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Abstract

The low portability of polygenic scores (PGS) across global populations is a major concern that must be

addressed before PGS can be used for everyone in the clinic. Indeed, prediction accuracy has been shown

to decay as a function of the genetic distance between the training and test cohorts. However, such cohorts

differ not only in their genetic distance but also in their geographical distance and their data collection and

assaying, conflating multiple factors. In this study, we examine the extent to which PGS are transferable

between ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and

applying them in nine ancestry groups from the same cohort. By restricting both training and testing to

the UK Biobank data, we reduce the risk of environmental and genotyping confounding from using different

cohorts. We define the nine ancestry groups at a high-resolution, country-specific level, based on a simple,

robust and effective method that we introduce here. We then apply two different predictive methods to derive

polygenic scores for all 245 phenotypes, and show a systematic and dramatic reduction in portability of PGS

trained in the inferred ancestral UK population and applied to the inferred ancestral Polish - Italian - Iranian -

Indian - Chinese - Caribbean - Nigerian - Ashkenazi populations, respectively. These analyses, performed at

a finer scale than the usual continental scale, demonstrate that prediction already drops off within European

ancestries and reduces globally in proportion to PC distance, even when all individuals reside in the same

country and are genotyped and phenotyped as part of the same cohort. Our study provides high-resolution

and robust insights into the PGS portability problem.
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Introduction

Ever larger genetic data is becoming more readily available. This enables researchers to derive polygenic

scores (PGS), which summarize an individual’s genetic component for a particular trait or disease by

aggregating information from many genetic variants into a single score. In human genetics, polygenic

scores are usually derived from summary statistics from a large meta-analysis of multiple Genome-Wide

Association Studies (GWAS) and an ancestry-matched Linkage Disequilibrium (LD) reference panel (Choi

et al. 2020). Polygenic scores can also be derived directly from individual-level data when available, i.e.

from the genetic and phenotypic information of many individuals (De Los Campos et al. 2010). When using

a single individual-level dataset with only moderate sample size, deriving polygenic scores usually results

in poor prediction for most phenotypes, expect e.g. for autoimmune diseases with moderately large effects

(Abraham et al. 2014; Privé et al. 2019). Fortunately, biobank datasets such as the UK Biobank now links

genetic data for half a million individuals with phenotypic data for hundreds of traits and diseases (Bycroft

et al. 2018). Thanks to the availability of these large datasets and to efficient methods recently developed to

handle such data (Loh et al. 2018; Privé et al. 2019; Qian et al. 2020), individual-level data may be used to

derive competitive PGS for hundreds of phenotypes.

A major concern about PGS is that they usually transfer poorly to other ancestries, e.g. a PGS derived

from individuals of European ancestry is not likely to predict as well in individuals of African ancestry.

Prediction in another ancestry has been shown to decay with genetic distance to the training population

(Scutari et al. 2016; Wang et al. 2020) and with increasing proportion of admixture with a distant ancestry

(Bitarello and Mathieson 2020; Cavazos and Witte 2020). This portability issue is suspected to be primarly

due to differences in LD and allele frequencies between populations, and not so much about differences

in effects and positions of causal variants (Shi et al. 2020; Wang et al. 2020; Cavazos and Witte 2020).

Individual-level data from the UK Biobank offers an opportunity to further investigate this problem of PGS

portability in a more controlled setting (Wang et al. 2020; Sinnott-Armstrong et al. 2021). Indeed, while

the UKBB data contains genetic information for more than 450K British or European individuals, it also

contains the same data for tens of thousands of individuals of non-British ancestry (Bycroft et al. 2018).

Of particular interest, those individuals of diverse ancestries all live in the UK and had their genetic and

phenotypic information derived in the same way as people of UK ancestry. This allows to circumvent

potential confounding bias that might arise in comparative analyses from independent studies, and makes

the UK Biobank data very well suited for comparing and evaluating predictive performance of derived PGS

in diverse ancestries and across multiple phenotypes.

To investigate portability of PGS to other ancestries, we must first define groups of different ancestries

from the data. Principal Component Analysis (PCA) has been widely used to correct for population structure

in association studies and has been shown to mirror geography in Europe (Price et al. 2006; Novembre et al.

