, published together with a previous method, 106

MixInfect [11]. The samples have an average of 1,249 SNPs relative to the 107

reference genome. This dataset is the most realistic representation of mixed 108

infections since it is generated in vitro by combining the DNA from two M. 109

tuberculosis cultures. 110

Dataset B 60 in silico samples, including 30 pure and 30 mixed 2-strain samples with known 111

strain proportions, published together with a study on whole-genome MLST 112

schemes from our group [15]. The samples have an average of 6,375 SNPs relative 113

to the reference genome. This dataset is the second most realistic dataset since it 114

is based on previously observed alleles of genes and includes a wide range of 115

different mixture proportions. 116

Dataset C 22 in silico samples, of which 8 are pure and 14 are mixed (8 with 2 and 6 with 3 117

constituent strains) produced specifically for this work. The mixed samples are 118

derived directly from the reference genome by independently adding 100 SNPs per 119

strain in the 2-strain samples, and 300 SNPs per strain in a 3-strain sample. This 120

is the least realistic dataset and it is designed to test SplitStrains’s ability to 121

generalize to data with 1, 2 or 3 strains and a wide range of mixture proportions. 122

Dataset D 59 real samples chosen among those collected in population-level surveys in 123

Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa (Gauteng 124

and Kwazulu Natal provinces) and Ukraine, collected between 2009 and 2014 [16], 125

with additional samples from a large-scale whole genome sequencing study 126

conducted in Malawi [17]. The samples have an average of 1,248 SNPs relative to 127

the reference genome. This dataset contains real samples, and their true status 128

(pure or mixed) is unknown. 129

Dataset E 64 in silico samples, 32 pure ones and 32 mixed ones with 2 strains each, used to 130

test the method at a low depth of coverage (60x) and a low genetic distance. The 131

32 mixed samples have one of 8 known major strain proportions, and for each 132

proportion, the samples are derived from the reference genome by independently 133

adding 10, 15, 20, or 25 SNPs per strain. This is a calibration dataset designed to 134

test SplitStrains’s ability to detect mixed infections with very short genetic 135

distances. 136

The analysis starts by classifying a given sample as a mixed or pure. It uses the 137

likelihood ratio test (LR) to compare the single strain (null) and the multiple strains 138

(alternative) hypotheses. We use the LR statistic and the resulting p-value to guide the 139

decision process. The algorithm also reports the estimated mixture proportions. If the 140
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sample is called mixed, the algorithm further classifies each read containing one or more 141

variants as belonging to a specific strain. Note that this assignment can be extended to a 142

full strain assembly as is frequently done in metagenomics [18], but we do not explicitly 143

do so to focus on our contribution and avoid the complications due to the choice of a 144

suitable assembly algorithm [19]. We now discuss the performance of SplitStrains on 145

each of the datasets, omitting the real Dataset D which cannot be used for evaluation. 146

Mixed sample detection 147

SplitStrains is consistently able to detect mixed infections across all the datasets, 148

which suggests its robustness to different numbers of SNPs, depths of coverage, minor 149

strain proportions, and synthesis methods. 150

Dataset A SplitStrains correctly classifies all 12 pure samples when the 151

significance level threshold set to α = 0.05. 23/24 mixed samples with major strain 152

proportions of 70% and 90% are also correctly classified. 11/12 samples with a major 153

strain proportion of 95% are misclassified as pure; however, by increasing the 154

significance level threshold to α = 0.1, SplitStrains correctly classifies 8/12 of these 155

samples. In total, 43/48 samples (90%) get correctly classified with α = 0.1. 156

Dataset B SplitStrains classifies 29/30 mixed samples as mixed, the exception 157

being a sample with a major strain proportion of 95%. However, using α = 0.1 instead 158

of α = 0.05 allows for the correct classification of all 30 mixed samples. 27/30 pure 159

samples get classified as pure with α = 0.1, and the 3 misclassified samples have a very 160

low average depth of coverage (10x). In total, 57/60 samples (95%) get correctly 161

classified with α = 0.1. 162

Dataset C SplitStrains correctly detects 13/14 mixed samples using α = 0.05, 163

including 6/6 samples with 3 constituent strains. The misclassified sample is the 164

two-strain sample with a major proportion of 95%. 8/8 pure samples are correctly 165

classified as pure. In total, 21/22 samples (95%) get correctly classified with α = 0.05. 166

