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Abstract	30 

Climate	drivers	such	as	humidity	and	temperature	may	play	a	key	role	in	influenza	31 

seasonal	transmission	dynamics.	Such	a	relationship	has	been	well	defined	for	temperate	32 

regions.		However,	to	date	no	models	capable	of	capturing	the	diverse	seasonal	pattern	in	33 

tropical	and	subtropical	climates	exist.		In	addition,	multiple	influenza	viruses	could	34 

cocirculate	and	shape	epidemic	dynamics.	Here	we	construct	seven	mechanistic	epidemic	35 

models	to	test	the	effect	of	two	major	climate	drivers	(humidity	and	temperature)	and	36 

multi-strain	co-circulation	on	influenza	transmission	in	Hong	Kong,	an	influenza	epidemic	37 

center	located	in	the	subtropics.	Based	on	model	fit	to	long-term	influenza	surveillance	38 

data	from	1998	to	2018,	we	found	that	a	simple	model	incorporating	the	effect	of	both	39 

humidity	and	temperature	best	recreated	the	influenza	epidemic	patterns	observed	in	40 

Hong	Kong.	The	model	quantifies	a	bimodal	effect	of	absolute	humidity	on	influenza	41 

transmission	where	both	low	and	very	high	humidity	levels	facilitate	transmission	42 

quadratically;	the	model	also	quantifies	the	monotonic	but	nonlinear	relationship	with	43 

temperature.	In	addition,	model	results	suggest	that,	at	the	population	level,	a	shorter	44 

immunity	period	can	approximate	the	co-circulation	of	influenza	virus	(sub)types.	The	45 

basic	reproductive	number	R0	estimated	by	the	best-fit	model	is	also	consistent	with	46 

laboratory	influenza	survival	and	transmission	studies	under	various	combinations	of	47 

humidity	and	temperature	levels.	Overall,	our	study	has	developed	a	simple	mechanistic	48 

model	capable	of	quantifying	the	impact	of	climate	drivers	on	influenza	transmission	in	49 

(sub)tropical	regions.	This	model	can	be	applied	to	improve	influenza	forecasting	in	the	50 

(sub)tropics	in	the	future.	51 

	52 

Key	words:	Influenza;	climate;	seasonality;	co-circulation;	temperature;	humidity;	tropics;	53 

subtropics	54 

	55 

Introduction	56 

Influenza	is	a	disease	of	considerable	public	health	concern,	causing	roughly	300,000-57 

650,000	deaths	and	3-5	million	cases	of	severe	illness	each	year	worldwide	[1].	Although	58 

evidence	suggests	that	the	burden	of	influenza	in	the	tropics	and	subtropics	is	not	59 

substantially	less	than	in	temperate	regions	[2,	3],	studies	on	influenza	in	these	regions	are	60 
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comparatively	rare.	Likewise,	modeling	and	forecasting	efforts,	which	may	promote	both	61 

understanding	of	and	preparation	for	outbreaks	in	the	future,	have	mostly	been	focused	on	62 

countries	with	temperate	climates	[4,	5].	A	variety	of	factors	contribute	to	this	disparity,	63 

including	lack	of	long-term	surveillance	data	and	competing	public	health	interests	[6-8].	64 

We	focus	here	on	two	features	of	influenza	epidemics	in	these	regions	that	particularly	65 

complicate	modeling	efforts,	i.e.,	the	lack	of	understanding	of	climatic	drivers	and	66 

cocirculation	of	multiple	influenza	types	and	subtypes.	67 

	68 

In	temperate	regions,	influenza	displays	a	clear	seasonal	pattern,	with	epidemics	69 

occurring	in	the	winter	and	very	few	cases	observed	during	the	summer	[9,	10].	While	70 

several	potential	drivers	of	this	pattern	have	been	suggested	[9],	humidity	appears	to	be	71 

particularly	important	in	driving	these	“seasonal”	influenza	epidemics.	Specifically,	both	72 

survival	and	transmission	of	the	influenza	virus	are	heightened	when	absolute	humidity	73 

(AH)	is	low	[11],	corresponding	to	the	yearly	observed	peaks	of	influenza	activity	in	winter	74 

[12].	75 

	76 

In	tropical	or	subtropical	locations,	this	seasonal	pattern	is	less	commonly	observed.	77 

Instead,	influenza	causes	multiple	epidemics	each	year,	or	else	is	present	year-round	with	78 

unpredictable	variation	in	intensity	[3,	9,	10,	13].	In	addition,	humidity	is	relatively	high	all	79 

year	in	the	tropics	and	subtropics,	and	influenza	epidemics	tend	to	occur	during	the	rainy	80 

season,	when	humidity	is	particularly	high	[13,	14].	Thus,	the	relationship	observed	in	81 

temperate	regions	and	modeled	by	Shaman	et	al.	[12],	where	influenza	transmission	82 

decreases	monotonically	with	increasing	AH,	is	not	sufficient	to	explain	patterns	in	83 

influenza	transmission	in	the	tropics	and	subtropics	[9,	15].	84 

	85 

While	the	exact	impacts	remain	unclear,	humidity,	precipitation	and	temperature	86 

are	the	main	contenders	as	climate	drivers	for	influenza	transmission	in	the	tropics	and	87 

subtropics.	A	few	studies	suggest	that	the	impact	of	humidity	on	influenza	transmission	88 

may	be	bimodal,	rather	than	unimodally	decreasing	as	suggested	by	Shaman	at	al.	[11,	12].	89 

Work	by	Yang	et	al.	showed	that	influenza	virus	survival	is	higher	at	lower	relative	90 

humidity	(<50%),	but	also	found	increased	survival	at	very	high	levels	of	relative	humidity	91 
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(~100%)	[16].	By	analyzing	patterns	of	influenza	transmission	in	78	locations	worldwide,	92 