2008). Due to its popularity, many methods have been developed for efficiently performing PCA (Abraham

et al. 2017; Privé et al. 2018, 2020a) as well as appropriately projecting samples onto a reference PCA space

(Zhang et al. 2020a; Privé et al. 2020a), making it possible to perform these analyses for ever increasing

datasets. Naturally, PCA has also been used for ancestry inference (Chen et al. 2013; Byun et al. 2017;

Zhang et al. 2020a). However, among all studies where we have seen PCA used for ancestry inference,

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.05.21251061doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.05.21251061
http://creativecommons.org/licenses/by/4.0/


there does not seem to be a consensus on what is the most appropriate method for inferring ancestry using

PCA. For example, there are divergences on which distance metric to use and the number of PCs to use

to compute these distances. The ancestry of an individual can also be inferred based on other approaches,

including the ADMIXTURE model, its various extensions, and haplotype-based methods (Alexander et al.

2009; Lawson et al. 2012; Raj et al. 2014; Frichot et al. 2014; Haller et al. 2017; Cheng et al. 2017; Jin et al.

2019; Cabreros and Storey 2019). However, we focus on PCA here because it is very fast.

In this study, we examine the extent to which PGS are transferable between ancestries by deriving 245

polygenic scores from the UK biobank data and applying them in nine ancestry groups from the same

cohort. We first propose simple, robust and effective methods for global ancestry inference and grouping

from PCA of genetic data, and use them to define nine ancestry groups in the UK Biobank data. We then

apply a computationally efficient implementation of penalized regression (Privé et al. 2019) to derive PGS

for 245 traits using the UK Biobank genetic and phenotypic data only. As an alternative method, we also run

LDpred2-auto (Privé et al. 2020b), for which we directly derive the summary statistics from the individual-

level data available. We show a dramatically low portability of PGS from UK ancestry to other ancestries.

For example, on average, the phenotypic variance explained by the PGS is only 64.7% in India, 48.6% in

China, and 18% in Nigeria compared to in individuals of UK ancestry. These results are presented at a finer

scale than the usual continental level, which allows us to show that prediction already drops within Europe,

e.g. for East and South Europe compared to UK. We find that this decay in variance explained by the PGS

is roughly linear in the PC distance to the training population, and is remarkably consistent across most

phenotypes and for both prediction methods applied. The few exceptions include traits such as hair color,

tanning, and some blood measurements. We also explore using more than HapMap3 variants when fitting

PGS, it proves useful when large effects are poorly tagged by HapMap3 variants, e.g. for lipoprotein(a), but

not in the general case. We also explore the performance of PGS trained using a mixture of European and

non-European ancestry samples, but do not observe any significant gain in prediction here.

Results

Overview of study

Here, we use the UK Biobank (UKBB) data only (Bycroft et al. 2018). We first infer nine ancestry

groups in the UKBB. Then we use 391,124 individuals of UK ancestry to train polygenic scores (PGS)

for 245 phenotypes (about half being diseases, see categories in figure S1) based on UKBB individual-

level genotypes and phenotypes, and assess portability of these PGS in the remaining individuals of diverse

ancestries (Table 1). As additional analyses, we also investigate using more variants than the HapMap3

variants used in the main analyses, and train models using a mixture of multiple ancestries. To derive PGS

in this study, we use two different methods, penalized regression and LDpred2-auto, and finally compare

them.
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Set UK1 UK2 UK3 Poland Italy Iran India China Caribbean Nigeria Ashkenazi

Training 1 367,063 24,061

Test 1 20,000 4136 6660 1200 6331 1810 2484 3924 1709

Training 2 367,063 4136 6660 1200 6331 1810 3924

Test 2 20,000 2484

Table 1: In total, 439,378 unrelated individuals are used here. Main analyses use UK1 + UK2 (391,124
individuals) as training set and the other groups as test sets. Secondary analyses involve multiple ancestry
training and keep only the UK3 and Caribbean groups as test sets; UK2 is removed from the training so that
sample size from training 2 is the same as training 1 (391,124 individuals).

Ancestry grouping

We investigate various approaches to classify individuals in ancestry groups based on Principal Component

Analysis (PCA) of genome-wide genotype data. Detailed results can be found in the corresponding Supplementary

Note; we recall main results here. First, we show that (squared) Euclidean distances in the PCA space of

genetic data are approximately proportional to FST between populations, and we therefore recommend

using this simple distance. At the same time, we provide evidence that using only 2 PCs, or even 4 PCs,

is not enough to distinguish between some less-distant populations, and recommend using all PCs visually

capturing some population structure. Then, we use this PCA-based distance to infer ancestry in the UK

Biobank and the POPRES datasets. We propose two solutions to do so, either relying on projection of PCs

to reference populations such as the 1000 Genomes Project, or by directly using internal data only. We show

that these solutions are simple, robust and effective methods for inferring global ancestry and for grouping

genetically homogeneous individuals.

