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Abstract 

Background 

To examine whether outdoor exposures may contribute to the COVID-19 epidemic, we 

hypothesized that slower outdoor windspeed is associated with increased risk of transmission 

when individuals socialize outside. 

Methods 

Daily COVID-19 incidence reported between 3/16/2020-12/31/2020 was the outcome. Average 

windspeed and maximal daily temperature were derived from the National Oceanic and 

Atmospheric Administration. Negative binomial regression was used to model incidence, 

adjusting for susceptible population size.  

Results 

Cases were very high in the initial wave but diminished quickly once lockdown procedures were 

enacted. Unadjusted and multivariable-adjusted analyses revealed that warmer days with 

windspeed <5.5 MPH had increased COVID-19 incidence (aIRR=1.50, 95% C.I.=[1.25-1.81], 

P<0.001) as compared to days with average windspeed ≥5.5 MPH.  

Conclusion 

This study suggests that outdoor transmission of COVID-19 may occur by noting that the risk of 

transmission of COVID-19 in the summer was highest on days when wind was reduced.   
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Background 

The novel coronavirus SARS-CoV-2, which causes a potentially deadly disease called COVID-

19 began spreading in China (1), and Italy (2) before arriving in the U.S. COVID-19 first hit in 

the U.S. in regions, such as NY and California, where global travelers often arrive into the U.S. 

(3). [COUNTY] experienced its first wave of infections early in March, when the pandemic had 

just arrived, causing a high degree of transmission and large numbers of COVID-related deaths.  

COVID-19 transmits via aerosolized viral particles that begin shedding before symptoms are 

evident (4), making it difficult to trace patterns or locations where exposures are occurring. As a 

result, approximately half of those diagnosed with COVID-19 report not knowing where they 

may have become infected (5). The most likely explanation for this lack of known exposures is 

that COVID-19 transmits in spaces that are thought to be safe. A handful of studies have made 

some headway in identifying such situations. For example, one study found that COVID-19 

could transmit through the air over relatively long distances (6) and another highlighted the 

impact of air conditioning vents (7). A third study found that a cluster of 17 cases could be traced 

to indirect transmission in shared spaces at a shopping mall in Wenzhou, China (8). Still other 

studies have revealed that individuals in a constricted space could spread COVID-19 via inhaled 

transmission over potentially large distances by following air flow within a restaurant (7) and 

within the Diamond Princess cruise ship (6).  

A recent review concluded that transmission within constricted indoor spaces is critically 

important, but outdoor exposures may be possible yet little is known about their dynamics or 

specific pathways (9). There are reports of sporadic outbreaks in outdoor environments, 

including at a construction site in Singapore (10, 11), jogging (10), or during conversation (12). 
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Because of much lower risk outdoors, close outdoor contacts are often discussed as though they 

are risk-free and exposure-mitigating strategies have focused on promoting the use of exterior 

spaces when conducting social activities in efforts to mitigate risk of exposure. If exposure 

occurs outside, it is likely to be hampered by the same factors as are commonly seen in studies of 

indoor transmission including the air turnover rate. In the current study, we hypothesized that 

lower exterior wind speed would be associated with increased risk of transmission during 

warmer days, when individuals were most likely to be socializing outside.  

Method 

To examine the potential for exterior exposure risk, we modeled incidence of cases reported to 

the [COUNTY] Department of Health from March 16th, when data first began being recorded 

reliably using an electronic interface, until December 31st, 2020, at which time the COUNTY 

was enduring a second wave. Data were shared with [INSTITUTION BLINDED] for the 

purposes of supporting the COVID-19 modeling efforts at the local level.  

Ethics 

The analysis of publicly available deidentified case counts retrieved from the internet are 

considered to be not human subjects research and are exempt from ethics review.  

Measures 

The main outcome was the number of daily confirmed incident cases as reported by the 

[COUNTY] Department of Health. We limited analysis to dates following March 16th, 2020 with 

the opening of multiple drive-through testing sites throughout the area and when case-reporting 
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routines were established. Population at risk estimates come from population estimates for the 

county derived from the U.S. census; susceptible population counts were updated for daily death 

counts, and for the reported number of COVID-19-related disease counts.  