Tamerius	et	al.	[14]	found	that	influenza	outbreaks	in	locations	that	experience	high	93 

temperature	and	high	AH	year-round	had	a	tendency	to	occur	during	the	rainy	season,	94 

when	both	AH	and	rainfall	were	high.	This	pattern	has	been	consistently	reported	in	95 

several	countries	[6,	17-19].	Deyle	et	al.	[20]	instead	suggested	that	influenza	transmission	96 

is	driven	by	AH,	moderated	by	temperature.	Specifically,	they	find	that	influenza	activity	97 

decreases	with	increasing	AH	up	to	about	24°C	(75	°F),	then	increases	with	increasing	AH	98 

up	to	about	30°C	(86°F),	at	which	point	high	temperatures	strongly	restrict	influenza	99 

transmission.		100 

	101 

In	addition	to	diverse	climate	drivers,	co-circulation	of	multiple	influenza	viruses	102 

may	contribute	to	the	observed	multiple	yearly	influenza	epidemics	in	the	tropics	and	103 

subtropics.	Circulating	human	influenza	viruses	are	classified	into	types	(A	or	B,	based	on	104 

genus)	and,	among	influenza	A	viruses,	subtypes	(based	on	the	genetic	sequences	of	the	105 

hemagglutinin	and	neuraminidase	surface	proteins)	[21].	Currently,	circulating	human	106 

influenza	viruses	consist	of	the	A(H1N1)	and	A(H3N2)	influenza	subtypes,	as	well	as	107 

influenza	B	viruses	[1].	While	influenza	viruses	evolve	quickly,	significant	antigenic	change	108 

only	occurs	over	a	period	of	one	to	ten	years	[22,	23].	However,	while	the	extent	of	cross-109 

immunity	between	influenza	(sub)types	remains	unknown,	current	influenza	vaccines	are	110 

not	sufficient	to	protect	people	from	all	(sub)types	of	influenza	virus	[21,	24].	Thus,	we	may	111 

expect	that	separate	epidemics	within	a	single	year	are	often	caused	by	different	influenza	112 

viruses.	As	a	result,	appropriate	models	of	influenza	transmission	in	tropical	and	113 

subtropical	locations	may	need	to	take	multiple	types	and	subtypes	into	account,	further	114 

complicating	modeling	efforts.	115 

	 	116 

Here,	we	utilize	influenza	incidence	data	that	have	been	collected	since	1998	in	117 

Hong	Kong,	a	densely	populated	city	with	a	subtropical	climate,	to	explore	the	impact	of	118 

climate	drivers	on	influenza	epidemics.	We	formulate	seven	models,	each	allowing	for	119 

differing	roles	of	humidity,	temperature,	and	influenza	co-circulation.	We	expect	that,	by	120 

accounting	for	1)	increased	transmission	at	both	low	and	high	values	of	AH,	2)	decreased	121 

transmission	at	high	temperatures	(e.g.,	>30	°C),	and	3)	co-circulation	of	several	influenza	122 
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types	and	subtypes,	the	model	best	representing	the	impact	of	key	climate	drivers	and	123 

influenza	co-circulation	will	be	able	to	best	reproduce	observed	influenza	dynamics	in	124 

Hong	Kong.		In	addition,	influenza	pandemics	could	occur	“off-season”	under	more	extreme	125 

climate	conditions	(e.g.,	hot	summer	days),	due	to	higher	population	susceptibility	to	a	126 

novel	virus.		Thus,	we	include	the	2009	pandemic	in	our	model	testing	and	expect	the	best-127 

performing	model	to	also	capture	influenza	dynamics	during	the	pandemic	after	128 

accounting	for	the	increased	population	susceptibility.		To	model	the	impact	of	humidity,	129 

here	we	focus	on	AH	as	it	is	independent	of	temperature.	Specifically,	unlike	relative	130 

humidity	measuring	the	amount	of	water	vapor	(i.e.	moisture)	in	the	air	relative	to	the	total	131 

amount	of	vapor	that	can	exist	in	the	air	at	its	current	temperature,	AH	measures	the	actual	132 

amount	of	water	vapor	in	the	air	irrespective	of	the	air’s	temperature.			133 

	134 

Methods	135 

Influenza	Data:	Data	on	influenza-like	illness	(ILI)	and	laboratory-confirmed	influenza	136 

from	January	1998	through	December	2018	were	obtained	from	the	Centre	for	Health	137 

Protection	of	the	Hong	Kong	Special	Administrative	Region.	ILI	data	were	collected	by	a	138 

sentinel	surveillance	network	consisting	of	64	public	out-patient	clinics	and	roughly	50	139 

private	medical	practitioners’	clinics	throughout	Hong	Kong,	while	laboratory	testing	was	140 

performed	on	specimens	from	outpatient	clinics	and	public	hospitals.	Throughout	our	141 

study	period	(21	years	from	January	1998	to	December	2018),	the	same	procedure	for	142 

selecting	specimens	for	viral	testing	was	used;	however,	from	February	10,	2014	onward,	143 

viral	testing	was	carried	out	using	molecular	testing	instead	of	viral	culture.	We	multiply	144 

weekly	ILI	case	counts	by	the	proportion	of	tests	positive	for	influenza	each	week	and	refer	145 

to	the	resulting,	more	specific	measure	as	ILI+.	Finally,	data	were	converted	to	rates	per	146 

100,000	population.		147 

	148 

Climate	Data:	Hong	Kong	has	a	humid	subtropical	climate,	with	hot,	humid,	and	rainy	149 

summers,	and	mild	winters	[25].	Daily	mean	temperature	and	relative	humidity	were	taken	150 

at	the	Hong	Kong	Observatory	[26].		Using	these	data,	we	used	the	Clausius-Clapeyron	151 

relation	[27]	to	calculate	daily	mean	specific	humidity,	a	measure	of	AH	(see	152 

Supplementary	Materials).	153 
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	154 

Model	Hypotheses:	In	this	work,	we	formulated	seven	models	to	test	several	hypotheses	155 

concerning	the	impact	of	humidity	and	temperature	on	influenza	transmission	in	Hong	156 

Kong,	and	how	co-circulation	influenza	(sub)types	affect	this	process.	While	specific	157 

methodology	associated	with	each	model	is	detailed	below,	we	describe	the	hypotheses	158 

considered	here:	159 

• Null	hypothesis	1	(or	Null1,	Constant	basic	reproductive	number	R0):	Climate	160 

conditions	have	no	effect	on	influenza	transmission.	To	represent	this,	we	held	R0,	the	161 

epidemic	parameter	representing	the	average	number	of	new	cases	arising	from	a	162 

primary	case	in	a	fully	susceptible	population,	constant.	163 

• Null	hypothesis	2	(or	Null2,	Temperate	Forcing):	AH	affects	influenza	transmission	in	164 

the	subtropics	and	tropics	in	the	same	manner	as	in	temperate	regions;	that	is,	R0	165 

increases	monotonically	with	decreasing	AH.	Here,	R0	was	modeled	according	to	the	166 

equation	first	presented	in	[11].	This	model	has	previously	been	shown	to	perform	well	167 

when	modeling	influenza	transmission	patterns	in	temperate	regions	[12].	168 

• AH	model:	The	effect	of	AH	is	bimodal,	with	both	low	and	high	AH	conditions	favoring	169 

influenza	transmission.	Temperature	is	assumed	to	have	no	additional	effect	on	170 

transmission.	R0	was	modeled	according	to	Eqn	S6,	where	both	low	and	high	values	of	171 

AH	lead	to	higher	values	of	R0.	172 

• AH/T	model:	Absolute	humidity	has	a	bimodal	effect	on	R0,	as	in	the	AH	model,	but		173 

this	effect	is	moderated	by	temperature	as	shown	in	Equation	3.	Briefly,	low	174 

temperatures	promote	influenza	transmission,	and	temperatures	above	a	certain	175 

threshold	limit	transmission.	176 

• AH/T/Strain:	AH	and	temperature	impact	R0	as	in	the	AH/T	model.	Additionally,	two	177 