Here, we first use the second solution presented in the Supplementary Note, relying on PCs computed

within the UK Biobank and individual information on the countries of birth, for inferring the first eight

ancestry groups presented in table 1. Then, for inferring the “Ashkenazi Jewish” ancestry group, we use

the first solution, projecting UKBB individuals onto the PCA space of a reference dataset composed of

many Jewish and non-Jewish individuals (Behar et al. 2013). We identify a ninth group of 1709 unrelated

individuals, which is entirely disjunct from the other eight groups previously defined (Methods). The nine

ancestry groups inferred here are represented in the UKBB PCA space in figure 1.

Portability of polygenic scores to other ancestries

Figure 2 presents the results when fitting penalized regression using a training set composed of UK individuals

only and testing in nine different ancestry groups. Averaged over 245 phenotypes, compared to prediction

performance in individuals of UK ancestry, relative predictive ability in terms of partial-r2 (Methods) is

93.8% in Poland, 85.6% in Italy, 72.2% in Iran, 64.7% in India, 48.6% in China, 25.2% in the Caribbean,

18% in Nigeria, and 85.7% for the Ashkenazi group. As a follow-up analysis to ensure that this drop

in performance in other ancestries is not due to imputation, we perform the same analysis for 83 of the

continuous phenotypes using high-quality genotyped variants only (Methods) instead of the (mostly imputed)

HapMap3 variants; results are highly consistent (Figure S2). These results are also very similar when using
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Figure 1: The first eight PC scores of the UK Biobank (Field 22009) colored by the homogeneous ancestry
group we infer for these individuals. Only 50K random individuals are represented.

LDpred2-auto instead of penalized regression for training predictive models for all phenotypes (Figure S3).

A few phenotypes deviate from this global trend, e.g. prediction of bilirubin concentration ranges between

0.537 and 0.619 (partial-r) for all ancestries except for China, for which it is 0.415 (95% CI: 0.374 - 0.453,

see Methods). In contrast, e.g. for hair and skin color, partial correlations decrease quickly and are not

significantly different from 0 for both China and Nigeria, while of 0.420 (95% CI: 0.409 - 0.432) for “darker

hair” in the UK ancestry group (Figure 2). Overall, relative predictive performance decreases approximately

linearly with PC distance to the UK (Figure 3). A similar pattern is observed when computing PCA based

on more balanced ancestry groups, as recommended in Privé et al. (2020a) (Figure S4).

Using more than HapMap3 variants?

We investigate some of the outlier phenotypes in figure 2, especially the ones from blood biochemistry which

have some variants with large effects. We hypothesize that using a denser set of variants could improve

tagging of the causal variants with large effect sizes, resulting in an improved prediction in all ancestries. We

focus on “total bilirubin”, “lipoprotein(a)” (lipoA) and “apolipoprotein B” (apoB). We perform a localized

GWAS which includes all variants around the most significant variant (hereinafter denoted as “top hit”) from

the GWAS in the training set 1 (UK individuals and HapMap3 variants only) in each of the first eight ancestry

groups defined here. More precisely, we include all variants with an imputation INFO score larger than 0.3

and within a window of 500Kb from the HapMap3 top hit in the UK; there are approximately 30K such

variants for all three phenotypes. For bilirubin, the overall top hit is a HapMap3 variant and explains around
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Figure 2: Partial correlation (and 95% CI) in the UK test set versus in a test set from another ancestry group
(each panel). Each point represents a phenotype and training has been performed with penalized regression on
UK individuals (training 1 in table 1) and HapMap3 variants. The slope (in blue) is computed using Deming
regression accounting for standard errors in both x and y, fixing the intercept at 0. The square of this slope is
provided above each plot, which we report as the relative predictive performance compared to testing in UK.

