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Abstract

Syphilis is one the most dangerous sexually transmitted disease which is common in the world. In this work,

a mathematical model is formulated with an emphasis on treatment. The reproduction number which presents

information on the spread of the disease is determined. The model’s steady states are established, and the

disease free state’s local and global stability are studied. The existence and uniqueness of solutions for both

Caputo-Fabrizio and Atangana-Baleanu derivative in the Caputo sense are established. Numerical simulations

were carried out to support the analytical solution, which indicates that the fractional order derivatives influence

the dynamics of the spread of the Syphilis in the community.
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1. Introduction

Syphilis has remained a persistent human health threat in both developed and developing countries [1, 2]. It is

a sexually transmitted infection caused by the bacterium Treponema Palladum which is said to infect approxi-

mately 12 million people around the globe yearly. Syphilis is transmitted from person to person by direct contact

with a syphilitic sore, known as a chancre. Chancres can occur on or around the external genitals, in the vagina,5

around the anus, rectum, or in or around the mouth. Transmission of Syphilis can occur during vaginal, anal, or

oral sex [3]. It has several symptoms, most of which are also common to other diseases. If not properly treated,

it can progress from primary to secondary and finally to the disease’s tertiary stage.

Syphilis infection is characterised by an ulcerative chancre signaling the beginning of the primary stage of the10

disease [4]. After exposure and infection, the primary incubation period is about 25 days, although available data

suggest that this period can be between 3 and 4 weeks, [5] (3–6 weeks according to the CDC, [3]). If not treated,

the disease progresses to the secondary stage with symptoms like skin rashes and mucous membrane lesions,[4]

and an incubation period of about 46 days, [5]. Following the secondary symptoms, the infection progresses to

the tertiary and latent stage where the disease remains in the body and can reappear or even damage internal15
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organs or lead to death, [4, 3].

Syphilis can be treated with antibiotics such as penicillin, [4, 6]. After treatment and recovery from the infection,

individuals may develop transitory immunity to reinfection before becoming susceptible again, [4], although it

seems immunity depends on the stage of the disease at which treatment was implemented, [4, 7, 5].20

One of the early triumphs of mathematical epidemiology was a formulation to predict the dynamics of a disease.

Mathematical models use some basic assumptions and mathematics to find parameters for various infectious

diseases and use those parameters to calculate the effects of possible interventions, [8, 9, 10, 11, 12, 13, 14]. A

lot of these models have been developed to study the dynamics of Syphilis transmission. One of the models25

included the different stages of the disease and treatment [5], while another used 210 differential equations to

model heterosexual Syphilis transmission in East Vancouver. Here, they combined the later stages of Syphilis

but partitioned the population into multiple groups based on sex, sexual activity and age, [15]. In a more recent

study, Milner and Zhao [16] presented an ODE model based on partial immunity and vaccination (assuming a

successful vaccine is developed), and showed that there exists backward bifurcation for some parameter values.30

Despite the diversity Various methodologies in the existing Syphilis models are integer-order models that give

inaccurate predictions due to their lack of memory effect.

In the last few years, Fractional calculus has gained a lot of popularity because of its application in many

areas and its ability to consider the memory effect, which is a natural occurrence in several biological models.35

Riemann and Louiville first proposed a fractional derivative with singular kernel. Next Caputo and Fabrizio

in [17] presented a new definition of fractional derivative without singular kernel, which proved to be fair and

applied by many researchers. A few years ago, Atangana and Baleanu developed a new operator which is based

on the generalized Mittag-Leffler function where the kernel is non-singular and non-local, [18]. Several non-

integer order models in the sense of Caputo-Fabrizio and in the sense of Atangana-Baleanu have been developed40

[19, 20, 10, 21, 22]. However, none of them compared the results of syphilis transmission dynamics in the sense

of Caputo-Fabrizio (CF), with that in the Atangana -Baleanu sense. In this paper, we develop a mathematical

model to study the dynamics of Syphilis transmission via Mittag-Leffler law and compare the results obtained

via the Caputo-Fabrizio derivative.

45

The first Section is a brief introduction, followed by the model formulation in Section 2. We give the model

analysis in Section 3 and introduce the CF operator in Section 4, together with the preliminaries and model

properties. Section 5 presents a numerical scheme for the ABC model, while Section 6 presents the numerical

simulations followed by the conclusion.
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2. Syphilis model formulation50

In this section, we describe the transmission dynamics of Syphilis disease. The model comprises of five com-

partments, which are the Susceptible individuals (S(t)), Exposed individuals (E(t)), individuals at the early

stage of Syphilis infection (I(t)), individuals at the late stage of Syphilis infection (L(t)), and individuals treated

of Syphilis infection (T (t)). The Susceptible individuals are recruited into the population at a rate Π. These

individuals come in contact with those in I(t) and L(t) and contract the disease at a rate λ, where

λ = β(I(t) + γL(t)),

and β is the probability that a contact between a susceptible individual and an infectious individual will result

to an infection. After being exposed to the bacteria Treponema pallidum, they progress to the class I(t) at a

rate ρ1. Furthermore, the individuals in I(t) can either progress to the class L(t) at a rate ρ2 or recover after

treatment from the Syphilis infection at rate ν1. On the other hand, the treated individuals can also become

exposed again to Syphilis upon interaction with individuals in I(t) or L(t) at a rate ωλ, while those at the later

stage of the infection can also be treated at a rate ν2. We assume that individuals in all the compartments have a

natural mortality rate of µ. The flow diagram for the model is shown in Figure 1. The model diagram in Figure

Figure 1: Syphilis model flow diagram.
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1 together with the assumptions gives rise to the following system of equations:

dS

dt
= Π− λS − µS,

dE

dt
= λS + λωT −Q0E,

dI

dt
= ρ1E −Q1I,

dL

dt
= ρ2I −Q2L,

dT

dt
= ν1I + ν2L− µT − λωT

(1)

where Q0 = (µ+ ρ1), Q1 = (ρ2 + ν1 + µ) and Q2 = (ν2 + δ + µ), with the following initial conditions

S(0) = ζ1, E(0) = ζ2, I(0) = ζ3, L(0) = ζ4, T (0) = ζ5.