“strains”	of	influenza	co-circulate	in	the	population,	as	in	[12].	Here	we	ignore	cross-178 

immunity	between	strains;	in	other	words,	infection	with	one	strain	has	no	effect	on	the	179 

potential	for	later	infection	with	the	other	strain.		180 

• AH/T/Short:	Climate	forcing	is	included	as	in	the	AH/T	model.	Additionally,	we	restrict	181 

the	duration	of	immunity	in	the	model	to	be	about	1	year	(i.e.,	0.5	–	1.5	years),	in	order	182 

to	implicitly	take	co-circulation	into	account	(i.e.,	for	an	individual,	multiple	infections	183 

by	different	influenza	strains	could	occur	within	a	short	time	span).	184 
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• AH/T/Vary:	Climate	forcing	is	included	as	in	the	AH/T	model.	Additionally,	a	small	185 

proportion	(<50%)	of	the	population	experiences	a	significantly	truncated	duration	of	186 

immunity	(<1	year)	after	infection.	In	other	words,	duration	of	immunity	to	influenza	is	187 

heterogeneous	among	the	population.	188 

	189 

SIRS	Model:	We	modeled	influenza	transmission	in	Hong	Kong	using	a	compartmental	190 

susceptible-infected-recovered-susceptible	(SIRS)	model	with	demography.	While	we	used	191 

two	distinct	forms	of	the	model	for	this	project	described	below,	the	basic	model	takes	the	192 

form:	193 

	194 
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[1]	

	195 

where	N	is	the	size	of	the	model	population	(here	set	to	100,000);	βt	represents	the	196 

rate	of	transmission	on	day	t,	depending	on	climatic	functions	as	described	below;	D	is	the	197 

mean	infectious	period;	L	is	the	average	duration	of	immunity;	and	α	represents	random	198 

seeding	from	outside	the	model	population	(here	we	arbitrarily	set	it	to	0.1,	i.e.	1	per	10	199 

days	for	all	models).		µ	is	the	rate	of	natural	birth	and	death	(i.e.,	to	maintain	a	constant	200 

population	size,	we	assume	equal	birth	and	death	rates).	We	set	µ	to	be	0.00918	divided	by	201 

365,	or	the	average	daily	birth	rate	per	person	in	Hong	Kong	during	1998	–	2017	[28].	The	202 

parameter	p	is	an	exponent	to	introduce	nonlinearity	into	the	infection	process	(i.e.	203 

imperfect	population	mixing).	The	inclusion	of	this	parameter	has	been	shown	to	be	helpful	204 

in	modeling	complicated	epidemics	using	very	simple	models	[29],	as	is	the	case	in	this	205 

work.	Finally,	because	the	2009	pandemic	was	caused	by	a	novel	strain	of	influenza	with	206 

little	prior	population	immunity,	we	reset	the	number	of	susceptibles	in	our	population	in	207 

early	August	of	2009	to	be	between	60%	and	80%	of	the	total	population	[30-32]	(vs.	40-208 

80%	for	model	initiation	in	January	1998;	see	Table	1).	All	models	were	run	stochastically,	209 

as	described	in	the	Supplementary	Materials	and	in	[12].	210 
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	211 

SIRS	Model	Variations:	In	this	work,	we	considered	three	models	to	account	for	212 

cocirculation	and	heterogenous	immunity	period:	213 

1) AH/T/Strain:	To	account	for	co-circulating	influenza	viruses,	we	ran	two	SIRS	214 

simulations	(Eqn	1)	in	parallel,	as	done	in	Shaman	et	al.	[12].	While	there	are	three	215 

co-circulating	influenza	(sub)types,	we	combined	A(H1N1)	and	B	for	simplicity,	216 

given	the	similar	timing	of	the	circulation	of	these	two	viruses	(Fig	S1).	Here,	we	217 

applied	random	seeding	at	each	week	only	to	the	“strain”	that	had	the	greater	218 

number	of	positive	tests	that	week.	If	both	“strains”	were	equally	common,	seeding	219 

was	applied	to	a	single	strain	at	random.	We	then	combined	the	output	of	the	two	220 

simulations	and	compared	the	resulting	estimates	to	the	overall	ILI+	data.	Note	that	221 

per	this	simple	model,	multiple	influenza	epidemics	due	to	different	influenza	222 

viruses	can	occur	at	the	same	time,	as	well	as	co-infection	of	multiple	influenza	223 

viruses.		224 

	225 

2) 	AH/T/Short:	This	model	used	Equation	1	but	restricted	L,	the	duration	of	226 

immunity,	to	be	between	around	one	year	to	account	for	multiple	infections	within	a	227 

year	due	to	multiple	circulating	strains.		228 

	229 

3) AH/T/Vary:	In	this	model,	a	small	proportion	of	the	population	loses	immunity	to	230 

influenza	at	an	accelerated	rate.	This	was	modeled	by	replacing	the	term	
45657

8
	in	231 

Equation	1	with:	232 

	233 

	234 

	
9
+,58:),58:

- $,58:
'

+ (1 − 9)
' − $ − )

*
	

	

	

[2]	

	235 

where	ρ	is	the	proportion	of	the	model	population	that	loses	immunity	after	a	short	period	236 

Ls	and	+,58:),58:
- $,58: 	represents	the	number	of	new	infections	Ls	days	ago,	who	would	lose	237 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.21251148doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251148


 9 

their	immunity	on	day	t.	We	note	that,	since	longer-term	immunity	is	lost	at	an	exponential	238 

rate,	while	short	term	immunity	simply	removes	a	set	number	of	individuals	from	the	239 

recovered	compartment	at	each	time	step,	there	is	a	possibility	of	double-counting.	240 

However,	given	the	difference	in	time	scales	(less	than	one	year	vs.	several	years),	we	do	241 

not	anticipate	that	this	approximation	will	lead	to	severe	problems.		242 

	243 

Climate	Forcing	Models:	Based	on	past	work	[12,	14,	16,	20],	as	well	as	the	patterns	244 

observed	in	the	influenza	and	climate	data	described	above	and	shown	in	Fig	1,	we	245 

modeled	the	impact	of	AH	using	a	parabola,	where	transmissibility	is	highest	at	very	low	246 

and	very	high	levels	of	AH.	In	all	AH/T	models,	this	relationship	was	modified	by	247 

temperature	such	that,	when	temperature	is	above	some	cutoff	value,	transmissibility	is	248 

reduced.	Specifically,	for	models	AH/T,	AH/T/Strain,	AH/T/Short,	and	AH/T/Vary,	the	249 

impact	of	AH	and	temperature	on	transmissibility	was	modeled	as:	250 

	251 

	
<=(%) = [?@A(%) + B@(%) + C][

EF
E(%)