Dataset D We also applied SplitStrains to a real dataset containing 59 samples. A 167

preliminary analysis used a reference mapping pipeline with variant calling optimized on 168

curated databases [20], and declared 27 of the samples as mixed. SplitStrains 169

classifies 24/27 of these samples as mixed with α = 0.05, and classifies the remaining 35 170

samples as pure, demonstrating a concordance of 56/59 (95%) with the reference 171

mapping pipeline that makes extensive use of database information. 172

Mixture proportion estimation 173

In those datasets where the true proportion of the major strain known, we can compare 174

that proportion to the one inferred by SplitStrains, conditional on its correctly 175

classifying the sample as mixed. The correctly classified mixed samples have a 176

maximum deviation from the true solution of 11%; the worst case occurs for a sample 177

with true major proportion of 95%, which is estimated as 84% by SplitStrains. In 178

general, the estimation is accurate up to a 90% major strain proportion, but starts to 179

decrease as this proportion approaches 95% (Figure 2). We measure the deviation of all 180

the estimates from their true values using the Root Mean Square Error (RMSE). 181

Averaged across all 3 datasets with known true proportions, the RMSE of 182

SplitStrains is less than 5%, as also shown in Table 1 below. 183
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Fig 2. Proportion estimation. 74 true mixed samples and their major proportion
estimated by SplitStrains.

Assignment of reads to constituent strains - Dataset C 184

Once the mixture model parameters have been estimated, the algorithm assigns each 185

read containing one or more variable sites to a constituent strain using a Näıve Bayes 186

approach. Note that those reads that do not contain any variant sites or have zero map 187

quality remain unassigned (i.e. we perform a partial, rather than complete, strain 188

reconstruction). In Figures 3 and 4 we respectively present the two-strain and 189

three-strain confusion matrices to show the performance of this assignment on Dataset 190

C, which is designed in such a way that the provenance of each read is known. We set 191

α = 0.05 to resolve the mixed strains. As explained above, the 2-strain mixed sample 192

with 95% major strain proportion is misclassified as pure, so Figure 3 only contains 7 193

contingency matrices. Here, a read is deemed to be classified correctly when it is 194

assigned to its own strain, and incorrectly otherwise. These figures suggest that our 195

assignment accuracy decreases as the two major strain proportions get close to each 196

other, for samples with both 2 as well as 3 strains. 197

In practice, even if major and minor strain proportions are well apart, say 70:30, 198

each individual variant in a read alignment file rarely has a clean 70:30 allele split. 199

Instead, a variant’s allele proportions take on values which are approximately normally 200

distributed with respective means 70 and 30. SplitStrains successfully handles such 201

variants. However, if a variant comprised of two alleles has an allele with a frequency 202

below a user-specified threshold (the default being 10%), such a variant is deemed to be 203

noisy and is not processed. 204

Using the read assignments to the strains, the algorithm outputs a new alignment 205

file for each strain. In order to further evaluate the accuracy of the assignment, we 206

create a consensus sequence from each alignment file. We expect the consensus 207

sequences to match the respective genomes of the constituent strains. As the genome of 208

each constituent strain has the same number N of base substitutions relative to the 209

reference genome, due to the way they are generated, the consensus sequences can have 210

between 0 and N mismatches with the true sequences. In the case of the two-strain 211

mixtures, our algorithm successfully separates the strains with major strain proportion 212

varying from 55% to 90%. However, as the major strain proportion gets closer to 50%, 213
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Fig 3. Confusion matrices for two-strain samples, Dataset C. The major and
minor strains are denoted A and B; their proportions are displayed above each matrix.

Fig 4. Confusion matrices for three-strain samples, Dataset C. The strains in
each sample are denoted A, B and C; their proportions are displayed above each matrix.

correct assignment of reads becomes steadily more challenging, as shown in Figure 5. 214

We note that SNPs in reads that the alignment algorithm was unable to find a 215

reasonable quality alignment for are not counted toward the errors in this analysis. 216

Such reads are contained in the intervals [400130, 401700], [888990, 891520] and 217

[2550020,2551390] in the reference genome for M. tuberculosis, H37Rv (accession 218

number NC 000962.3 at NCBI [13]), which fall within repetitive or mobile genome 219

regions and are known to cause poor read alignments. 220
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Fig 5. Assignment error. The proportion of mismatches due to the incorrect
assignment of reads among the positions where the strains differ from one another.