3. Syphilis model with Caputo-Fabrizio

The Syphilis model with Caputo-Fabrizio (CF) derivative is given by

CFDσ
t S = Π− λS − µS,

CFDσ
t E = λS + λωT −Q0E,

CFDσ
t I = ρ1E −Q1I,

CFDσ
t L = ρ2I −Q2L,

CFDσ
t T = ν1I + ν2L− µT − λωT

(2)

with σ being the fractional order 0 < σ < 1 subject to the following initial conditions

S(0) = ζ1, E(0) = ζ2, I(0) = ζ3, L(0) = ζ4, T (0) = ζ5.

3.1. Basic preliminaries

Here, we give some of the mathematical preliminaries in the form of theorems, which we shall apply to prove

the positivity and uniqueness and positivity of Syphilis model with Caputo-Fabrizio (2) as defined in [23, 24]

respectively. The definitions are stated as follows55

Definition 1. Assume φ(t) ∈H 1(`1, `2), for `2 > `1, τ ∈ [0, 1]. The CF fractional operator is given as

Dσ
t (φ(t)) =

M (σ)

(1− σ)

∫ `2

`1

φ
′
(θ) exp

(
− σ t− θ

1− σ

)
dθ, 0 < σ < 1,

=
dφ

dt
, σ = 1,

(3)

where M (σ) satisfies the condition M (0) = M (1) = 1.

Definition 2. The integral operator of fractional order corresponding to the CF fractional derivative is stated

as follows

Ipt (φ(t)) =
2(1− σ)

(2− σ)M (σ)
Ψ(t) +

2σ

(2− σ)M (σ)

∫ t

0

φ(ζ)dζ, t ≥ 0. (4)
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Definition 3. The Laplace transform of 0CFDσ
t φ(t) is represented as follows

L[0CFDσ
t φ(t)] = M (σ)

κL[−φ(t)]− φ(0)

κ+ σ(1− κ)
. (5)

3.2. Positivity of solutions of Syphilis model with CF

We prove the positivity of the system using the following theorem.

Theorem 1. Given the initial conditions S(0) > 0, E(0) ≥ 0, I(0) ≥ 0, T (0) ≥ 0, Lb(0) ≥ 0 for all t ≥ 0, we show60

that the set Ω̄ = {(S,E, I, T, L) ∈ R5
+} attracts all positive solutions of the fractional order system (2)

We use Lemma 1 to prove Theorem 1.

Lemma 1. Suppose f(t) ∈ C[a, b] and cDσ
t f(t) ∈ C[a, b] for all 0 < σ ≤ 1, then we have f(t)+

1

τ(σ)
cDσ

t f(ζ)(t−

a)σ, where a ≤ ζ ≤ t, for all t ∈ (a, b] [25].

Following Lemma 1, we give obtain the following remark.65

Remark 2. Assume that K(x) ∈ C[a, b] and cDσ
t K(x) ∈ C[a, b] for 0 < σ ≤ 1. It follows from Lemma 1 that if

cDσ
t K(x) ≥ 0, for all x ∈ (a, b), then K(x) is non decreasing and if cDσ

t h(x) ≤ 0 for all x ∈ (a, b), then K(x) is

non increasing.

We now prove Theorem 1.

Proof. Using Lemma 1 and Remark 2 we show that the Syphilis model with CF has exist and has a unique

solutions. Here, we prove that Ω̄ is positively invariant for each hyperplane bonding, the positive orthnant of the

vector field points in Ω̄. Therefore, model system (2) becomes

CFDσ
t S|S=0= Π > 0, CFDσ

t E|E=0= β(I + γL)S + βω(I + γL)T ≥ 0,

CFDσ
t I|I=0= ρ1E ≥ 0, CFDσ

t L|L=0= ρ2I ≥ 0, CFDσ
t T |T=0= ν1I ≥ 0.

(6)

Thus, equation (2) is positively invariant and all its solutions are attracting and positive in Ω̄ for t ≥ 0.70

3.3. Existence and uniquness of solutions of the CF model

This subsection is devoted to proving the existence and uniqueness of the solution for model (2) by applying the

integral operator as defined in Losada and Nieto [24] which yields:

S(t) = S(0) + 0CF Iσt

{
Π− β(I + γL)S − µS

}
,

E(t) = E(0) + 0CF Iσt

{
β(I + γL)S + βω(I + γL)T −Q0E

}
,

I(t) = I(0) + 0CF Iσt

{
ρ1E −Q1I

}
, T (t) = T (0) + 0CF Iσt

{
ρ2I −Q2L

}
,

L(t) = L(0) + 0CF Iσt

{
ν1I + ν2L− µT − βω(I + γL)T

}
.