Since daily case counts exhibit temporal dependence that is primarily determined by the 

underlying community force of infection, which cannot be measured directly, in a secondary 

analysis, we use an alternative outcome measure of a relative change in daily case counts 

compared to an 8-day forward/backward moving average defined as: 

!𝑐𝑎𝑠𝑒𝑠(𝑡) −	18∑ 𝑐𝑎𝑠𝑒𝑠(𝑘)!"#
$%!&# /

!18∑ 𝑐𝑎𝑠𝑒𝑠(𝑘)!"#
$%!&# /

	∀	𝑘 ≠ 𝑡	 

The 8-day forward/backward moving average serves as a proxy measure of underlying force of 

infection allowing to partially capture the variability in absolute case counts that is due to 

“natural” transmission patterns rather than external shocks such as wind speed. It is important to 

note that, on average, this measure would be zero when case counts remain relatively constant 

over time, however during the periods of exponential rise and decay of an epidemic, this measure 

would on average be negative, and it would be positive around the peak of an epidemic curve. It 

is therefore important to take these distinct behaviors into account. 

Maximal daily temperature as well as average windspeed were derived from the National 

Oceanic and Atmospheric Administration (NOAA) data portal (w2.weather.gov); data were 

recorded at a central location at the [LOCATION BLINDED]. Total snowfall and rainfall were 

also recorded in inches. While warmer temperatures are likely to be protective, as warm days 

allow individuals to socialize outside, where exposure appears to be markedly lower, increased 

windspeed may have diverging effects depending on temperature. In the summer, higher 
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windspeed increases air flow and may reduce risk versus in the winter when it may work to push 

social contacts that were occurring outside to shelter in indoor spaces. When exterior 

temperatures are warm enough to allow for outdoor social contacts to occur comfortably, we 

anticipated that increased windspeed would reduce overall outdoor risk. In contrast, on days 

where exterior temperatures were cooler, increased windspeed might cause individuals to retreat 

indoors for social occasions.  

Covariates  

We adjusted for number of days since lockdown (March 16th, 2020) and days since reopening 

began in [COUNTY]. To account for differences in daily reporting patterns, we incorporated a 

categorial variable indicating the day of the week that cases were reported. Noting that there has 

been significant spread in [COUNTY] following holidays, we incorporated an indicator of 

holidays that also incorporated the most significant weekend nearby. We also included covariates 

measuring rainfall and snowfall as these weather conditions are hypothesized to correlate with 

windspeed as well as social activities outdoors. In the primary analysis, we also adjust for the 8-

day forward/backward moving average daily case count. 

Statistical Modeling 

Descriptive characteristics include time-related trends in maximal temperature, daily windspeed, 

and daily case counts. Trends in maximal temperature and in average windspeed were provided 

alongside smoothed polynomial best-fitting trend lines.  

In the main analysis, incidence of COVID-19 positive caseload is reported as counts per day and, 

therefore, multivariable-adjusted modeling relied on negative binomial regression (13). Negative 
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binomial regression was chosen over alternatives including Poisson because we were concerned 

about the potential for over-dispersion in the outcome (14) since the infectious disease case load 

is highly variable, and because COVID-19 appears to spread commonly through superspreading 

clusters (15). A nine-day lag between exposure and case registration was assumed, consistent 

with epidemiological estimates of the incubation period for COVID-19 (16, 17) coupled with a 

two-day testing and one-day reporting lag period for available estimates online. Unadjusted and 

multivariable-adjusted incidence rate ratios (IRR) and 95% confidence intervals (95% C.I.) were 

reported. The interval between infection and disease ascertainment is not well known and varies 

geographically because it depends substantially on local testing availability and reporting 

systems – it can be reduced in places where testing is easy to find and lengthened in places where 

testing is difficult or requires hospitalization. As such, we conduct a sensitivity analysis 

considering the values of time intervals between exposure and case reporting between 5-15 days. 