Comparison with other tools 221

SplitStrains consistently outperforms MixInfect [11], QuantTB [12] and Mixed 222

Infection Estimator [10] in discriminating between pure and mixed infections. We 223

illustrate their discrimination performance on datasets A, B and C combined in Figure 224

6; their performance on each of the datasets separately is shown in Figure S1 in the 225

Supporting Information. The Receiver Operating Characteristic (ROC) curve shows 226

the true positive rate (TPR) against the false positive rate (FPR) at various threshold 227

settings. The Area Under the Curve (AUC) quantifies how well the algorithm is able to 228

distinguish between pure and mixed infections. Higher AUC values mean that the 229

algorithm is better at predicting the class of a sample. SplitStrains has the highest 230

AUC (0.99) and can achieve close to 100% TPR with an FPR as low as 11%. The 231

second best classification performance is obtained by MixInfect, with an AUC of 0.97. 232

The ROC curves of SplitStrains and MixInfect are fairly close to one another, but 233

the latter produces more false positives at higher true positive rates, giving a lower 234

overall area under the curve. 235

SplitStrains also consistently obtains the lowest or second lowest proportion 236

estimation error among the tools, and has the lowest error on the combined dataset. 237

These results are shown in detail in Figure 7 and summarized in Table 1.

Table 1. RMSE comparison across all datasets.

Dataset Size SplitStrains Mixed Infection Estimator MixInfect QuantTB

A 48 0.056 0.068 0.178 0.153
B 60 0.025 0.018 0.031 0.202
C 22 0.066 0.066 0.041 0.312

Combined 130 0.047 0.053 0.126 0.196

238
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Fig 6. ROC curves for the four tools. Performance in separating pure and mixed
samples in datasets A, B and C.

Fig 7. Proportion estimation comparison. Major proportion estimates by 4
different tools on the 74 mixed samples from datasets A, B, and C.

Performance with low genetic distance and depth of coverage 239

We test the performance of SplitStrains on Dataset E which contains 32 pure and 32 240

mixed strains with small genetic distances (20, 30, 40 and 50 SNPs) and a low depth of 241

coverage of 60x. SplitStrains’ ability to detect mixed infections in this setting 242

depends on the threshold α. Higher α values allow the detection of mixed strains with 243

small genetic distances at the risk of classifying pure strains as mixed. Figure 8 shows 244

the minimum α threshold needed to correctly identify mixed samples at a given SNP 245
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distance and major strain proportion while also correctly classifying the pure samples at 246

the same SNP distance from the reference genome. 247

Figure 8 shows that smaller genetic distances and larger major proportions require 248

larger values of α. For instance, a distance of 20 SNPs and a major strain proportion of 249

90% represents a challenging case which requires α to be set to 0.75, while the default 250

value, α = 0.05, suffices for a distance of 50 SNPs and a 50% major strain proportion. 251

We also show a separate ROC curve for Dataset E, in Figure 9. Despite the 252

challenges of classifying this Dataset, SplitStrains displays a reasonable trade-off 253

between true positive and false positive rates and achieves an AUC of 0.96. 254

Fig 8. α calibration, Dataset E. α values required for the detection of mixed strains.

Fig 9. ROC curve, Dataset E The ROC curve for all 32 mixed and 32 pure samples.
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Discussion 255

In this paper we introduced a novel algorithm, called SplitStrains, based on a 256

rigorous statistical framework, for detecting multiple-strain infections, estimating the 257

proportion of the major and minor strains, and partially reconstructing their sequences 258

by assigning the reads that contain variants to one of these strains. 259

Although successful in many simulation scenarios, our algorithm suffers from the 260

following limitations: 261

• When the proportions of two of the strains are very close to one another (for 262

instance, a 50-50 mixture of two strains), the estimation becomes numerically 263

sensitive and the identified strain sequences cannot be reliably inferred. 264

• When the overall depth of coverage is too low (below 20x or so), the proportions 265

and the strain sequences cannot be reliably estimated either. 266

• The multiple infection status cannot be determined with confidence when the 267

proportion of one of the strains is below 10%, which is therefore the resolution of 268

our algorithm. 269

• Although there is no required minimum threshold on genetic distance between the 270

strains in a mixed sample, those with a high genetic similarity (around 20 SNPs) 271

are challenging to identify and deconvolute. This suggests that our method will 272

likely perform better on mixed samples due to multiple infection events than those 273