30% of the phenotypic variance (Figure S6). Effects from the three top hits are fairly consistent within all

ancestry groups (Figure S7) explaining why genetic prediction is highly consistent in all ancestries, except

for China (Figure 2), for which these variants are rarer. For lipoA, results are very different across ancestries;

HapMap3 variants are far from being the top hits for the UK individuals, where the top HapMap3 variant

explains 5% of phenotypic variance compared to 29% for the (non-HapMap3) top hit (Figure 4). Note that

this top hit is more than 200Kb away from the HapMap3 top hit from UK. Moreover, the 3 top hits for lipoA

do not have very consistent effect sizes across ancestries (Figure S8). Finally, for apoB, effects from the

three top hits, which are not part of HapMap3 variants, are fairly consistent across ancestries and explain up

to 8.5% of the phenotypic variance (Figures S9 & S10).

We then investigate if the use of a larger set of variants than the HapMap3 set is beneficial; we use more

than 8M common variants (Methods) and apply LDpred2-auto after restricting to the 1M most significant

variants and applying winner’s curse correction (Methods). Except for lipoA for which we get a large

improvement in predictive accuracy compared to using HapMap3 variants only, it is not beneficial for the

other seven phenotypes analyzed here (Figure 5). Remarkably, while the partial correlation for lipoA is

about 75% in the UK test set when using this prioritized set of variants, it is still not different from 0 when

applied to the Nigeria group. For height and BMI, estimated SNP heritability is reduced when using this

set of most significant variants only, and all these variants are estimated to be causal, i.e. estimate of p is 1
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Figure 3: Relative predictive performance compared to the UK (ratio of variance explained in one group
compared to in the UK group) versus PC distance from the UK. PC distances are computed using Euclidean
distance between geometric medians of the first 16 reported PC scores (Field 22009) of each ancestry group.
Relative performance values are the ones reported in figure 2. The slope and standard errors are computed
internally by function geom_smooth(method = "lm") of R package ggplot2.

(Table S1). As height and BMI are very polygenic traits (p is estimated to be ~2% and ~4% respectively

when using HapMap3 variants), contribution from less significant causal variants is missed due to this

thresholding selection. For the three binary phenotypes, breast cancer (phecode: 174.1), prostate cancer

(185) and coronary artery disease (411.4), although heritability estimates are larger when using this set of

prioritized variants (Table S1), predictive accuracy does not improve compared to when using HapMap3

variants (Figure 5).

Training with a mixture of ancestries

Here we use all ancestry groups except for the Caribbean and Ashkenazi for training; we remove the same

number of UK individuals to keep the same training sample size as before (training 2 in table 1). We recall

that Caribbean individuals are mostly admixed between African, European and Native American ancestries

(Moreno-Estrada et al. 2013), which are almost all represented here in the training set 2. In figure S11,

we investigate nine phenotypes of interest, either because they are highly studied diseases or are outliers

in figure 2: breast cancer (phecode: 174.1), prostate cancer (186), type-2 diabetes (250.2), hypertension
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Figure 4: Zoomed Manhattan plot for lipoprotein(a) concentration. The phenotypic variance explained per
variant is computed as r2 = t2/(n+ t2), where t is the t-score from GWAS and n is the degrees of freedom (the
sample size minus the number of variables in the model, i.e. the covariates used in the GWAS, the intercept
and the variant). The GWAS includes all variants with an imputation INFO score larger than 0.3 and within
a 500Kb radius around the top hit from the GWAS performed in the UK training set and on the HapMap3
variants, represented by a vertical dotted line.

(401), coronary artery disease (411.4), skin tone, total bilirubin concentration, lipoprotein(a) concentration,

and years of education. We predict in the test sets from the UK and the Caribbean (test set 2); overall, the

predictive performance is highly similar when using this multi-ancestry training compared to when using

only UK individuals, in both the UK and the Caribbean target samples. Prediction is only improved for

lipoprotein(a) concentration when the mixed ancestry training data is used in application to the Caribbean

target data (Figure S11).