For our lagging period, we allowed five days was chosen because our experience suggests that it 

takes two days to report results of testing to the DOH and an additional day to report those 

results online. Fifteen days was selected as a ceiling for index case analysis to reduce the risk of 

sequential effects of prior case/exposure cycles; however, sensitivity analyses reported results 

from 5-21 days to clarify the impact of those choices. The log-likelihood estimate was reported 

to compare model fit for different lags.  

We analyzed the secondary outcome – a relative measure of daily case counts – using linear 

regression with the same set of covariates as the primary outcome measure and exploring the 

results for a range of reporting lags.  
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Since we hypothesized the effect heterogeneity of windspeed on transmission depending on the 

temperature, cutoffs for “warm” days and for days when windspeed was sufficiently fast were 

determined by comparing Akaike’s information criterion (AIC) across multiple models using 

different details as modeled parameters. We compared AIC between models to determine that 

>60°F [15°C] was an optimal cutoff for temperature. Because cutoffs may be useful when 

adjudicating risk at the local level, we similarly used AIC and compared model fit using 

multivariable adjusted models to identify optimal cutoffs for windspeed and ultimately identified 

low windspeed as days where windspeed was <5.5 MPH as the optimal cutoff for these models.  

Since the relative measure of daily case counts only partially adjusts for the community force of 

infection and underlying “natural” epidemic dynamics, we also conducted additional stratified 

sensitivity analyses cut into time periods when case counts were relatively flat (06/07/2020-

11/03/2020) and when epidemic was exponentially increasing (03/16/2020-04/10/2020 and 

11/04/2020-12/31/2020) or decaying (04/11/2020-06/06/2020). We use two criteria: daily 

temperature (warm/cool) and epidemic dynamics pattern (flat versus rising or decaying) to 

determine subsets for stratified analyses. Analyses were completed using Stata 16/MP 

[StataCorp]. 

Ethics 

Data used in this study are secondary analyses of de-identified case counts reported on a publicly 

available website and therefore this was not human subject’s research.  

Results 
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We begin by showing the number of daily cases over the entire observational window (Figure 1). 

Cases were very high in the initial wave but diminished quickly once lockdown procedures were 

enacted.  

Figure 1. Trends in daily COVID-19 cases identified in [COUNTY] from March 16th – 

December 31st, 2020 

 

The average temperature was 67.6 ± 14.4 °F, the average daily windspeed was 8.7 ± 3.6 MPH. 

Trends in daily temperature and windspeed are depicted throughout the analytic period (Figure 

2). Most days between May 1st, 2020 and October 24th, 2020 were characterized by temperatures 

exceeding 60°F (blue dashed lines; solid trend line). Windspeed diminished slowly over time, 

and then began to increase again in December 2020.   
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Figure 2. Trends in maximal daily temperatures, expressed in °F, and mean daily windspeed 

expressed in miles per hour in [COUNTY] from March 16th – December 31st, 2020 

 

Further interrogating the functional shape of the relationship between the windspeed and 

incidence (Figure 3), we found that during “warm” time period higher windspeed was associated 

with diminishing degree of protection. Using the logarithmic transformation to capture this 

tapering in a multivariable-adjusted model, we found that while an increase in windspeed from 1 

to 2 MPH is associated with a 4.2% reduction in caseload as compared to days when the air was 

still, a similar increase from 10 to 11 MPH was only associated with a 0.08% decrease in 

caseload on the “warm” days.  

Figure 3. Average windspeed versus number of incident cases of COVID-19 in [COUNTY] 

from March 16th – December 31st, 2020 
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Note: The natural log function was selected because it performed better (AIC = 4055.4) than alternative specifications including 
linear (AIC = 4105.3), inverse (AIC = 4298.5), and quadratic (AIC = 4057.3). Unadjusted and multivariable-adjusted models are 
shown in Table 2. Note that the Incidence was lagged from windspeeds by nine days. 