due to within-host evolution [1]. 274

We now discuss these limitations in turn, as well as sketch possible ways to improve 275

on them. The situation when two strains are present at equal or near-equal proportions 276

is rare in practice, since the strains will in general have unequal fitness and one will 277

tend to dominate the other [5]. However, if it does occur, SplitStrains provides a 278

useful diagnostic in the proportions it returns, and this can then serve as a starting 279

point for separately culturing and sequencing each of the strains. 280

The situation when the depth of coverage is too low also occurs infrequently in 281

practice, since most modern sequencing experiments tend to have a depth of coverage of 282

at least 75x to 100x. In the case of a low depth of coverage, for instance in a historical 283

sequencing experiment, it is frequently not possible to reliably determine the sequence 284

of even a simple strain, due to the difficulty in differentiating between a true SNP and a 285

sequencing error. As can be expected, this difficulty is exacerbated in the presence of 286

multiple strains. A more time-consuming method, such as a de Bruijn graph-based 287

assembly, may be able to address this limitation in some situations [21]. 288

Similarly, a very low-frequency minor strain is typically difficult to distinguish from 289

noise due to sequencing errors, and in a situation when this appears to happen, a more 290

targeted approach such as amplicon sequencing may be used to establish the sequence of 291

at least a subset of the important genes. This approach may be used, for instance, to 292

determine the resistance to a specific drug of the major and the minor strain [22]. 293

Lastly, mixed samples with a small SNP distance (around 20) between the 294

constituent strains should arise primarily through within-host evolution, although there 295

is also a small likelihood of reinfection by two very similar strains in a high-prevalence 296

region. Such similar strains may be more easily detectable by amplicon sequencing as 297

well, provided that the sequencing is focused on the regions containing the variable 298

positions. Alternatively, as we show in Figure 8, the α significance level threshold in the 299

SplitStrains algorithm can be increased to enable their detection in situations where 300

such occurrences are expected to be frequent and the downside of false positive mixed 301

calls is lower. 302
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In spite of these limitations, we believe that our approach is a promising way 303

forward, as also demonstrated by its favourable performance relative to existing 304

methods. In particular, our approach appears to perform better than both QuantTB as 305

well as Mixed Infection Estimator, and performs comparably to MixInfect, in most 306

simulated settings, with regards to the task of identifying the presence of mixed 307

infections and estimating proportions. 308

In addition, SplitStrains is unique among existing methods in its ability to provide 309

additional information, namely, the assignment of each read to one of the underlying 310

strains, with a subsequent identification of their sequence if desired. Importantly, unlike 311

QuantTB, it does not rely on the knowledge of a large number of previously identified 312

sequences, which is a clear advantage when investigating either a novel outbreak or an 313

isolate originating from a data-poor setting. Furthermore, SplitStrains returns not 314

only a call, but also a likelihood ratio, which is an indicator of the algorithm’s 315

confidence about the presence or absence of a mixed infection. We believe that, in 316

situations where such information has either clinical or public health importance, the 317

SplitStrains method will be a valuable addition to the existing collection of tools. 318

In future work, we plan to extend SplitStrains to work with other bacterial 319

pathogens as well as to improve its resolution, at least in datasets with a high depth of 320

coverage. Lastly, we plan to use SplitStrains as a preprocessing step in two pipelines - 321

one for identifying related isolates in an outbreak [23], where mixed infections can mask 322

such relatedness, and another one for predicting drug resistance [24], where mixed 323

infections can impede a correct prediction when only the minor strain is drug-resistant. 324

Materials and Methods 325

This part of the paper is organized as follows. First, we briefly describe the datasets 326

used in our analysis. Second, we explain the construction of the feature vector used in 327

our probabilistic model and show how to use them to classify an isolate. Third, we 328

define the Näıve Bayes Classifier for the assignment of reads to strains. Lastly, we show 329

how this approach can be generalized to three or more strains. 330

We begin by describing the datasets used in our analysis. We reported the average 331

number of SNPs relative to the reference genome in the Results section. Here we 332

additionally report the average number of heterogeneous SNPs, defined by a 0/1 in the 333

GT field of the VCF file produced by aligning the sample to the reference genome. We 334

note that the number of heterogeneous SNPs depends on the alignment and 335

variant-calling steps of the pipeline. Therefore, for the in silico datasets, this number 336

may be lower than the total number of SNPs added to the reference genome when 337

generating the sample. We report the per-sample statistics in Table S1 in the 338