Comparison of predictive models

Penalized regression and LDpred2-auto provides approximately similar predictive performance across all

traits and ancestries considered here (Figure S12); there are only four pairs of phenotype-ancestry (out

of nearly 2000 pairs) for which 95% CIs for partial-r from penalized regression and LDpred2 are not

overlapping: “615: Endometriosis” in China with 0.065 (0.0074 - 0.122) vs -0.051 (-0.108 - 0.0068);

“hard falling asleep” in UK with -0.0349 (-0.742 - 0.0045) vs 0.071 (0.031 - 0.110); height in UK with

0.634 (0.626 - 0.643) vs 0.613 (0.605 - 0.622); log-bilirubin in Nigeria with 0.546 (0.523 - 0.569) vs 0.475

(0.449 - 0.500). For prediction in UK ancestry, penalized regression tends to provide better predictive

performance than LDpred2 for phenotypes for which partial-r > 0.3, and LDpred2 tends to outperform
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Figure 5: Predictive performance with LDpred2-auto for 8 phenotypes (each panel), when using either
HapMap3 variants (HM3) or the 1M most significant variants (top1M) out of more than 8M common variants
(see Methods). Phecode 174.1: breast cancer; 185: prostate cancer; 411.4: coronary artery disease.

penalized regression for phenotypes harder to predict (Figure S12).

Both methods allow for fitting sparse effects, i.e. some resulting effects are exactly 0. Sparse models

may be beneficial because they may be more easily interpreted and implemented. The sparse option in

LDpred2-auto provides similar performance as LDpred2-auto without this option (Figure S13). Sparsity of

resulting effects follows a very different pattern for penalized regression compared to LDpred2-auto-sparse.

Indeed, penalized regression tends not to include variants if it is uncertain that they have a non-zero effect,

i.e. when effects are very small and prediction is difficult (Figure S14). In contrast, LDpred2-auto-sparse

tends not to discard variants, only when h2 is large enough it sets lots of effects to 0 if p is small (Figure S15).

Finally, running each penalized regression model takes between a few minutes and a few days depending on

the number of non-zero effects in the resulting model (Figure S16). In contrast, LDpred2-auto should take

the same computation time for all phenotypes; it completed under seven hours for most phenotypes (Figure

S17).
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Discussion

In this paper, we have shown a poor portability of PGS to other populations, in agreement with what has

been previously reported. Indeed, compared to three previous studies (Martin et al. 2019; Duncan et al.

2019; Wang et al. 2020), we show a relative predictive performance compared to Europeans of ~18% for

Africans (vs. 22%, 42% and 24%), ~49% for East Asians (vs. 50%, 95% and 64%) and ~65% for South

Asians (vs. 60%, 62.5% and 72%). Our results provide a significant addition to the current literature in

many ways. First, we show that the portability issue remains strong even when PGS are derived and applied

in the same cohort. Second, the presented results are averaged over 245 phenotypes, which is much more

than what has been typically used, and should capture a broad range of the phenotypic spectrum. Third, we

provide this result at a finer scale than the usual continental level by proposing a simple, robust and effective

method for grouping UKBB individuals in nine ancestry groups. This allows us to show e.g. that predictive

performance already decreases within Europe with only ~94% for East Europe and ~86% for South Europe

of the performance reached within UK.

We showcase two methods for deriving polygenic scores when large individual-level data is available.

Although LDpred2-auto is a method based on summary statistics, it provides good predictive performance

compared to penalized regression, when applied to individual-level data. Moreover, portability results shown

here are similar when using either the individual-level penalized regression or the summary statistics based

LDpred2 method. Fitting of penalized models is relatively fast when using 1M HapMap3 variants. We have

also tried fitting penalized regression using 8M variants (>3TB of data); this was possible but took several

days for the phenotypes we tried, so we have not investigated this further. To the best of our knowledge,

the implementation we use is the most efficient penalized regression implementation currently available.

Recently, Qian et al. (2020) proposed snpnet, a new R package for fitting penalized regressions on large

individual-level genetic data, but we have found it to be much less efficient than R package bigstatsr on

UKBB data (Supplementary Note). As for LDpred2, it currently cannot be run using 8M variants, but we

show how to use a subset of 1M prioritized variants out of these 8M. Using this new set of variants provides a

large improvement in predicting lipoprotein(a) concentration (lipoA), but not for the other seven phenotypes

studied in this analysis. This improvement for lipoA is not surprising given that the top HapMap3 variant

explains 5% of phenotypic variance compared to 29% for the (non-HapMap3) top hit (Figure 4).