]GHIJ 	

	
[3]	

	252 

where	q(t)	is	specific	humidity	(i.e.	a	measure	of	AH)	at	time	t,	and	T(t)	is	temperature	at	253 

time	t.	The	parameter	βt	in	the	SIRS	model	is	defined	as	R0(t)	divided	by	D;	thus,	AH	and	254 

temperature	act	through	β	in	Equations	1	and	2	to	influence	transmission	patterns.	When	T	255 

is	below	Tc,	lower	temperatures	are	able	to	further	increase	R0,	whereas	temperatures	256 

above	Tc	inhibit	influenza	transmission.	However,	the	favorable	impact	of	low	temperature	257 

may	level	off	at	relatively	low	temperatures.	Thus,	we	truncated	this	monotonic	258 

relationship	at	a	minimum	temperature	of	Tc	–Tdiff,	beyond	which,	the	effect	levels	off.		The	259 

strength	of	this	relationship	is	further	determined	by	the	exponent	Texp.	For	the	AH	Only	260 

model,	AH	was	also	modeled	as	a	parabola	(i.e.	the	terms	within	the	first	set	of	squared	261 

brackets),	but	with	no	impact	of	temperature	(Eqn.	S6).	262 

	263 
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 10 

To	link	the	coefficients	a,	b,	and	c	to	the	AH	q	and	R0,	we	reparametrize	them	by	264 

solving	the	parabola	with	the	nadir	at	(qmid,	R0min)	and	maximum	at	both	(qmin,	R0max)	and	265 

(qmax,	R0max)	(see	Supplemental	Materials).	266 

	267 

Model	optimization	(parameter	tuning):	To	assess	the	validity	of	the	models,	we	first	268 

split	the	influenza	data	into	a	training	set	(Jan	1998	–	Dec	2012;	15	years)	and	a	testing	set	269 

(Jan	2013	–	Dec	2018;	6	years).	That	is,	data	from	1998	to	2012	were	used	to	train	the	270 

model	and	optimize	parameters,	the	remaining	data	from	2013	to	2018	were	holdout	for	271 

testing.			272 

	273 

We	optimized	each	model	by	testing	a	wide	range	of	parameter	values	(Table	1)	274 

based	on	the	literature	[12,	22,	23,	33-39],	and	tuning	parameter	range	against	the	275 

influenza	data	observed	during	Jan	1998	–	Dec	2012	(i.e.	the	training	period).	Specifically,	276 

for	each	model,	we	draw	1	million	parameter	combinations	from	ranges	listed	in	Table	1	277 

using	Latin	hypercube	sampling	[12].		Using	each	parameter	combination,	we	ran	each	278 

model	stochastically	from	Jan	1998	to	Dec	2012	with	a	daily	time	step	and	aggregated	the	279 

simulated	daily	ILI+	to	weekly	intervals	for	model	assessment.	To	account	for	model	280 

stochasticity,	we	repeated	the	simulation	500	times	for	each	parameter	set.	We	then	281 

calculated,	for	each	model	run,	the	corresponding	root	mean	square	error	(RMSE)	and	282 

correlation	against	the	full	training	dataset	and	weekly	averaged	dataset	(i.e.,	for	each	of	283 

the	52	weeks	of	the	year,	averaged	the	ILI+	over	15	training	years),	separately;	We	refer	to	284 

these	metrics	as	full.RMSE,	avg.RMSE,	full.Correlation	and	avg.Correlation,	respectively,	285 

hereafter.		We	further	averaged	across	the	500	model	runs	for	each	parameter	combination	286 

to	obtain	a	single	set	of	metrics	for	the	corresponding	parameter	combination.	To	combine	287 

the	metrics	and	simplify	the	process	of	parameter	selection,	we	averaged	the	two	RMSE	288 

metrics	(RMSES)	and	the	two	correlation	metrics	(CORR),	separately,	as:	289 

<K$L$ = 0.5	PQRR. <K$L + 0.5	?ST. <K$L	290 

and:	291 

UV<< = 0.5	PQRR. UWXXYR?%ZW[ + 0.5	?ST. UWXXYR?%ZW[	292 

		293 
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 11 

Based	on	these	two	final	metrics,	we	selected	the	top	1000	parameter	combinations	294 

out	of	the	one	million	for	each	model:	the	1000	with	the	highest	CORR	among	those	with	295 

RMSES	lower	than	the	0.5	percentile.	We	then	computed	the	95%	highest	density	interval	296 

(HDI)	for	each	parameter	using	those	top	1000	to	generate	new	parameter	ranges	for	297 

subsequent	round	of	optimization.	That	is,	we	updated	the	range	of	a	parameter	with	the	298 

HDI,	if	the	upper	(or	lower)	bound	of	HDI	is	10%	smaller	(or	larger)	than	the	299 

corresponding	bound	of	the	original	range.	This	tuning	process	was	repeated	until	the	300 

parameter	range	no	longer	shrinks	substantially	(i.e.	by	10%).	In	this	study,	it	took	two	301 

rounds	of	such	parameter	selection;	at	each	round,	we	checked	to	ensure	the	model	fit	was	302 

improving	using	the	new	parameter	ranges.	303 

	304 

After	obtaining	the	final	parameter	ranges,	we	drew	10,000	random	parameter	305 

combinations	from	these	final	ranges	and	ran	the	models	from	Jan	1998	–	Dec	2018	using	306 

each	parameter	combination.		In	this	last	batch,	we	obtained	the	top	1000	parameter	307 

combinations	as	described	above	for	further	assessment	and	model	comparison.		308 

	309 

Model	assessment:	We	evaluated	performance	of	the	seven	models	based	on	the	four	310 

metrics	described	above	(i.e.,	full.RMSE,	avg.RMSE,	full.Correlation,	avg.Correlation)	during	311 

both	the	training	and	testing	period.	To	quantify	the	differences	in	performance	among	312 

models,	we	applied	the	Kruskal-Wallis	test	to	test	if	the	mean	rank	of	different	models	were	313 

similar	for	each	metric.	Since	significant	differences	were	found	between	models,	we	314 

further	performed	a	pairwise	comparison	using	the	Nemenyi	test	with	an	adjusted	p-value	315 

of	0.007	(i.e.,	0.05	/7).	We	summarized	the	model	ranking	in	Table	2	based	on	model	316 

performances	including	the	pandemic	period.		In	addition,	as	a	sensitivity	analysis,	we	317 

ranked	the	models	based	on	their	performances	excluding	the	2009	pandemic	in	Table	S1.			318 