Supporting Information. 339

Dataset A, in vitro. 340

The 48 mixed M. tuberculosis samples presented in [11] are artificially generated in vitro 341

by combining the DNA from two clinical cultures of M. tuberculosis. The DNA is 342

quantified through spectrophotometry in liquid culture and combined to produce 4 sets 343

of 12 samples with major strain proportion of 70%, 90%, 95% (mixed) and 100% (pure). 344

The average number of heterogeneous SNPs is 327. 345

Dataset B, in silico. 346

The 60 artificial samples presented in [15] are generated from the standard reference 347

genome for M. tuberculosis by substituting randomly chosen alleles at each of 553 genes 348
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in an essential core genome MLST scheme (ecgMLST), created by intersecting the set 349

of core genes in an existing scheme with the set of 615 essential M. tuberculosis 350

genes [25]. The full dataset contains 3 pure genomes, with 10 samples generated from 351

each one by varying the depth of coverage from 10x to 100x in increments of 10, and 3 352

mixed genomes obtained by mixing an additional 3 pure genomes in pairs, with 10 353

samples generated from each by varying the major strain proportion from 50% to 95% 354

in 5% increments. The average number of heterogeneous SNPs is 2,843. 355

Dataset C, in silico 356

For this dataset, generated specifically for this paper, the constituent strains are 357

produced from the H37Rv reference genome. 358

1. Profile: HiSeqX PCR free 359

2. Read length: 150 360

3. Per base sequence quality scores: 20 to 30 on the Sanger/Illumina1.9 scale. 361

4. Quality shift: In order to match the quality of the real data, we shifted the quality 362

scores down by 9 to produce relatively uncertain sequences with high sequencing 363

errors. 364

5. Depth of coverage: 100x for single-strain and two-strain samples and 150x for 365

three-strain samples. 366

The dataset consists of 8 two-strain mixtures, 6 three-strain mixtures, and 8 single 367

strains. The two-strain mixtures have major strain proportion varying from 50% to 95% 368

in 5% increments, with 55% and 60% omitted. The average number of heterogeneous 369

SNPs is 136. The 6 three-strain samples have proportions 10:25:65, 15:30:55, 20:35:45, 370

25:40:35, 30:45:25, and 35:50:15. The average number of heterogeneous SNPs is 136 for 371

the 2-strain samples and 583 for the 3-strain samples. The simulated reads were aligned 372

back to the reference genome with BWA-MEM [26]. 373

Dataset E, in silico 374

For this dataset, generated specifically for this paper, the constituent strains are 375

produced from the same H37Rv reference genome with N ∈ {10, 15, 20, 25} random base 376

substitutions. This yields 4 subsets that contain single and two-strain samples. The first 377

subset contains 8 single strain and 8 two-strain samples with proportions varying from 378

50% to 95% in 5% increments, with 55% and 60% omitted. All the samples in the first 379

subset have 10 SNPs relative to H37Rv, and since these SNPs are chosen independently 380

at random, the two-strain samples are 20 SNPs apart. The remaining sample subsets 381

have the same proportions, but more SNPs. The genetic distances between mixed 382

strains in each of the subsets are thus 20, 30, 40 and 50 SNPs, respectively. The WGS 383

data is produced by the ART simulator with the same settings used to generate the 384

Dataset C except for the depth of coverage, which is set to 60x for all the samples. 385

Required input data 386

SplitStrains only requires a BAM file of the generated data, a reference genome, and 387

optionally, a generic feature format (GFF) file. We say that a sample represented in the 388

BAM file contains a single strain if it is pure, a pair of strains called major strain 389

and minor strain if it is a mixture of two strains, or multiple strains in the case of a 390

mixture of more than two strains. 391
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Feature vector construction 392

The BAM file contains the alignment information for each individual read of a 393

sequenced organism. We first convert the BAM file into a pileup format using the 394

pysam library [27]. This pileup format summarises the alignment information for each 395

individual base of the reference genome. We then construct a per-base feature vector 396

defined as follows: 397

xi := (p
(i)
A , p

(i)
C , p

(i)
G , p

(i)
T ; d(i)), (1)

where p
(i)
b ∈ [0, 100] for b ∈ {A,C,G, T} is the percentage of base b at position i, so that 398∑

b∈{A,C,G,T} p
(i)
b = 100, and d(i) is the total depth (number of aligned reads) at this 399

position. Note that if p
(i)
b > 0 for more than one b, there could be a SNP at position i. 400