(7)
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Using the same notation as in [24], equation (7) becomes

S(t) = S(0) +
2(1− σ)

(2− σ)M (σ)
{Π− β(I(t) + γL(t))S(t)− µS(t)}

+ 2σ
(2−σ)M (σ)

∫ t

0

{
Π− β(I(ζ) + γL(ζ))S(ζ)− µS(ζ)

}
dζ

E(t) = E(0) +
2(1− σ)

(2− σ)M (σ)
{β(I(t) + γL(t))S(t) + βω(I(t) + γL(t))T (t)−Q0E(t)}

+
2σ

(2− σ)M (σ)

∫ t

0

{
β(I(ζ) + γL(ζ))S(ζ) + βω(I(ζ) + γL(ζ))T (ζ)−Q0E(ζ)

}
dζ

I(t) = I(0) +
2(1− σ)

(2− σ)M (σ)
{ρ1E(t)−Q1I(t)}+

2σ

(2− σ)M (σ)

∫ t

0

{
ρ1E(ζ)−Q1I(ζ)

}
dζ,

T (t) = T (0) +
2(1− σ)

(2− σ)M (σ)
{ρ2I(t)−Q2L(t)}+

2σ

(2− σ)M (σ)

∫ t

0

{
ρ2I(ζ)−Q2L(ζ)

}
dζ,

L(t) = L(0) +
2(1− σ)

(2− σ)M (σ)
{ν1I(t) + ν2L(t)− µT (t)− βω(I(t) + γL)T (t)}

+ 2σ
(2−σ)M (σ)

∫ t

0

{
ν1I(ζ) + ν2L(ζ)− µT (ζ)− βω(I(ζ) + γL(ζ))T (ζ)

}
dζ.

(8)

Without loss of generality and for simplification of notations, we shall denote

Ψ1(t, S) = Π− β(I + γL)S − µS,

Ψ2(t, E) = β(I + γL)S + βω(I + γL)T −Q0E,

Ψ3(t, I) = ρ1E −Q1I, Ψ4(t, T ) = ρ2I −Q2L,

Ψ5(t, L) = ν1I + ν2L− µT − βω(I + γL)T,

(9)

Theorem 3. Each kernel (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7) satisfy the Lipschitz condition and contraction if and only

if the following inequality holds.

0 ≤ (β(I + γL) + µ) < 1
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Proof. Considering the function S and S1 we have that

||Ψ1(t, S)−Ψ1(t, S1)||= ||(S − S1)(β(I + γL))− (S − S1)µ||,

≤ pβ(I + γL)||Sb − Sb1||+µ||S − S1||

≤ (β(I + γL) + µ)||S − S1||

≤ (β(χ3 + γχ4) + µ)||S − S1||

≤ d1||S − S1||,

where d1 = pβbc3 + µb, ||S(t)||≤ c1, ||E(t)||≤ c2, ||I(t)||≤ c3 , ||L(t)||≤ c4 and ||T (t)||≤ c5 are all bounded

functions. Hence,

||Ψ1(t, S)−Ψ1(t, S1)||≤ d1||S − S1||.

Thus, Ψ1 satisfies the Lipschitz condition if 0 ≤ (β(I + γL)µ) < 1, and is also a contraction.75

Using a similar approach, we can show that (Ψ2(t, E), Ψ3(t, I), Ψ4(t, T ), Ψ5(t, L)) satisfy the Lipschitz conditions.

||Ψ2(t, E)−Ψ2(t, E1)|| = d2||E(t)− E1(t)||,

||Ψ3(t, I)−Ψ3(t, I1)|| = d3||I(t)− I1(t)||,

||Ψ4(t, L)−Ψ4(t, L1)|| = d2||L(t)− L1(t)||,

||Ψ5(t, T )−Ψ5(t, T1)|| = d5||T (t)− T1(t)||,

where d2 = Q0χ2, d3 = Q1χ3, d4 = Q2χ4 and d5 = µχ5 − βω(χ3 + γχ4)χ5.
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We reduce (9) using the same notation as in equation (4) and obtain:

S(t) = S(0) +
2(1− σ)

(2− σ)M (σ)
Ψ1(t, S) +

2(1− σ)

(2− σ)M (σ)

∫ t

0

Ψ1(ζ, S)dζ,

E(t) = E(0) +
2(1− σ)

(2− σ)M (σ)
Ψ2(t, E) +

2(1− σ)

(2− σ)M (σ)

∫ t

0

Ψ2(ζ, E)dζ,

I(t) = I(0) +
2(1− σ)

(2− σ)M (σ)
Ψ3(t, I) +

2(1− σ)

(2− σ)M (σ)

∫ t

0

Ψ3(ζ, I)dζ,

L(t) = L(0) +
2(1− σ)

(2− σ)M (σ)
Ψ4(t, L) +

2(1− σ)

(2− σ)M (σ)

∫ t

0

Ψ4(ζ, L)dζ,

T (t) = T (0) +
2(1− σ)

(2− σ)M (σ)
Ψ5(t, T ) +

2(1− σ)

(2− σ)M (σ)

∫ t

0

Ψ5(ζ, T )dζ,

(10)

Suppose we define the iterative recursive forms below

Sk(t) =
2(1− σ)

(2− σ)M (σ)
Ψ1(t, S(k−1)) +

2σ

(2− σ)M (σ)

∫ t

0

Ψ1(ζ, S(k−1))dζ,

Ek(t) =
2(1− σ)

(2− σ)M (σ)
Ψ2(t, E(k−1)) +

2σ

(2− σ)M (σ)

∫ t

0

Ψ2(ζ, E(k−1))dζ,

Ik(t) =
2(1− σ)

(2− σ)M (σ)
Ψ3(t, I(k−1)) +

2σ

(2− σ)M (σ)

∫ t

0

Ψ3(ζ, I(k−1))dζ,

Lk(t) =
2(1− σ)

(2− σ)M (σ)
Ψ4(t, L(k−1)) +

2σ

(2− σ)M (σ)

∫ t

0

Ψ4(ζ, L(k−1))dζ,

Tk(t) =
2(1− σ)

(2− σ)M (σ)
Ψ5(t, T(k−1)) +

2σ

(2− σ)M (σ)

∫ t

0

Ψ5(ζ, T(k−1))dζ,

(11)

with the initial conditions

S(0) = ζ1, E(0) = ζ2, I(0) = ζ3, L(0) = ζ4, T (0) = ζ5.
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Next, we find the difference between the each successive and obtain the following result:80

λ1k(t) = Sk(t)− S(k−1)(t) =
2(1− σ)

(2− σ)M (σ)