	319 

Results	320 

General	influenza	transmission	dynamics	in	Hong	Kong.	Influenza	activity	is	highly	321 

diverse	in	Hong	Kong.	Unlike	the	common	wintertime	epidemics	in	temperate	regions,	322 

during	our	study	period	(Jan	1998–	Dec	2018),	Hong	Kong	experienced	two	epidemics	per	323 

year	in	most	years	(17	out	of	21;	the	four	exceptions	were:	Year	2001,	2011,	2012	and	324 
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2018;	Fig	1A).	For	years	with	two	epidemics,	one	epidemic	typically	occurred	during	the	325 

winter,	and	the	other,	usually	smaller	in	magnitude,	occurred	during	the	summer	(Fig	1A).	326 

Usually,	there	was	a	single	influenza	(sub)type	predominating	during	each	epidemic,	327 

although	co-circulation	of	multiple	strains	with	comparable	magnitudes	could	occur	(Fig	328 

1A).	While	any	(sub)type	can	dominate	winter	epidemics,	summer	epidemics	were	almost	329 

always	caused	by	A(H3N2)	(15	out	of	17	years	with	summer	epidemics;	Fig	1A).		330 

	331 

Climate	conditions	in	Hong	Kong	overall	and	during	influenza	epidemics.	Both	mean	332 

daily	temperature	and	AH	in	Hong	Kong	displayed	strong	seasonality,	where	temperature	333 

and	AH	were	highest	in	summer	and	lowest	in	winter	(Fig	1B).	In	the	hottest	days,	the	334 

mean	temperature	in	Hong	Kong	can	exceed	30°C	(around	six	days	per	year),	but	most	of	335 

the	time,	mean	temperature	was	between	15°C	to	30°C.	Hong	Kong	was	also	very	humid.	336 

Compared	to	the	relatively	drier	and	cooler	climates	in	temperate	regions,	the	humid	337 

climate	in	Hong	Kong	may	provide	favorable	conditions	for	influenza	transmission	during	338 

the	summer	despite	the	high	temperatures.	In	addition,	temperature	and	AH	were	highly	339 

correlated	(Pearson's	ρ	=	0.94,	p	<	0.001).	Such	a	high	correlation	could	confound	the	340 

potential	effect	on	influenza	activity	due	to	either	climate	variable	and	suggests	that	simple	341 

linear	models	will	not	be	able	to	separate	such	effects.	342 

	343 

Models	incorporating	the	impact	of	humidity	and	temperature	best	replicate	the	344 

influenza	dynamic	in	Hong	Kong.	In	this	work,	we	designed	seven	models	and	performed	345 

two	rounds	of	parameter	selection	to	obtain	the	optimized	HDI	for	each	parameter	in	every	346 

model,	and	eventually	compared	the	models	using	the	selected	parameter	combinations.	347 

Among	the	seven	models	constructed,	the	Null1	model	served	as	a	“control”	model	since	it	348 

had	a	constant	R0	that	is	independent	of	any	climate	factors.	In	other	words,	if	a	model	349 

failed	to	outperform	the	Null1	model,	then	the	proposed	relationship	between	climate	350 

factors	and	the	influenza	transmission	dynamics	would	not	be	supported.		In	addition,	we	351 

note,	again,	that	we	included	the	2009	influenza	pandemic	in	our	main	analysis,	because	352 

the	off-season	occurrence	of	pandemic	influenza	provided	a	unique	opportunity	to	test	the	353 

climate	forcing	models	under	more	extreme	climate	conditions.	Table	2	shows	the	model	354 
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ranking	including	the	pandemic	and	Table	S1	excluding	the	pandemic.	Results	are	355 

consistent	across	the	two	analyses.		356 

	357 

Overall,	all	models	incorporating	seasonality	outperformed	the	Null1	model,	for	358 

which	R0	is	set	to	a	constant	(mean	testing	rank:	6.5	out	of	seven	models;	Table	2	and	Fig	359 

2),	suggesting	the	seasonal	variation	of	influenza	activity.	In	addition,	while	the	AH	model	360 

(i.e.	without	including	temperature	as	a	variable)	outperformed	the	Null1	model,	it	was	361 

consistently	inferior	when	compared	to	other	models	(mean	testing	rank:	5.5	out	of	7	362 

models;	Table	2,	Fig	2).	The	model	failed	to	capture	much	of	the	dynamics	observed	in	363 

Hong	Kong,	especially	in	colder	months	(Fig	S2C).	This	suggests	that,	in	addition	to	AH,	364 

temperate	can	modulate	influenza	transmission	in	Hong	Kong.	365 

	366 

To	test	if	the	monotonic	increase	in	transmission	with	decreasing	AH	as	observed	in	367 

temperate	regions	also	applies	to	the	subtropics,	we	also	tested	the	model	by	Shaman	et	al.	368 

(i.e.	the	Null2	model	here).	The	Null2	model	was	able	to	better	recreate	the	observed	369 

transmission	dynamics	in	Hong	Kong	than	the	Null1	and	AH	model.	However,	its	370 

performance	during	the	training	period	ranked	lower	than	models	additionally	371 

incorporating	increasing	transmission	under	high	AH	conditions	(i.e.	a	bimodal	relation)	372 

(Table	2).		373 

	374 

Models	incorporating	the	impact	of	both	AH	and	temperature	improved	the	model	375 

performance	significantly	(Fig	2).	The	AH/T	models	(AH/T,	AH/T/Short,	AH/T/Vary,	and	376 

AH/T/Strain)	had	the	best	performance	among	all.	Among	these	four	models,	the	AH/T	and	377 

AH/T/Short	models	assumed	the	same	model	construct	but	with	different	initial	ranges	for	378 

the	immunity	duration	(L).	After	rounds	of	parameter	selection,	the	HDI	of	L	eventually	379 

converged	for	the	two	models	(Table	1),	as	did	other	parameters.	Therefore,	we	considered	380 

these	two	models	to	be	the	same.	Indeed,	either	model	ranked	among	the	top	two	during	381 

the	training	period.	However,	the	AH/T	model	appeared	to	be	more	stable	and	remained	as	382 

a	top	performing	model	during	the	testing	period	(Table	2).			383 

	384 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.21251148doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251148


 14 

Two	models	(i.e.,	AH/T/Vary	and	AH/T/Strain)	additionally	accounted	for	385 

long/short-term	immunity	and/or	co-circulation	of	different	influenza	viruses.	Both	386 

models	performed	comparably	to	the	AH/T	model	but	not	better	(Fig	3).	In	addition,	for	the	387 

common	parameters,	the	HDIs	of	the	three	models	converged	to	similar	ranges	(Table	1).	388 

The	AH/T/Vary	model,	although	formulated	differently,	had	similar	HDI	and	performances	389 

as	the	AH/T	model.		The	AH/T/Strain	model	was	the	only	model	that	specifically	accounted	390 

for	co-circulation	of	different	influenza	viruses.	Although	the	model	was	able	to	simulate	391 