Here we only use the UK Biobank data to fit polygenic scores. We do not use external information

such as functional annotations; those could be used to improve the heritability model assumed by predictive

methods in order to improve predictive performance (Zhang et al. 2020b). Moreover, we do not use external

summary statistics. Nevertheless, Albiñana et al. (2020) have shown that an efficient strategy to improve

predictive ability of polygenic scores consists in combining two different polygenic scores, one derived

using external summary statistics, and another one derived using internal individual-level data. Therefore,

the polygenic scores derived here could be combined with polygenic scores derived using external summary

statistics; we will release these PGS publicly and share them in databases such as the PGS Catalog and the

Cancer-PRSweb (Fritsche et al. 2020; Lambert et al. 2020).
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Materials and Methods

Data

We derive polygenic scores for 245 phenotypes using the UK Biobank (UKBB) data only (Bycroft et al.

2018). We read dosages data from UKBB BGEN files using function snp_readBGEN() of R package

bigsnpr (Privé et al. 2018). We divide the UKBB data in eight ancestry groups (Supplementary Note), and

restrict to 437,669 individuals without second-degree relatives (KING kinship < 2−3.5). We also define a

ninth ancestry group composed of 1709 unrelated Ashkenazi (see Methods below). For the variants, we

use 1,040,096 HapMap3 variants used in the LD reference provided in Privé et al. (2020b) and that were

also present in the iPSYCH2015 data (Bybjerg-Grauholm et al. 2020) with imputation INFO score larger

than 0.6. Even though the iPSYCH data is not used in this study, we plan to use the PGS derived here for

iPSYCH in the future.

To define phenotypes, we first map ICD10 and ICD9 codes (UKBB fields 40001, 40002, 40006, 40013,

41202, 41270 and 41271) to phecodes using R package PheWAS (Carroll et al. 2014; Wu et al. 2019). We

filter down to 142 phecodes of interest that showed potential genetic signals in the PheWeb results from

the SAIGE UKBB GWAS (Zhou et al. 2018; Taliun et al. 2020). There are 106 phecodes with sufficient

power for penalized regression to include at least a few variants in the predictive models. We then look

closely at all 2408 UKBB fields that we have access to and filter down to defining 111 continuous and 28

binary phenotypes based on manual curation. Description of the 245 phenotypes used in this study can be

downloaded at https://github.com/privefl/UKBB-PGS/blob/main/phenotype-description.

xlsx.

Additional data: genotyped data

For the genotyped data used in some follow-up analyses, we restrict to variants that have been genotyped

on both chips used by the UK Biobank, that pass quality control (QC) for all batches (cf. https://

biobank.ctsu.ox.ac.uk/crystal/crystal/auxdata/ukb_snp_qc.txt) and QC for possible

mismappings (Kunert-Graf et al. 2020), with a minor allele frequency (MAF) larger than 0.01 and imputation

INFO score of 1. There are 586,534 such high-quality variants, which we read from the BGEN imputed data

so that there is no missing value.

Additional data: 8M+ variants

We also design a larger set of imputed variants to compare against using only HapMap3 variants for

prediction. We first restrict to UKBB variants with MAF > 0.01 and INFO > 0.6. We then compile

frequencies and imputation INFO scores from other datasets, iPSYCH and summary statistics for breast

cancer, prostate cancer, coronary artery disease and type-1 diabetes (Bybjerg-Grauholm et al. 2020; Michailidou

et al. 2017; Schumacher et al. 2018; Nikpay et al. 2015; Censin et al. 2017). We restrict to variants with

a mean INFO > 0.5 in these other datasets, and also compute the median frequency. To exclude potential

mismappings in the genotyped data (Kunert-Graf et al. 2020) that might have propagated to the imputed
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data, we compare median frequencies in the external data to the ones in UKBB (Figure S18). As we expect

these potential errors to be localized around errors in the genotype data (confirmed in figure S19), we apply

a moving-average smoothing on the frequency differences to increase power to detect these errors and also

reduce false positives. We define the threshold on these smoothed differences based on visual inspection of

their histogram. This is the same method we have previously applied to PC loadings to detect long-range

LD regions when computing PCA (Privé et al. 2018, 2020a). This results in a set of 8,238,692 variants.