(
Ψ1(t, S(k−1))−Ψ1(t, S(k−2))

)

+ 2p
(2−p)M(p)

∫ t

0

(
Ψ1(ζ, S(k−1))− Φ1(ζ, S(k−2))

)
dζ,

λ2k(t) = Ek(t)− E(k−1)(t) =
2(1− σ)

(2− σ)M (σ)

(
Φ2(t, E(k−1))−Ψ2(t, E(k−2))

)

+
2σ

(2− σ)M (σ)

∫ t

0

(
Φ2(ζ, E(k−1))− Φ2(ζ, E(k−2))

)
dζ,

λ3k(t) = Ik(t)− I(k−1)(t) =
2(1− σ)

(2− σ)M (σ)

(
Φ3(t, I(k−1))−Ψ3(t, I(k−2))

)

+
2σ

(2− σ)M (σ)

∫ t

0

(
Φ3(ζ, I(k−1))− Φ3(ζ, Ik(k−2))

)
dζ,

λ4k(t) = Lk(t)− L(k−1)(t) =
2(1− σ)

(2− σ)M (σ)

(
Ψ4(t, L(k−1))−Ψ4(t, L(k−2))

)

+
2σ

(2− σ)M (σ)

∫ t

0

(
Φ4(ζ, T(k−1))−Ψ2(ζ, L(k−2))

)
dζ,

λ5k(t) = Tk(t)− T(k−1)(t) =
2(1− σ)

(2− σ)M (σ)

(
Φ5(t, Vb(n−1))−Ψ5(t, T(k−2))

)

+
2σ

(2− σ)M (σ)

∫ t

0

(
Ψ5(ζ, T(k−1))− Φ5(ζ, T(k−2))

)
dζ,

(12)

in which

Sk(t) =

k∑
j=1

λ1j(t), Ek(t) =

k∑
j=1

λ2j(t), Ik(t) =

k∑
j=1

λ3j(t), Lk(t) =

k∑
j=1

λ4j(t), Tk(t) =

k∑
j=1

λ5j(t).
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We thus have the following results

||λ1k(t)|| = ||Sk(t)− S(k−1)(t)||=
∥∥∥∥ 2(1− σ)

(2− σ)M (σ)

(
Ψ1(t, S(k−1))−Ψ1(t, S(k−2))

)

+
2σ

(2− σ)M (σ)

∫ t

0

(
Ψ1(ζ, Sb(n−1))−Ψ1(ζ, S(k−2))

)
dζ

∥∥∥∥,

≤ 2(1− σ)

(2− σ)M (σ)

(
Ψ1(t, S(k−1))−Ψ1(t, S(k−2))

)

+
2(1− σ)

(2− σ)M (σ)

∥∥∥∥
∫ t

0

(
Ψ1(ζ, S(k−1))−Ψ1(ζ, S(k−2))

)
dζ

∥∥∥∥,

≤ 2(1− σ)

(2− σ)M (σ)
d1||S(k−1) − S(k−2)||+

2σ

(2− σ)M (σ)
d1

∫ t

0

‖S(k−1) − S(k−2)‖dζ,

≤ 2(1− σ)

(2− σ)M (σ)
d1||λ1(k−1(t)||+ 2σ

(2− σ)M (σ)
d1

∫ t

0

‖Tλ1(k−1(t)‖dζ.

(13)

Using a similar approach, we can show that

||λ2k(t)||≤ 2(1− σ)

(2− σ)M (σ)
d2||λ2(k−1)||+

2σ

(2− σ)M (σ)
d2

∫ t

0

‖λ2(k−1)‖dζ,

||λ3k(t)||≤ 2(1− σ)

(2− σ)M (σ)
d3||λ3(k−1)||+

2σ

(2− σ)M (σ)
d3

∫ t

0

‖λ3(k−1)‖dζ,

||λ4k(t)||≤ 2(1− σ)

(2− σ)M (σ)
d4||λ4(k−1)||+

2σ

(2− σ)M (σ)
d4

∫ t

0

‖λ4(k−1)‖dζ,

||λ5k(t)||≤ 2(1− σ)

(2− σ)M (σ)
d5||λ5(k−1)||+

2σ

(2− σ)M (σ)
d5

∫ t

0

‖λ5(k−1)‖dζ,

(14)

Theorem 4. The Syphilis Caputo-Fabrizio model (2) has a unique solution if(
2(1− σ)

(2− σ)M (σ)
d1 −

2σ

(2− σ)M (σ)
d1τ0

)
> 0. (15)

Let equations (13) and (14) bounded functions, we verify that the kernels (Ψ1,Ψ2,Ψ3,Ψ4,Ψ5,Ψ6,Ψ7) holds
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Lipschitz conditions and applying the recursive method and Theorem 4 we obtain85

||λ1k(t)||≤ ||Sk(0)||
(

2(1− σ)

(2− σ)M (σ)
d1 +

2σ

(2− σ)M (σ)
d1t

)k
,

||λ2k(t)||≤ ||Ek(0)||
(

2(1− σ)

(2− σ)M (σ)
d1 +

2σ

(2− σ)M (σ)
d1t

)k
,

||λ2k(t)||≤ ||Ik(0)||
(

2(1− σ)

(2− σ)M (σ)
d1 +

2σ

(2− σ)M (σ)
d1t

)k
,

||λ4k(t)||≤ ||Lk(0)||
(

2(1− σ)

(2− σ)M (σ)
d1 +

2σ

(2− σ)M (σ)
d1t

)k
,

||λ5k(t)||≤ ||Tk(0)||
(

2(1− σ)

(2− σ)M (σ)
d1 +

2σ

(2− σ)M (σ)
d1t

)k
.

Therefore, we have that equation (15) exists and is a smooth function, continuous and true for any value of k.