ILI+	with	high	correlation	with	the	observed	data	and	recreate	large	epidemics,	it	did	not	fit	392 

smaller	epidemics	as	well	and	thus	had	a	high	RMSE	(Fig	3).	393 

	394 

Taken	together,	the	AH/T	model	had	the	most	consistent	and	best	performance	over	395 

the	entire	study	period.	It	is	also	the	most	parsimonious	model	among	all	top	performing	396 

ones.		397 

	398 

Impact	of	humidity	and	temperature	on	influenza	transmission,	as	estimated	by	the	399 

top	models.	To	account	for	the	impact	of	humidity	on	influenza	transmission,	we	included	400 

three	parameters	in	the	models	to	describe	a	bimodal	relationship.	That	is,	below	a	401 

threshold	AH	(qmid),	transmission	would	increase	as	AH	decreases	and	level	off	when	AH	is	402 

≤	qmin,	whereas	above	that	threshold,	transmission	would	increase	as	AH	increases	and	403 

level	off	when	AH	is	≥	qmax.	Tamerius	et	al	2013	[14]	defined	a	similar	bimodal	relationship	404 

and	found	a	threshold	of	11-12	g/kg	for	regions	with	single-peak	vs	bimodal	epidemics.	In	405 

addition,	they	found	that	most	influenza	peak	activities	occurred	in	“cold-dry”	conditions	406 

(i.e.,	AH	<	8	g/kg)	or	“humid-rainy”	conditions	(AH	>	14	g/kg).		Consistent	with	Tamerius	et	407 

al.,	we	estimated	the	threshold	qmid	to	be	10	–	12.6	g/kg,	where	R0	troughs	(Fig	4).		In	408 

addition,	we	further	quantified	how	influenza	transmission	(i.e.	as	indicated	by	R0	409 

estimates)	changes	with	AH	in	the	two	regimes	(Eqn	3).	We	estimated	that	when	AH	is	410 

below	10-12.6	g/kg,	R0	would	increase	with	decreasing	AH	quadratically	up	to	a	minimum	411 

of	2	–	4	g/kg;	when	AH	is	above	10-12.6	g/kg,	R0	would	increase	with	increasing	AH	412 

quadratically	up	to	a	maximum	of	17-20	g/kg	(Table	1).		413 

	414 
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In	addition	to	AH,	we	included	three	parameters	to	model	the	impact	of	temperature	415 

on	influenza	transmission.		Foremost,	as	described	in	Eqn	3,	the	impact	of	temperature	is	416 

modeled	as	a	multiplicative	adjustment	to	the	impact	of	AH.	Below	a	threshold	temperature	417 

Tc,	decreasing	temperature	increases	transmission	up	to	a	minimum	of	Tc	–Tdiff;	above	Tc,	418 

increasing	temperature	reduces	transmission.		Deyle	et	al.	[20]	suggested	temperature	419 

around	24°C	(75°F)	as	a	threshold	dividing	the	negative	and	positive	effect	of	AH	on	420 

transmission.	Similarly,	we	estimated	Tc	to	have	an	HDI	between	20-24°C	(Table	1).	As	421 

shown	in	Fig	4,	when	temperature	is	below	Tc,	low	temperature	further	facilitates	422 

transmission,	in	addition	to	the	favorable	transmission	conditions	due	to	concurrent,	low	423 

AH	in	cold	months.		However,	when	temperature	exceeds	Tc,	high	temperature	suppresses	424 

transmission	and	lowers	the	overall	R0	despite	the	favorable	transmission	conditions	due	425 

to	concurrent,	very	high	AH	in	the	summer.		In	addition,	we	estimated	Tdiff	to	have	an	HDI	of	426 

0.4-5.3°C,	which	implies	temperature	below	16-23°C	does	not	afford	additional	increases	427 

in	transmission.	Similar	transmission	behavior	was	also	found	by	Brown	et	al.	[33]	with	428 

avian	influenza	viruses,	whose	infectiveness	stabilized	after	the	temperature	dropped	429 

below	17°C.		The	estimated	value	of	Texp,	the	exponent	of	the	Tc/T	ratio	(Eqn	3),	had	an	HDI	430 

of	0.95-1.54,	suggesting	the	moderation	of	temperature	is	slightly	super-linear.				431 

	432 

We	also	estimated	the	duration	of	immunity	(L)	with	our	models	to	better	433 

understand	transmission	dynamics.	The	immunity	period	L	directly	affects	the	frequency	of	434 

influenza	epidemics	–	i.e.,	shorter	L	would	lead	to	more	frequent	epidemics.	Here	we	435 

estimated	L	to	be	around	1-1.3	years	for	the	AH/T	model,	and	1.5-2.3	year	for	AH/T/Strain.	436 

For	the	AH/T/Vary	model,	considering	population	heterogeneity,	we	included	another	437 

parameter	Ls	to	represent	short-term	immunity	(<1	year).	We	found	Ls	was	around	3-11	438 

months	and	L	around	1-1.6	years;	combing	these	two	parameters	(i.e.,	L,	Ls),	the	average	is	439 

very	similar	to	the	L	estimated	by	the	AH/T	model.	Overall,	these	L	estimates	are	consistent	440 

with	the	frequent	influenza	epidemics	observed	in	Hong	Kong;	however,	we	note	that	these	441 

estimates	are	on	the	lower	end	of	the	reported	1-10	year	range	[22].	442 

	443 
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Validate	model	findings	using	laboratory	results.	The	reproductive	number	represents	444 

the	epidemic	potential	of	an	infection.	To	examine	if	the	identified	relationship	with	AH	and	445 

temperature	is	consistent	with	data	from	laboratory	studies,	we	further	compared	the	446 

basic	reproductive	number	R0	and	effective	reproductive	number	Re	calculated	by	our	447 

model	(Eq	3)	with	the	influenza	virus	survival	rate	in	aerosols	[35]	as	well	as	the	influenza	448 

transmission	rate	observed	in	guinea	pigs	[39,	40].		At	the	population	level,	epidemic	can	449 

occur	when	Re	is	above	1	and	will	subside	when	Re	drops	below	1.		Indeed,	no	transmission	450 

occurred	in	the	guinea	pig	studies	[40]	under	conditions	where	the	estimated	Re	per	our	451 

model	(Eqn	3)	was	below	1;	in	contrast,	transmission	occurred	when	estimated	Re	was	452 

above	1,	ranging	1.21-2.25	(corresponding	R0	range:	1.68-3.11;	Fig.	5).		In	addition,	fitting	a	453 

linear	regression	of	estimated	R0	(or	Re)	against	the	log	survival	rate	and	log	transmission	454 

probability,	we	found	that	estimated	R0	(or	Re)	positively	correlated	with	both	laboratory-455 