Ashkenazi Jewish ancestry group

First, we refer the reader to the Supplementary Note on ancestry grouping for the details on how we define

the other eight ancestry groups, and also to better understand how we infer the “Ashkenazi Jewish” ancestry

group. Briefly, we project the UKBB data onto the PCA space of a reference dataset composed of many

Jewish and non-Jewish individuals (Behar et al. 2013). We then compute the robust center (geometric

median) of the Ashkenazi Jewish reference individuals, and compute the PC distance to this center for all

projected UKBB individuals. Based on visual inspection of the histogram of these distances and on the

fact that the closest non-Ashkenazi Jewish reference individual, an Italian Jew (Figure S20), is at distance

12.7, we use a threshold of 12.5 under which to assign to the “Ashkenazi Jewish” ancestry group. 1709

unrelated UKBB individuals are then assigned to this group. Note that, within the already defined eight

ancestry groups, the closest individual to this new group belongs to the Italian group, and is at distance 17.3,

therefore this new Ashkenazi group is not overlapping with any of the other groups defined previously.

Penalized regression

To derive polygenic scores based on individual-level data from the UKBB, we use the fast implementation

of penalized linear and logistic regressions from R package bigstatsr (Privé et al. 2019). We have also

considered the recently developed R package snpnet for fitting penalized regressions on large genetic data;

however, we provide theoretical and empirical evidence that bigstatsr is much faster than snpnet (Supplementary

Note). Our implementation allows for lasso and elastic-net penalizations; yet, for the sake of simplicity and

because the UKBB data is very large, we have decided to only use the lasso penalty (Privé et al. 2019). We

recall that fitting a penalized linear regression with lasso penalty corresponds to finding the vector of effects

β (also µ and γ) that minimizes

L(λ) = ||y − (µ+Gβ +Xγ) ||22︸ ︷︷ ︸
Loss function

+ λ‖β‖1︸ ︷︷ ︸
Penalisation

,

where µ is an intercept, G is the genotype matrix, X is the matrix of covariates, y is the (quantitative)

phenotype of interest and λ is a hyper-parameter that controls the strength of the regularization and needs to

be chosen. We use sex (Field 22001), age (Field 21022), birth date (Fields 34 & 52), Townsend deprivation

index (Field 189) and the first 16 genetic principal components (Field 22009, Privé et al. (2020a)) as

unpenalized covariates when fitting the lasso models.

We have extended our implementation in two ways by allowing for using different penalties for the

variants (i.e. having
∑

j λj |βj | instead of λ‖β‖1). First, this enables us to use a different scaling for
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genotypes. By default, variants in G are implicitly scaled. By using λj ∝ (SDj)
(ξ−1), this effectively scales

variant j by dividing it by (SDj)
ξ in our implementation. The default uses ξ = 1 but we also test ξ = 0 (no

scaling) and ξ = 0.5 (Pareto scaling). We introduce a new parameter power_scale for which the user can

provide a vector of values to test; the best value is chosen within the Cross-Model Selection and Averaging

(CMSA) procedure (Privé et al. 2019). We also introduce a second parameter, power_adaptive, which

can be used to put less penalizition on variants with the largest marginal effects (Zou 2006); we try 3 values

here (0 the default, 0.5 and 1.5) and the best one is also chosen within the CMSA procedure.

LDpred2-auto

Using the individual-level data from the training set in the UK biobank, we run a linear regression GWAS

using function big_univLinReg of R package bigstatsr (Privé et al. 2018), accounting for the same

covariates as in the penalized regression above. As LD reference, we use the one provided in Privé et al.

(2020b) based on UKBB data for European ancestry. We use these summary statistics and this LD reference

as input for LDpred2-auto. LDpred2 assumes a point-normal mixture distribution for effect sizes, where

only a proportion of causal variants p contributes to the SNP heritability h2. In LDpred2-auto, these two

parameters are directly estimated from the data (Privé et al. 2020b). We use the sparse option in LDpred2-

auto to also obtain a vector of effects that is potentially sparse, i.e. effects of some variants are exactly 0.

Also note that, as we use linear regression for all phenotypes, we use the total sample size instead of the

effective sample size (4/ (1/ncase + 1/ncontrol)) for binary phenotypes as input to LDpred2. This means

that heritability estimates from both LD score regression and LDpred2-auto must be transformed to the

liability scale using both the prevalence in the GWAS and in the population; this can be performed using

function coef_to_liab from R package bigsnpr. For simplicity, we assume here that the prevalence in

the population is the same as the prevalence in the training set.