Further, suppose the fractional model has solutions denoted by S∗(t), E∗(t), I∗(t), L∗(t) and L∗(t). we show that

there exists a solution of the Syphilis CF fractional model (2) as follows:

S(t)− S∗(t) =
2(1− σ)

(2− σ)M (σ)

(
Ψ1(t, S)−Ψ1(t, S∗)

)
+

2σ

(2− σ)M (σ)

∫ t

0

(
Ψ1(ζ, S)−Ψ1(ζ, S∗)

)
dζ

and

||S(t)− S∗(t)|| ≤ 2(1− σ)

(2− σ)M (σ)
d1||Sb(t)− S∗(t)||+

2σ

(2− σ)M (σ)
d1||S(t)− S∗(t)||dζ

= ||S(t)− S∗(t)||
(

1− 2(1− σ)

(2− σ)M (σ)
d1 −

2(1− σ)

(2− σ)M (σ)
d1t

)
≤ 0.

(16)

Theorem 5. The model (2) has a unique solution if90 (
1− 2(1− σ)

(2− σ)M (σ)
dj −

2σ

(2− σ)M (σ)
djτ0

)
> 0. (17)

Using results from (16), we have that

||Sb(t)− S∗(t)||
(

1− 2(1− σ)

(2− σ)M (σ)
d1 −

2σ

(2− σ)M (σ)
d1t

)
≤ 0

and also from (17) we obtain (
1− 2(1− σ)

(2− σ)M(σ)
d1 −

2σ

(2− σ)M (σ)
d1τ0

)
> 0.

Therefore, ||S(t) − S∗(t)||= 0, which implies that S(t) = S∗(t). Similarly, we can also establish that E(t) =

E∗(t), I(t) = I∗(t), L(t) = L∗(t), T (t) = T ∗(t).
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4. CF model analysis

4.1. Model steady states and reproduction number

In this subsection, we present the steady states of model (1) as well as their stabilities. Model (2) has a disease

free state (DFE) denoted by ε0 whenever E∗ = I∗ = I∗ = L∗ = L∗ = 0, which gives

ε0 =
(
S0, E0, I0, L0, T 0

)
=

(
Π

µ
, 0, 0, 0, 0

)
.

The endemic equilibrium state denoted by ε1 is given by

ε1 = (S∗, E∗, I∗, L∗, T ∗),

where95

S∗ =
Π

µ+ ψ4I∗
, E∗ = ψ1I

∗, I∗ =
ψ5

ψ6

L∗ = ψ2I
∗, T ∗ =

ψ3I
∗

µ+ ψ4I∗
,

and ψ1 =
Q2

ρ1
, ψ2 =

ρ2
ψ3
, ψ3 = ν1 + ν2Q2, ψ4 = ωβ(1 + γ2ψ2), ψ5 = µQ0Q1 −Πψ4, ψ6 = ψ3ψ4ω −Q0ψ1ψ4.

Note that ε1 exists if and only if ψ5 ≥ 0 and ψ6 > 0.

Next, we determine the basic reproduction number denoted by RS . The parameter RS in this model is de-

fined as the average number of new infections generated by an infectious individual in an early or late stage of

the disease through direct contact with a Syphilis sore in a purely susceptible population. We use the method in

[26] to find RS as follows. Given the Jacobian matrices

F =


0

βΠ

µ

βγΠ

µ

0 0 0

0 0 0

 and V =


Q0 0 0

−ρ1 Q1 0

0 −ρ2 Q2

 .
of the new infections and transfer matrices of the CF model (2) (where F and V are evaluated at the DFE

respectively),

RS = ρ(FV −1) =
βρ1Π(Q2 + γρ2)

µQ0Q1Q2

where FV −1 is the spectral radius of the next generation matrix, that is FV −1.

4.2. Local stability of the DFE

Theorem 6. Let d1, d2 ∈ H such that gcd(d1, d2) = 1 and q =
d1
d2
. If M = d2, then, the DFE of the system (2)

is locally asymptotically stable (LAS) if |arg(α)|> 2π

M
for all roots of α of the characteristics equation (18) of the

matrix Jε0 ,

det
(

diag
[
αd1αd1αd1αd1 ])− Jε0 = 0. (18)
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Proof. The Jacobian matrix of the system (2) evaluated at the DFE is given by

J(ε0) =



−µ 0
−βΠ

µ

−βΠ

µ
0

0 −Q0
βΠ

µ

βγΠ

µ
0

0 0 ρ2 −Q2 0

0 0 ν2 ν2 −µ



.

the characteristics equation associated with J(ε0) is

(αd1 + µ)(αd1 + µ)
(
c3α

3d1 + c2α
2d1 + c1α

d1 + c0

)
= 0. (19)

where c0 = µQ0Q1Q2(RS − 1), c1 = Πβρ1 − µ(Q0Q1 + Q0Q2 + Q1Q2), c2 = −µ(Q0 + Q1 + Q2) and c3 = −µ.

The arguments of the roots of the equation (λd1 + µ) = 0, (λd1 + µ) = 0 are

arg(φk) =
π

d1
+

2πk

d1
>

π

M
>

π

M

where k = 0, 1, · · · , (p− 1). Thus, the first two roots of (19) are −µ, − µ and the others are calculated from

P (α) = c3α
3d1 + c2α

2d1 + c1α
d1 + c0.

The coefficients of c3 and c2 are clearly negative when RS < 1, c0 is negative and c1 is also negative because

Πβρ1 <
µQ0Q1Q2

Q2 + γρ2
≤ µ(Q0Q1 +Q0Q2 +Q1Q2).

Therefore, when RS < 1, there is no sign change in the coefficients of P (α). Thus, by Descartes’s rules of signs,

all the roots of P (α) are either negative or have negative real parts. Hence, the necessary condition for the root100

of the characteristics equation |arg(λ)|> 2π

M
is fulfilled. The DFE is thus, LAS for RS < 1.