In practice, at most two of the p
(i)
b ’s are non-zero most of the time. In the absence of 401

sequencing errors, we expect exactly one of the p
(i)
b ’s to equal 100 for every i in the case 402

of a single strain. On the other hand, in the case of a mixed sample that has a major 403

strain at a proportion p ≥ 1
2 and a minor strain at a proportion 1− p, we expect to see 404

p
(i)
bi

= p and p
(i)
b′i

= 1− p, where bi 6= b′i, for sufficiently many positions i. 405

Figure 10 shows an example with two adjacent positions, i and j. There are n = 8 406

reads supporting position i, 6 of them containing an A and the remaining 2 containing a 407

T . The depth is d(i) = 8 and the percentages of bases A and T at i are p
(i)
A = 75 and 408

p
(i)
T = 25, respectively. The adjacent position j has the same depth and a G in one of 409

the reads, with the remaining reads containing a C. They are summarized by the 410

feature vectors xi = (75, 0, 0, 25; 8) and xj = (0, 87.5, 12.5, 0; 8), respectively. 411

We empirically determined that filtering out sites xi with depth d(i) less than 412

κ = 70% of the average depth of coverage for the sample significantly improves analysis 413

results. This allows us to leave out sites which have problematic or poor alignment. 414

Fig 10. An example read alignment and the corresponding feature vector.

Detecting mixed samples 415

We test two hypotheses: the null hypothesis (H0), which states that there is a single 416

strain in the data, and an alternative hypothesis (H1), which states that there are two 417

strains with proportions p and 1− p, respectively. Our data D consists of all the feature 418

vectors xi described above. 419

The likelihood of the data D under H0 is based on the fact that, for every position i, 420

the feature vector xi can only have a non-zero percentage at one base b, that is 421

p
(i)
b = 100. However, we also allow sequencing errors to occur with probability ε0. 422
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Therefore, using the notation di for the number of reads that map to position i, and ki 423

for the number of those reads that end up with the most frequent base, we have 424

P (D|H0) =
∏
i

(
di
ki

)
εdi−ki
0 (1− 3ε0)ki , with ki := di ·max

b
p
(i)
b . (2)

where the last term in the product arises from the fact that a sequencing error can 425

occur in 3 different ways, so the probability of getting the correct base is 1− 3ε0. 426

Under H1 we assume that there are two strains with proportions p and 1− p, and 427

sequencing errors which occur with probability ε1. We now use n
(i)
M := di ·maxb p

(i)
b and 428

n
(i)
m := di ·maxb′ 6=b p

(i)
b′ to denote the counts of the most and second most frequent bases 429

at position i, and n
(i)
e := di − (n

(i)
M + n

(i)
m ) to denote the count of the remaining bases. 430

Repeating the above analysis gives us the following expression: 431

P (D|H1) =
∏
i

(
d(i)

n
(i)
M , n

(i)
m , n

(i)
e

)(
p(1−3ε1)+(1−p)ε1

)n(i)
M
(
(1−p)(1−3ε1)+pε1

)n(i)
m ε

n(i)
e

1 ,

(3)
where 432(

d(i)

n
(i)
M n

(i)
m n

(i)
e

)
:=

(
d(i)

n
(i)
M

)(
d(i) − n(i)M

n
(i)
m

)
(4)

is the trinomial coefficient, which generalizes the binomial coefficient. 433

Using the likelihood ratio test, we can now formulate the following condition: 434

if − 2
(

log(P (D|H0))− log(P (D|H1))
)
< c, then select H0, otherwise H1. (5)

The threshold value c is defined based on the significance level α using the χ2
435

distribution with one degree of freedom. Finally, in order to evaluate Equation( (5)) we 436

estimate the parameters ε0 for H0 and p, ε1 for H1 using the well-established Truncated 437

Newton constrained optimization algorithm [28]. 438

Read assignment with two strains 439

In order to obtain a read assignment to a strain, we wish to compute the probability of 440

a read r belonging to the major strain M and to the minor strain m. Let Pr[r ∈M ] 441

and Pr[r ∈ m] denote the respective probabilities. A read often supports multiple SNPs 442

at the same time, say, at positions i1, i2, . . . , in; we let Cr = {i1, i2, . . . , in} be the set of 443

such positions for a read r. 444

For each i ∈ Cr we get the counts of each base b ∈ {A,C,G, T} from the feature 445

vector xi. Let x(i) denote the count of the base ri found in the read r at position i ∈ Cr. 446