New formula used in LDpred2

We also slightly modify the formula used in Privé et al. (2020b); we have previously used

se(γ̂j)
2 =

(y̆ − γ̂jĞj)T (y̆ − γ̂jĞj)

(n−K − 1) Ğj
T
Ğj

≈ y̆T y̆

n Ğj
T
Ğj

≈ var(y)

n var(Gj)
,

where γ̂j is the marginal effect of variant j, and where y̆ and Ğj are the vectors of phenotypes and genotypes

for variant j residualized from K covariates, e.g. centering them. The first approximation expects γ̂j to be

small, while the second approximation assumes the effects from covariates are small. However, we have

found here that some variants can have very large effects, e.g. one variant explains about 30% of the variance

in bilirubin log-concentration. Then, instead we compute

(y̆ − γ̂jĞj)T (y̆ − γ̂jĞj) = y̆T y̆ − 2γ̂jĞj
T
y̆ + γ̂2j Ğj

T
Ğj = y̆T y̆ − γ̂2j Ğj

T
Ğj ,

14

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.05.21251061doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.05.21251061
http://creativecommons.org/licenses/by/4.0/


which now gives

(n−K − 1) se(γ̂j)
2 =

y̆T y̆ − γ̂2j Ğj
T
Ğj

Ğj
T
Ğj

=
y̆T y̆

Ğj
T
Ğj

− γ̂2j ≈
var(y̆)

var(Gj)
− γ̂2j ,

finally giving (note the added term γ̂2j )

sd(Gj) ≈ sd(y̆)√
n se(γ̂j)2 + γ̂2j

. (1)

Figure S21 shows that the updated formula (1) is better; we now use it in the code of LDpred2, and also

recommend using it for the QC procedure proposed in Privé et al. (2020b).

Using more than HapMap3 variants in LDpred2

Here we also run LDpred2 using more than HapMap3 variants, based on a set of 8M+ variants (see above).

However, LDpred2 cannot be run on 8M variants because the implementation is quadratic with the number

of variants in terms of time and memory requirements. Thus, we employ another strategy consisting in

keeping only the 1M most significant variants. To correct for winner’s curse, we employ the maximum

likelihood estimator used in Zhong and Prentice (2008) and Shi et al. (2016):

Z = Z∗ +
φ (Z∗ − Zthr)− φ (−Z∗ − Zthr)
Φ (Z∗ − Zthr) + Φ (−Z∗ − Zthr)

,

where φ is the standard normal density function, Φ is the standard normal cumulative density function, Z

is the Z-score obtained from the GWAS, Zthr is the threshold used on (absolute) Z-scores for filtering, and

Z∗ is the corrected Z-score that we estimate and use. As input for LDpred2, instead of using β (along

with SE(β) and N ), we use β∗ = β · Z∗/Z where Z = β/SE(β). This is now implemented in function

snp_thr_correct of package bigsnpr.

Performance metric

Here we use the partial correlation as the performance metric, which is the correlation between the PGS and

the phenotype after they have been both residualized using the covariates used in this paper, i.e. sex, age,

birth date, deprivation index and 16 PCs. To derive 95% confidence intervals for these correlations, we use

Fisher’s Z-transformation. We implement this in function pcor of R package bigstatsr and use it here.

Code and results availability

All code used for this paper is available at https://github.com/privefl/UKBB-PGS/tree/

master/code. Links to the code used for the two supplementary notes are provided there. We have

extensively used R packages bigstatsr and bigsnpr (Privé et al. 2018) for analyzing large genetic data,

packages from the future framework (Bengtsson 2020) for easy scheduling and parallelization of analyses
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on the HPC cluster, and packages from the tidyverse suite (Wickham et al. 2019) for shaping and visualizing

results. We have also used R package deming for fitting Deming regressions.

R packages bigstatsr and bigsnpr can be installed from GitHub and CRAN. A tutorial on fitting penalized

regressions with R package bigstatsr is available at https://privefl.github.io/bigstatsr/

articles/penalized-regressions.html. A tutorial on running LDpred2 with R package bigsnpr

is available at https://privefl.github.io/bigsnpr/articles/LDpred2.html.

PC centers of the individuals from the nine ancestry groups derived here can be downloaded at https:

//github.com/privefl/UKBB-PGS/blob/main/pop_centers.csv. Description of the 245

phenotypes used in this study can be downloaded at https://github.com/privefl/UKBB-PGS/

blob/main/phenotype-description.xlsx. Effect sizes for 215 polygenic scores derived in this

study can be downloaded at https://figshare.com/articles/dataset/Effect_sizes_for_

215_polygenic_scores/14074760.
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