4.3. Global stability of the DFE

Theorem 7. The DFE is globally stable for RS < 1 and unstable otherwise.

Proof. We use the C1 Lyapnouv function

L(t) = E(t) + v1I(t) + v2L(t)

which is made up of the compartments that directly contribute to disease transmission and v1 and v2 are positive

constants. The CF derivative of L(t) is105

CFDσ
t L(t) = CFDσ

t E(t) + vCF1 Dσ
t I(t) + vCF2 Dσ

t L(t),

= β(I + γL)S + βω(I + γL)T −Q0E + v1

(
ρ1E −Q1I

)
+ v2

(
ρ2I −Q2L

)
= (v1ρ1 −Q0)E + (βS + ωβT + v2ρ2 − v1Q1)I +

(
βγS + ωβγT − v2Q2

)
L.
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At DFE, S =
Π

µ
, T = 0. Therefore, L(t) satisfies the inequality

CFDσ
t L(t) ≤ (v1ρ1 −Q0)E +

(βΠ

µ
+ v2ρ2 − v1Q1

)
I +

(βγΠ

µ
− v2Q2

)
L. (20)

Equating the coefficients of I and L to zero we obtain the values of v1 and v2 as follows

v1 =
βΠ(Q2 + γρ2)

µQ1Q2
and v2 =

βΠγ

µQ2
·

Substituting the constants v1 and v2 into the inequality (20) we have that Q0(RS − 1)E ≤ 0. Whenever RS ≤ 1,

CFDσ
t L(t) is negative with equality when RS = 1. Thus, by LaSalle’s invariant principle [27] the DFE is globally

stable in the invariant region and unstable otherwise.

4.4. Numerical scheme for the CF model110

In this subsection, we derive the numerical scheme of the syphilis model with CF using the method of using

two-step fractional Adams-Bashforth technique for the CF fractional derivative as in [28] and [29]. We re-write

the equation (2) as follows
CFDσ

t S(t) = F1(t, S,E, I, L, T ),

CFDσ
t E(t) = F2(t, S,E, I, L, T ),

CFDσ
t I(t) = F3(t, S,E, I, L, T ),

CFDσ
t L(t) = F4(t, S,E, I, L, T ),

CFDσ
t = F5(t, S,E, I, L, T ).

(21)

Using the fundamental theorem of fractional calculus, the first equation of system (21) is converted to

S(t)− S(0) =
1− σ
M(σ)

F1(t, S) +
σ

M(σ)

∫ t

0

F1(ξ, S)dξ (22)

For t = tn+1, n = 0, 1, 2, · · · , we have S(tn+1) we obtain

S(t)− S(0) =
1− σ
M(σ)

F1(t, Sn) +
σ

M(σ)

∫ tn+1

0

F1(t, S)dt (23)

The successive terms is then given below:

Sn+1 − S(0) =
1− σ
M(σ)

{F1(tn, Sn)−F1(tn−1, Sn−1)}+
σ

M(σ)

∫ tn+1

0

F1(t, S)dt (24)

For a closed interval [tk, t(k+1)], the function F1(t, S) can be interpolate by the interpolation polynomial

Pk(t) ∼=
f(tk, yk)

h
(t− tk−1)− f(tk−1, yk−1)

h
(t− tk) (25)

14



for h = tn − tn−1. Calculating the integral in (24) by using equation (25) we have that∫ tn+1

tn

F1(t, S)dt =

∫ tn+1

tn

f(tn, Sn)

h
(t− tn−1)− f(tn−1, Sn−1)

h
(t− tn)dt

=
3h

2
F1(tn, Sn)− h

2
F1(tn−1, Sn−1).

(26)

Together with (24) and (26) and after some algebraic simplification we get

Sn+1 = Sn +
( 1− σ
M(σ)

+
3h

2M(σ)
)F1(tn, Sn)−

( 1− σ
M(σ)

+
σh

2M(σ)

)
F1(tn−1, Sn−1). (27)

Similarly, the recursive formulae for the rest equations of of system (2) is given as follows

En+1 = En +
( 1− σ
M(σ)

+
3h

2M(σ)

)
F2(tn, En)−

( 1− σ
M(σ)

+
σh

2M(σ)

)
F2(tn−1, En−1)

In+1 = In +
( 1− σ
M(σ)

+
3h

2M(σ)

)
F3(tn, In)−

( 1− σ
M(σ)

+
σh

2M(σ)

)
F3(tn−1, In−1)

Ln+1 = Ln +
( 1− σ
M(σ)

+
3h

2M(σ)

)
F4(tn, Ln)−

( 1− σ
M(σ)

+
σh

2M(σ)

)
F4(tn−1, Ln−1)

Tn+1 = Tn +
( 1− σ
M(σ)

+
3h

2M(σ)

)
F5(tn, Tn)− (

1− σ
M(σ)

+
σh

2M(σ)

)
F5(tn−1, Tn−1).

(28)

5. Syphilis model with ABC operator115

Applying the definitions of ABC as in [30] to model (1) we have the following system of equations

ABC
0 Dq

tS(t) = Π− λS(t)− µS(t),

ABC
0 Dq

tE(t) = λS(t) + ωλT (t)−Q0E(t),

ABC
0 Dq

t I(t) = ρ1E(t)−Q1I(t), ABC
0 Dq

tL(t) = ρ2I(t)−Q2L(t),

ABC
0 Dq

tT (t) = ν1I(t) + ν2L(t)− µT (t)− ωλT (t)

(29)

where q is the fractional order, subject to initial conditions

S(0) = ζ1, E(0) = ζ2, I(0) = ζ3, L(0) = ζ4, T (0) = ζ5.