 

Unadjusted analyses revealed statistically significant associations between higher COVID-19 

incidence and lower windspeed in warmer weather (Table 1). Multivariable-adjusted analyses 

similarly revealed that results remained statistically significant upon adjusting for confounders.  

Table 1. Incidence rate ratios derived from negative binomial regression showing both 

unadjusted and multivariable adjusted analyses from March 16th – December 31st, 2020 

 Unadjusted  Multivariable Adjusted 
Variable IRR [95% C.I.]   aIRR [95% C.I.] 
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Windspeed (Ln - MPH) when 
temperature >60°F 

2.21 [2.02-2.43]  
P < 0.001  

1.20 [1.10-1.30]  
P < 0.001 

Windspeed (Ln - MPH) when 
temperature ≤60°F 

1.03 [0.80-1.31]  
P = 0.834  

0.92 [0.80-1.07]  
P = 0.293 

Maximal Exterior Temperature, 
°F   

1.00 [0.99-1.01]  
P = 0.801 

Days since Lockdown 
  

0.95 [0.94-0.97]  
P < 0.001 

Days since Reopening 
  

1.06 [1.04-1.07]  
P < 0.001 

Holiday Adjustment  
  

1.11 [0.93-1.34]  
P = 0.243 

Snowfall, inches 
  

0.96 [0.84-1.10]  
P = 0.580 

Rainfall, inches 
  

1.02 [0.87-1.20]  
P = 0.795 

Eight-day forward/backward 
moving average     

1.22 [1.20-1.24]  
P < 0.001 

    
a 0.71 [0.61-0.83]   0.16 [0.14-0.19] 

Note: IRR: Incidence rate ratio; 95% C.I.: 95% confidence interval. All models additionally adjust for day of the week in which 
cases were reported and for the size of the county population adjusted for reductions due to individuals who had died or became 
immune due to COVID-19 during the period of observation. Alpha is a measure of dispersion. P-values derived from Student’s T 
test.  

As noted in the Methods section, cutoffs were determined to be >60°F [21°C] in temperature, 

and <5.5 MPH in windspeed. Using these cutoffs, in Table 2 we examined the risk associated 

with lower windspeed (<5.5 MPH) on warmer days (>60°F). Analyses revealed that on warmer 

days, having windspeed <5.5 MPH was associated with a 50% increase in incidence in 

multivariable adjusted models. 

Table 2. Incidence rate ratios derived from negative binomial regression showing both 
unadjusted and multivariable adjusted analyses comparing days where windspeed <5.5 MPH to 
days with >5.5MPH windspeeds (reference) from March 16th – December 31st, 2020 

 Unadjusted  Multivariable Adjusted 
Variable IRR [95% C.I.]   aIRR [95% C.I.] 
Windspeed <5.5 MPH when 
temperature >60°F 

6.06 [4.78-7.69]  
P < 0.001  

1.50 [1.25-1.81]  
P < 0.001 
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Windspeed <5.5 MPH when 
temperature ≤60°F 

2.11 [1.54-2.88]  
P < 0.001  

1.12 [0.93-1.35]  
P = 0.229 

Exterior Temperature, °F 
  

1.00 [0.99-1.01]  
P = 0.547 

Days since Lockdown 
  

0.96 [0.94-0.97]  
P < 0.001 

Days since Reopening 
  

1.05 [1.03-1.07]  
P < 0.001 

Holiday Adjustment  
  

1.15 [0.96-1.38]  
P = 0.125 

Snowfall, mm 
  

0.95 [0.83-1.09]  
P = 0.456 

Rainfall, mm 
  

1.00 [0.85-1.17]  
P = 0.988 

Eight-day forward/backward moving 
average     

1.22 [1.2-1.25]  
P < 0.001 

    
a 0.78 [0.67-0.9]   0.19 [0.16-0.22] 

Note: *Warm days were defined as >60°F while slow windspeed was defined as <5.5 MPH. MPH: Miles Per Hour; 
°F: degrees Fahrenheit; IRR: incidence rate ratio; 95% C.I.: 95% confidence interval. All models adjust for day of 
the week in which cases were reported and for the size of the county population adjusted for reductions due to 
individuals who had died or become immune due to COVID-19 during the period of observation. Alpha is a measure 
of dispersion. P-values derived from Student’s T test.  