We then define the following condition: 447

if
Pr[r ∈M |x(i), i ∈ Cr]

Pr[r ∈ m|x(i), i ∈ Cr]
> 1, then r ∈M, otherwise r ∈ m. (6)

Suppose that the proportions of the major and the minor strains are p and 1− p, 448

respectively, as inferred from the mixture model. Then, assuming that p > 1
2 and each 449

xi is independent, the left-hand side of Equation (6) can be expressed as a ratio of 450

products: 451

if

∏
i∈Cr

(
d(i)

x(i)

)
px

(i)

(1− p)d(i)−x(i)∏
i∈Cr

(
d(i)

x(i)

)
(1− p)x(i)pd(i)−x(i)

> 1, then r ∈M, otherwise r ∈ m. (7)
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Simplifying the left hand side further, we arrive at a simple condition, independent of p: 452

if
∑
i∈Cr

(2x(i) − d(i)) > 0, then r ∈M, otherwise r ∈ m. (8)

Therefore, by computing Equation (8) we can classify whether a read r belongs to a 453

major or minor strain. 454

If, instead of the derivation above, we use the Gaussian probability density functions 455

f(x|µ, σ1) and f(x|1− µ, σ2) to model the ratios in Equation (6), and further assuming 456

equal variances σ = σ1 = σ2, we arrive to the exact same condition as in Equation (8): 457∏
i∈Cr

f1(x(i)|µ, σ)∏
i∈Cr

f2(x(i)|1− µ, σ)
> 1 iff

∑
i∈Cr

(2x(i) − d(i)) > 0. (9)

Hence, it is possible to use either the Binomial or the Gaussian distribution in 458

Equation (6). This leads us to the more general situation, where we have n > 2 strains 459

in a sample. 460

Binomial and Gaussian Mixture Models for multiple strains 461

In this subsection we describe a probabilistic model for proportion estimation and read 462

assignment in the case of multiple strains. 463

In order to build the Mixture Model, we use the information in the feature vectors 464

xi to construct a matrix X as follows: 465

X := [p
(i1)
A , p

(i1)
C , p

(i1)
G , p

(i1)
T , · · · , p(iN )

A , p
(iN )
C , p

(iN )
G , p

(iN )
T ], (10)

where {in}Nn=1 is a strictly increasing sequence of integers (e.g., i1 < i2 < · · · < iN ) of 466

variable positions. Now, let K be the number of strains in a sample. We denote the 467

unknown proportions of each strain as µ1, . . . , µK , the standard error of each proportion 468

as σ1, . . . , σK . and the weight of each mixture model component, as w1, . . . , wK . Define 469

the parameter vector θ := {µ1, σ1, w1, . . . , µK , σK , wK}; then the mixture model has 470

the following form: 471

p(θ|X) =
K∑

k=1

wkf(x | µk, σk), (11)

where f(x | µk, σk) is the density function of a Binomial or Gaussian distribution. For a 472

given X, we use the well-established EM algorithm to learn θ. 473

Once the model has been learned (Figure 11), it is possible to proceed to the 474

assignment of each read to a strain via Näıve Bayes classification: 475

pk = Pr[r ∈ Sk | p(i)ri for i ∈ Cr] ∝ wk

∏
i∈Cr

f(p(i)ri | µk, σk). (12)

Finally, we use a maximum a posteriori assignment: r ∈ Sj if and only if pj = max{pk}. 476

Computational settings 477

All our computations are performed on a 64 bit Ubuntu Linux computer with 8 CPU 478

cores and 16GB of RAM. The entire pipeline’s running time ranges from 2 minutes to 479

30 minutes per sample, depending on the settings and the depth of coverage. 480
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Fig 11. Mixture Model. Example of a simulated mixed sample, “Dataset X”,
containing a major and a minor strain with respective percentages µ1 = 70, µ2 = 30.

Supporting Information 481

Figure S1. ROC curves for each dataset. Separate ROC curves, together with 482

their AUC values, for datasets A, B and C. 483

Table S1. Table with classification results. A table with full results for datasets 484

A through D. It includes the samples’ true status (when known), and the classification 485

produced by SplitStrains, Mixed Infection Estimator, MixInfect and QuantTB. 486
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