5.1. Existence and uniquness of solutions of the ABC model

Here, we use the fixed point theory to show the existence and uniqueness of the solutions of the system (29).

consider the ABC system (29) re-written in the form below
ABC
0 Dq

tU(t) := Q(t, U(t)),

U(0) := U0
, 0 < t < T <∞

(30)
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where U(t) = (S,E, I, L, T ) and Q is therefore a continuous vector function given as

Q =



Q1(X)

Q2(X)

Q3(X)

Q4(X)

Q5(X)


=



Π− λS(t)− µS(t)

λS(t) + ωλT (t)−Q0E(t)

ρ1E(t)−Q1I(t),

ρ2I(t)−Q2L(t),

π0αih − µ0ma

nu1I(t) + ν2L(t)− µT (t)− ωλT (t)


. (31)

and U0(t) =
(
S(0), E(0), I(0), L(0), T (0)

)
represents the initial conditions of the state variables respectively. The

function Q satisfies the condition for the Lipschitz continuity and can be described as120

||Q(t, U1(t))−Q(t, U2(t))||≤ M ||U1(t)− U2(t)||. (32)

We give the following result, to show the existence and uniqueness of model (29).

Theorem 8. Existence and uniqueness

The ABC model given by (29) has a unique solution if the following condition is satisfied

1− q
B(q)

+
q

B(q)r(q)
T qmax < 1.

Proof. Applying the AB-fractional integral on the system (30), we obtain the following non-linear Voltera integral

equation:

U(t) = U0 +
1− q
B(q)

Q(t, U(t)) +
q

B(q)r(q)

∫ t

0

(t− z)Q(z, U(z))dz (33)

We assume that J = (0, T ) and consider the operator ϕ : C(J,R5)→ C(J,R5), defined by

ϕ(U(t)) = U0 +
1− q
B(q)

Q(t, U(t)) +
q

B(q)r(q)

∫ t

0

(t− z)q−1Q(z, U(z))dz (34)

Equation (33) becomes

U(t) = ϕ[U(t)]. (35)

The supremum of J , ||.||J is

||U(t)||J= supt∈J ||U(t)||, U(t) ∈ C

where C(J,R5) along the norm ||.||J represents a Banach space. Also,

∥∥∥∥∥
∫ t

0

D(t− z)U(z)dz

∥∥∥∥∥ ≤ T ||D(t, z)||J ||U(t)||J (36)

with U(t) ∈ C(J,R5), D(t, z) ∈ C(J2,R5) such that

||D(t, z)||J= supt,z∈J ||D(t, z)||.

16



Applying the definition of ϕ as stated in (35), we have∥∥∥∥∥[ϕ(t, U1(t))− ϕ(t, U2(t))
]∥∥∥∥∥
J

≤

∥∥∥∥∥1− q
B(q)

Q(t, U1(t))−Q(t, U2(t))

+
α

B(α)Γ(α)

∫ t

0

(t− z)q−1
[
Q(z, U1, z)−Q(z, U2, z)

]
dz

∥∥∥∥∥
Using the Lipschitz condition stated in (32) coupled with the result obtained in (36) and the principle of triangular125

inequality, we get the following after some algebraic manipulations

||ϕ(U1(t))− ϕ(U2(t))||J≤
[1− q
B(q)

Q(t, U1(t))M +
q

B(α)r(q)
MT qmax

]∫ t

0

(t− z)q−1
∥∥∥∥∥U1(t)− U2(t)

∥∥∥∥∥
J

.

We thus have

||ϕ(U1(t))− ϕ(U2(t))||J≤ B
∥∥∥U1(t)− U2(t)

∥∥∥
J
.

where

B =
1− q
B(q)

M +
q

B(α)r(q)
MT qmax

Therefore, the operator ϕ will become a contraction if the condition (32) holds on C(J,R5). By the Banach fixed

point theorem, the system (31) has a unique solution.

5.2. Numerical scheme for the ABC model130

In this subsection, we derive the numerical scheme of the syphilis model in (29) using the Adams-Bashforth

method [31]. Consider the system (30) written as follows

ABC
0 Dq

tS(t) = H1(t, S,E, I, L, T ),

ABC
0 Dq

tE(t) = H2(t, S,E, I, L, T ),

ABC
0 Dq

t I(t) = H3(t, S,E, I, L, T ),

ABC
0 Dq

tL(t) = H4(t, S,E, I, L, T ),

ABC
0 Dq

tT (t) = H5(t, S,E, I, L, T ).

(37)
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Using the fundamental theorem of fractional calculus, the system (37) is converted to the following

S(tn+1) = S(0) +
1− q

ABC(q)
H1(tn, S) +

q

ABC(q)Γ(q)

n∑
tj=0

∫ tj+1

tj

(tn+1 − z)q−1H1(z, S)dz

E(tn+1) = E(0) +
1− q

ABC(q)
H2(tn, E) +

q

ABC(q)Γ(q)

n∑
tj=0

∫ tj+1

tj

(tn+1 − z)q−1H2(z, E)dz,

I(tn+1) = I(0) +
1− q

ABC(q)
H3(tn, I) +

q

ABC(q)Γ(q)

n∑
tj=0

∫ tj+1

tj

(tn+1 − z)q−1H3(z, I)dz,

L(tn+1) = L(0) +
1− q

ABC(q)
H4(tn, L) +

q

ABC(q)Γ(q)

n∑
tj=0

∫ tj+1

tj

(tn+1 − z)q−1H4(z, L)dz,

T (tn+1) = T (0) +
1− q

ABC(q)
H5(tn, T ) +

q

ABC(q)Γ(q)

n∑
tj=0

∫ tj+1

tj

(tn+1 − z)q−1H5(z, T )dz,

(38)

Note that the integrals in (38) are approximated through the two-point interpolation polynomial, hence we have

the iterative scheme for the Syphilis model (29). After some algebraic calculations, we obtain an approximate
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solution for the ABC Syphilis model as follows