observed	survival	rate	and	transmission	rate	of	the	influenza	virus	(Fig	5).	In	particular,	the	456 

correlation	between	R0	(or	Re)	estimated	by	our	AH	and	temperature	model	(Eqn	3)	and	457 

the	observed	transmission	rate	was	0.82	(r2	=	0.67;	Fig	5),	suggesting	it	was	able	to	explain	458 

around	70%	of	the	variances	of	the	transmission	rate.	These	findings	indicate	that	our	459 

model	is	able	to	represent	both	the	impact	of	AH	and	temperature	on	influenza	epidemic	460 

patterns	at	the	population	level	as	well	as	influenza	transmission	and	survival	observed	in	461 

laboratory	settings.		462 

	463 

Discussion	464 

Despite	influenza’s	profound	impact	on	public	health,	little	is	known	about	how	the	virus	465 

transmits	from	person	to	person	and	what	environmental	and	climate	conditions	make	this	466 

process	more	likely.	To	date,	there	have	been	only	a	few	studies	on	the	influenza	burden	in	467 

tropical	and	subtropical	regions.	Of	those	studies,	a	handful	analyzed	the	effect	of	climate	468 

drivers	on	influenza	incidence	using	time-series	or	logistic	regression	models.	Although	469 

those	statistical	models	were	able	to	identify	significant	climate	covariates	(including	AH,	470 

temperature,	and	precipitation)	and	estimate	the	effect	size,	they	did	not	provide	much	471 

information	to	the	underlying	mechanism	of	how	those	climate	covariates	affect	472 

transmission.	In	contrast,	infectious	disease	models	(e.g.,	the	SIRS	model)	provide	a	means	473 

to	model	and	test	the	relationship	between	climate	factors	and	influenza	transmission	474 
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observed	in	laboratories.	In	this	work,	by	building	seven	SIRS	models	under	different	475 

hypotheses,	we	explored	how	temperature,	AH,	and	influenza	co-circulation	affect	the	476 

transmission	of	influenza.	We	showed	that	models	that	included	both	AH	and	temperature	477 

as	covariates	consistently	outperformed	those	that	did	not	in	recreating	the	observed	478 

influenza	epidemic	patterns	in	Hong	Kong.	These	results	support	that	climate	variables	479 

play	a	critical	role	in	influenza	transmission,	where	temperature	is	particularly	influential	480 

in	moderating	the	impact	of	AH.	Model	results	also	indicate	that	the	effect	of	climate	481 

drivers	in	tropical	and	sub-tropical	regions	is	different	from	those	observed	in	the	482 

temperate	regions,	and	models	built	for	temperate	areas	will	not	be	sufficient	to	reproduce	483 

the	transmission	patterns	in	the	tropics	or	the	subtropics.		484 

	485 

Previous	studies	had	suggested	a	bimodal	effect	of	AH	on	influenza	transmission	486 

[20].	However,	such	an	effect	has	not	been	quantified	nor	incorporated	in	influenza	487 

transmission	models	as	done	for	temperate	regions	[12].	Here,	we	have	developed	a	model	488 

that	can	effectively	represent	this	U-shaped	relationship	with	AH,	moderated	further	by	489 

temperature.	When	incorporated	into	an	SIRS	model,	the	combined	model	was	able	to	490 

recreate	the	diverse	influenza	epidemic	dynamics	observed	in	Hong	Kong	over	a	21-year	491 

period.	As	described	earlier,	the	breaking	point	between	the	“cold-dry”	and	“hot-humid”	492 

environment	is	an	AH	of	approximately	10-12.6	g/kg,	which	is	consistent	with	Tamerius	et	493 

al	2013	[14].	This	finding	helps	to	explain	the	biannual	epidemics	observed	in	Hong	Kong.	494 

In	the	winter	when	weather	is	“cold-dry,”	the	influenza	transmission	rate	increases	as	the	495 

environment	gets	drier.	On	the	other	hand,	summer	in	Hong	Kong	is	hot	and	humid	–	the	496 

very	high	AH	also	promotes	influenza	transmission,	despite	high	temperatures.		497 

	498 

The	combined	relationship	of	influenza	transmission	with	both	AH	and	temperature	499 

we	delineated	in	Fig	4	also	consistently	explains	observations	in	temperate	regions	where	500 

influenza	surges	predominantly	in	winter	and	increases	monotonically	with	decreasing	AH.	501 

During	summers	in	temperate	areas,	absolute	AH	is	typically	lower	than	15	g/kg	(vs.	as	502 

high	as	23g/kg	in	subtropics/tropics)	[12],	and	temperature	is	relatively	high.	Under	such	503 

environmental	conditions,	R0	would	stay	in	the	trough	during	the	summer	(Fig	4),	and	only	504 

increases	in	the	winter	when	AH	becomes	low	(Fig	4).	As	such,	it	appears	that	influenza	505 
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transmission	rate	increases	monotonically	with	decreasing	AH,	leading	to	a	single	epidemic	506 

each	year	in	the	winter	in	temperate	regions.		507 

	508 

	 When	there	are	multiple	strains	co-circulating,	individuals	who	recover	from	509 

infection	gain	specific	immunity	against	the	infecting	strain	and	may	remain	susceptible	to	510 

other	influenza	strains	in	co-circulation	either	during	the	same	or	subsequent	epidemics.	In	511 

this	study,	we	combined	data	from	all	three	co-circulating	influenza	viruses	and,	as	such,	512 

our	estimated	duration	of	immunity,	without	distinguishing	specific	strains,	was	relatively	513 

short	(~1–1.5	years).	In	comparison,	the	AH/T/Strain	model	which	modeled	H3N2	and	514 

H1N1/B	epidemics	separately,	estimated	a	longer	immunity	period	(1.5-2.5	years).	515 

Nevertheless,	either	estimate	is	quite	low	compared	to	the	duration	an	influenza	clade	in	516 

circulation	(1-10	years).	Therefore,	we	note	that	the	short	immunity	duration	estimated	517 

here	is	more	to	capture	the	frequent	influenza	epidemics	in	Hong	Kong.	For	locations	with	518 

less	frequent	influenza	epidemics,	re-estimating	the	immunity	duration	per	local	epidemic	519 

data	is	warranted.		520 

		521 

We	recognize	several	limitations	of	our	study.		First,	although	our	models	fit	the	522 

observations	in	Hong	Kong	well	and	provide	support	to	the	role	of	AH	and	temperature	on	523 

influenza	transmission,	it	is	important	to	note	that	further	laboratory	and	epidemiologic	524 

works	are	needed	to	establish	a	causal	relationship.		Second,	while	we	accounted	for	multi-525 

strain	co-circulation	to	some	extent	(e.g.,	the	AH/T/Short	and	the	AH/T/Strain	model),	our	526 

models	are	highly	simplified	and	do	not	distinguish	the	different	epidemiological	527 