 

Sensitivity Analysis 

We examined the sensitivity of the results to analytic choices by first examining whether reliance 

on different outcomes made differences to the results. For the relative change in daily case 

counts compared to an 8-day forward/backward moving average, the results were substantively 

similar (B = -16.12 [-27.78, -4.45], P=0.007) on warmer days; in other words, as windspeed 

decreased by one MPH, incidence increased by 16.12% (Table S1). We also examined whether 

choices in the lag between exposure and case reporting changed our results. While the results 

shown theoretically represent the appropriate timing, we also examined variation in periods 

between exposure and case recording from 5-21 days. We found that while the nine-day 

reporting average was the best performing within our hypothesized observational window 
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(Figure S1), that the 16-day reporting lag was the best performing lag structure. Across all lags, a 

consistently association was identified linking slower windspeed days with lower follow-up case 

counts (Table S2). Finally, we stratified analysis dates into periods characterized by rising, 

falling, and stable exposures as defined by rapid sustained increases resulted in the same overall 

association (aIRR>5.5MPH = 0.87 [0.75-1.03]; aIRRLn-MPH = 0.88 [0.75-1.05]) though insufficient 

observations to achieve statistical power (power = 0.65).  

Discussion 

COVID-19 is a pandemic that has caused an immense toll on the American population and has 

inflicted enormous economic damage. To date, relatively little remains clear about the exposure 

dynamics of the disease. Current evidence suggests that COVID-19 is airborne and is 

predominantly spread indoors. The present study examined variation in windspeed under the 

hypothesis that higher winds may disperse COVID-19 viral particles away from individuals who 

are socializing outdoors, thereby offering increased protection among individuals who may have 

been exposed to COVID-19 outdoors. We found that slow average windspeed (<5.5 MPH) was 

associated with increased incidence on days that were warm enough (>60°F [15°C]) to allow 

individuals to socialize outdoors (aIRR = 1.50 [1.25-1.81], P < 0.001). This study supports the 

view that outdoor transmission of COVID-19 may be occurring by noting that the risk of outdoor 

transmission of COVID-19 was highest on days where wind was reduced.  

This study suggests that outdoor exposures may be a pathway of COVID-19 transmission. This 

aligns with a number of anecdotal reports from Departments of Health in [COUNTY] (CITE 

personal communication) and from the Centers for Disease Control and Prevention (18), who 

have noted that gatherings of increased risk include outdoor social gatherings such as “Backyard 
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barbecues” despite no scholarly evidence to support that conclusion. Indeed, backyard barbecues 

have been thought in [COUNTY] to be a main source of exposure despite being outdoors. One 

interpretation of this evidence was that individuals may be using shared indoor spaces, such as 

bathrooms, where viral particles may be concentrated. However, an alternative may be that 

airborne transmission in shared outdoor spaces is feasible on days when wind is insufficient to 

disperse viral particles, and the data presented here support this alternative hypothesis.  

Limitations 

Despite examining a large population (~1.5 million) where a large number of cases (96,057 

between March-December 2020) were identified, this study is limited in examining the 

experience of a single U.S. county. While this analysis suggests that county residents had fewer 

cases arising from days where winds were greater, we cannot conclusively state that individuals 

were protected because of higher windspeed. Our results were strongly influenced by covariates 

as evidenced by the change in IRR observed in unadjusted versus adjusted models; it is always 

possible that key confounders were missing from our model. However, our sensitivity analysis 

examining percent change of new cases on a given day relative to the 8-day backward/forward 

average case count, attempted to address temporal changes in incidence patterns directly within 

the outcome variable, and our results were similar.  Follow-up research is necessary to determine 

specifics about exposures including distances that COVID-19 viral particles can travel and 

reliably infect individuals as well as microclimate differences that may affect specific geographic 

differences that may moderate these results.  