S(tn+1) = S(0) +
1− q

ABC(q)
H1(tn, S)

+
q

ABC(q)Γ(q)

n∑
tj=0

[
hqH1(tj , S)

Γ(q + 2)
(n+ 1− j)q(n− j + 2 + q)− (n− j)q(n− j + 2 + 2q)

−h
qH1(tj , S)

Γ(q + 2)

(
(n+ 1− j)q+1 − (n− j)q(n− j + 1 + q)

)]
,

E(tn+1) = E(0) +
1− q

ABC(q)
H2(tn, E)

+
q

ABC(q)Γ(q)

n∑
tj=0

[
hqH1(tj , E)

Γ(q + 2)
(n+ 1− j)q(n− j + 2 + q)− (n− j)q(n− j + 2 + 2q)

−h
qH1(tj , E)

Γ(q + 2)

(
(n+ 1− j)q+1 − (n− j)q(n− j + 1 + q)

)]
,

I(tn+1) = I(0) +
1− q

ABC(q)
H3(tn, I)

+
q

ABC(q)Γ(q)

n∑
tj=0

[
hqH1(tj , I)

Γ(q + 2)
(n+ 1− j)q(n− j + 2 + q)− (n− j)q(n− j + 2 + 2q)

−h
qH1(tj , I)

Γ(q + 2)

(
(n+ 1− j)q+1 − (n− j)q(n− j + 1 + q)

)]
,

L(tn+1) = L(0) +
1− q

ABC(q)
H4(tn, L)

+
q

ABC(q)Γ(q)

n∑
tj=0

[
hqH1(tj , L)

Γ(q + 2)
(n+ 1− j)q(n− j + 2 + q)− (n− j)q(n− j + 2 + 2q)

−h
qH1(tj , L)

Γ(q + 2)

(
(n+ 1− j)q+1 − (n− j)q(n− j + 1 + q)

)]
,

T (tn+1) = T (0) +
1− q

ABC(q)
H5(tn, T )

+
q

ABC(q)Γ(q)

n∑
tj=0

[
hqH1(tj , T )

Γ(q + 2)
(n+ 1− j)q(n− j + 2 + q)− (n− j)q(n− j + 2 + 2q)

−h
qH1(tj , T )

Γ(q + 2)

(
(n+ 1− j)q+1 − (n− j)q(n− j + 1 + q)

)]
.

(39)

Next, we use the numerical scheme to simulate the results of the ABC Syphilis model.135

6. Numerical simulation

In this section, we explored the numerical dynamics of Syphilis model (2) in the context of Caputo-Fabrizio. In

this work, the following parameter values and initial conditions were used

Π = 0.6, β = 0.5, γ = 0.01, µ = 0.05, ρ1 = 0.03, ρ2 = 0.05, ν1 = 0.05, ν2 = 0.04, ω = 0.003, δ = 0.06,
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with units per day and the initial conditions S(0) = 14, E(0) = 2 I(0) = 0 L(0) = 0 and T (0) = 4 for our

numerical simulations.
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Figure 2: Simulations for Syphilis model (2) for the susceptibles, exposed, infected at early stage, treated and individuals at late

stage of Syphilis via Exponential-law at σ = 1, 0.9, 0.8, 0.5, 0.3.

Figure 2(a) is the susceptible individuals (S) for integer and non-integer. The number of susceptible humans

reduces as the fractional order σ derivatives increases from 0.3 within 120 days. Figure 2(b) is the exposed140

humans (E) in which both integer and non-integer order derivatives presented. As the fractional order derivative
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increases from 0.3, the number of exposed humans increased. This is naturally expected as more humans are

exposed to the disease. Figure 2(c), the number of infected individuals at early stage (I) increase as the fractional

order derivatives reduces from 0.9 to 0.3. This is naturally the case as more humans move into infected humans

compartment. Figure 2(d) is the individuals at late stage infection with syphilis and as the fractions, order145

derivatives increases from 0.3 to 1, the individuals increase towards the non-integer. In Figure 2(e), the number

of individuals treated reduces as the fractional order derivatives decrease. In effect, to increase the number of

individuals treated, the fractional order would be reduced to 0.3.
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Figure 3: Simulations for Syphilis model (29) for the susceptibles, exposed, infected at early stage, treated and individuals at late

stage of Syphilis via Mittag-Leffler function at q = 1, 0.9, 0.8, 0.5, 0.3.
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Figure 3 was obtained by solving system equation (29) with Mittag-Leffler function using the numerical scheme of

equation (39). The same parameter values and associated initial conditions were used for this work simulations.150

Figure 3(a) is the susceptible individuals (S) and as fractional order derivative increases, the number of susceptible

reduces. Figure 3(b) depicts the exposed individuals (E) in which the number of exposed individuals (E) increase

as the integer order 1 turn to non-integers. Figure 3(c) shows that the early infected individuals (I) with syphilis

increases as the non-integer fractional order derivatives 0.3 increases toward the integer order 1. The Figure 3(d)

is the late individuals infected with syphilis (L) in the community where fractional order derivatives increase155

from 0.3 upward towards integer order 1. Figure 3(e) is the treated individuals (T ) where the non-integer order

derivatives increase from 0.3 towards 1, the number of individuals under treatment reduce.

7. Conclusion

In this study, a syphilis mathematical model with Caputo-Fabrizio and Mittag-Leffler function was formulated

and analysed. The basic properties of the model were examined and the steady states of the model were investi-160

gated. The stability analysis of the disease free was carried out and found to be stable from both local and global

perspectives. In each operator used for the study, the existence and uniqueness of solutions was established. Re-

spective numerical schemes for each operator was carried to obtain numerical simulation to support the analytical

solution. It was established that the fractional order derivatives influence the dynamics of the Syphilis disease in

the community. It is suggested other complex models can be investigated using fractional derivatives operators.165
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