To obtain a measure of windspeed for this analysis, we relied on data from a central airport. 

While this provided highly consistent measures of windspeed for the island, it also provides 
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measures that may not be generalizable to microclimates that can occur in the lea of hills, 

fenced-in backyards, or forests. Notably, this choice may mean that cutoffs used here may not 

apply in other situations and more analysis is necessary if weather data are going to be relied 

upon to help understand caseload in other areas. We reported results from a 9-day exposure-test 

positive reporting lag structure; however, sensitivity analyses suggested that a 16-day lag 

structure may work better. The 16-day lag is outside of the expected lag period for cases in our 

area, but we felt that it might indicate that case dynamics could proceed from asymptomatic 

younger individuals to cause secondary cases in older individuals reported 16 days later. As 

such, future work should anticipate that different cutoffs will be necessary when windspeeds are 

measured in different places and in locations where wind is highly sensitive to local geography.   

Implications 

Throughout the U.S. epidemic, the role of outdoor shared spaces such as parks and beaches has 

been considered and ultimately beaches and parks remained open. This analysis does little to 

suggest that either should be closed, since the level of risk due to outdoor exposures should be 

weighed in relation to the much higher risk of exposure in shared interior spaces such as houses, 

restaurants, or public transport. Instead, this study suggests that individuals socializing outdoors 

are not entirely safe by virtue of being outdoors and should remain vigilant. In this case, outdoor 

use of increased physical distance between individuals, improved air circulation, and use of 

masks in outdoor environments may be useful.   
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Table S1. Multivariable-adjusted regression coefficient, 95% confidence interval, and P-values 

examining association between windspeed (>5.5 MPH) on warm days and percentage increases 

in case numbers  

Variable Coef., 95% C.I., P 
Windspeed <5.5 MPH when temperature >60°F -16.12 [-4.45, -27.78] P =0.007 
Windspeed <5.5 MPH when temperature ≤60°F -0.80 [-3.03, 1.43] P =0.479 
Exterior Temperature, °F 0.06 [-1.09, 1.22] P =0.913 
Lockdown -0.56 [-2.73, 1.61] P =0.611 
Reopening 0.61 [-1.79, 3.02] P =0.615 
Holiday Adjustment  8.87 [-16.41, 34.15] P =0.490 
Snowfall, mm 0.40 [-19.24, 20.05] P =0.968 
Rainfall, mm -0.85 [-22.25, 20.55] P =0.938 
Eight-day forward/backward moving average -2.26 [-4.80, 0.28] P =0.081 
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Table S2. Multivariable-adjusted incidence rate ratio (aIRR), 95% confidence interval, and P-

values examining association between windspeed (>5.5 MPH) on warm days and increases in 

case numbers  

Lagged 
Days aIRR 95% C.I. P 

5 0.867 0.791-0.950 0.002 
6 0.883 0.806-0.968 0.008 
7 0.944 0.861-1.034 0.214 
8 0.889 0.813-0.973 0.011 
9 0.830 0.759-0.908 <0.001 
10 0.871 0.796-0.954 0.003 
11 0.922 0.844-1.007 0.072 
12 0.868 0.796-0.946 0.001 
13 0.901 0.826-0.982 0.019 
14 0.940 0.862-1.026 0.168 
15 0.903 0.828-0.985 0.022 
16 0.865 0.794-0.942 0.001 
17 0.883 0.811-0.961 0.004 
18 0.934 0.857-1.018 0.121 
19 0.902 0.829-0.982 0.018 
20 0.877 0.804-0.957 0.004 
21 0.920 0.842-1.005 0.066 
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Figure S1. Gaussian-smoothed fit characteristics for the model presented in Table 1 relying on 

different lag structures examining possible lags of 4-14 days. Note that the best fitting date was 

shown using a red diamond. 
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