characteristics	for	H3N2,	H1N1,	and	B;	as	such,	our	estimate	of	the	immunity	period	may	528 

not	reflect	the	true	value.	Third,	for	model	simplicity,	we	did	not	model	the	interactions	529 

between	(sub)types,	which	can	modify	the	association	with	climate	variables	[41].	Future	530 

research	is	necessary	to	explore	the	impact	of	co-circulation,	as	a	reasonable	inclusion	of	531 

multiple	influenza	(sub)types	may	be	more	appropriate	than	combining	all	strains.	Fourth,	532 

as	a	first	step,	here	we	combined	all	influenza	viruses	without	separating	influenza	by	533 

subtype	or	type.	Previous	studies	have	reported	differential	responses	of	different	534 

influenza	strains	to	climate	variables	[41].	Future	work	could	also	model	the	impact	of	535 
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climate	variables	for	each	influenza	virus	separately	to	examine	such	potential	differences	536 

and	the	impact	on	influenza	epidemic	dynamics	at	the	population	level.		537 

	538 

Our	study	also	sidestepped	several	key	factors	that	may	shape	influenza	transmission	539 

dynamics,	in	particular,	age,	vaccination,	and	seasonal	changes	in	contact	patterns.		Due	to	540 

a	lack	of	age-specific	incidence	data,	we	did	not	include	age	structure	in	our	models.		541 

Vaccination	rate	in	Hong	Kong	has	increased	in	recent	years,	particularly	among	children	542 

aged	<12	years	and	adults	65	years	or	older,	due	to	vaccination	subsidy	provided	to	these	543 

age	groups	from	2008	onwards	[42-44].	For	instance,	vaccination	rate	among	children	aged	544 

<12	years	increased	from	9.7%	in	2011/12	to	55.4%	in	2018/19;	and	vaccination	rate	545 

among	adults	65+	increased	from	31.7%	in	2011/12	to	43.6%	in	2018/19	[45,	46].		These	546 

increases	in	vaccination	coverage	may	in	part	explain	the	apparent	decreases	in	ILI+	in	547 

recent	years;	a	one-sided	t-test	indicated	that	the	yearly	ILI+	during	2011-2018	were	548 

significantly	lower	than	years	before	2009	(i.e.,	excluding	the	2009	pandemic	period;	549 

p=0.009).		However,	we	do	not	have	detailed	data	on	vaccination	rate	nor	vaccine	efficacy	550 

over	the	entire	study	period	in	order	to	account	for	the	impact	of	vaccination.	Further,	551 

seasonal	changes	in	contact	patterns	could	also	contribute	to	the	observed	seasonal	552 

influenza	epidemic	dynamics	in	Hong	Kong.		For	instance,	during	a	hot,	humid	summer,	553 

people	may	spend	more	time	indoors	and	thus	create	additional	opportunities	for	onward	554 

transmission	to	occur.		Similar	increases	of	indoor	contact	and	transmission	could	occur	555 

during	colder	days	in	the	winter.	As	such,	the	increased	transmission	under	highly	humid	556 

conditions	in	the	summer	or	colder-drier	conditions	in	the	winter	may	be	in	part	due	to	557 

increased	contact	indoors,	in	addition	to	the	higher	survival	rate	of	influenza	viruses	under	558 

these	environmental	conditions	as	shown	in	laboratory	studies	[15,	16,	39].			Our	modeling	559 

here	is	not	able	to	tease	this	apart.		Future	work	is	warranted	to	incorporate	these	560 

additional	factors	that	may	further	improve	understanding	of	influenza	transmission	561 

dynamics	in	tropical	and	subtropical	climates.			Nevertheless,	we	note	that,	all	climate	562 

forcing	models	tested	here	are	subject	to	the	same	limitations	discussed	above.	Thus,	the	563 

relative	performance	of	the	models	and	our	general	findings	regarding	key	climate	drivers	564 

still	hold.	565 

	566 
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In	summary,	we	have	developed	a	simple	mechanistic	model	incorporating	the	impact	567 

of	AH	and	temperature	on	influenza	transmission	that	is	able	to	recreate	the	long-term	568 

influenza	epidemic	dynamics	in	Hong	Kong,	a	subtropical	city	with	highly	diverse	epidemic	569 

patterns.	Past	work	has	demonstrated	that,	incorporating	information	on	AH	into	570 

mechanistic	influenza	models	significantly	improved	model	fit	and	forecast	accuracy	in	571 

temperate	regions	[11].	Given	that	forecasts	in	the	tropics	and	subtropics	tend	to	be	572 

substantially	less	accurate	than	forecasts	in	temperate	regions	[36],	the	climate	forcing	573 

model	developed	here	could	support	a	better	understanding	of	climatic	drivers	of	influenza	574 

transmission	in	these	regions.	Future	work	could	incorporate	this	model	into	a	SIRS	model-575 

forecast	system	to	improve	forecast	accuracy	in	the	tropics	and	subtropics	to	aid	public	576 

health	and	medical	workers	in	better	anticipating	influenza	transmission	in	forthcoming	577 

weeks.	578 
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Table	Captions:	

Table	1.	Descriptions	and	estimates	of	the	parameter	ranges.	The	range	estimates	are	the	

95%	highest	density	intervals	for	parameters,	obtained	after	two	rounds	of	parameter	

selection	from	the	initial	parameter	range	(shown	in	parentheses).	

	

Table	2.	The	model	performance	ranks	for	each	comparison	metric	using	training	and	696 

testing	data.	The	rankings	are	determined	by	the	model’s	absolute	mean	rank	differences	697 

with	the	best-ranked	model.	Different	rankings	between	models	indicate	significantly	698 

different	absolute	mean	ranks	(i.e.,	p-value<0.007).		The	mean	value	of	the	corresponding	699 

metric	is	shown	in	the	parentheses.	700 

	

	

Figure	Captions:	

Fig	1.		Influenza	epidemics	observed	in	Hong	Kong	during	1998-2018	and	the	

corresponding	mean	daily	temperature	and	AH.	Upper	panel:	stacked	barplot	of	the	weekly	

ILI+	incidence	time	series.	Segments	of	the	bar	represent	different	virus	(sub)types	

circulating	during	the	week.	Lower	panel:	daily	mean	temperature	and	specific	humidity	(a	

measure	of	AH)	observed	during	1998-2018.	

	

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.21251148doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251148


 25 

Fig	2.	Model	performance.	Boxes	and	whiskers	show	the	median	(thick	horizontal	lines),	701 

interquartile	range	and	95%	CI	of	RMSE	(1st	row),	average	RMSE	(2nd	row),	correlation	(3rd	702 

row)	and	average	correlation	(4th	row)	of	the	top	1000	parameter	combinations	for	each	703 

model,	during	the	training	(red)	and	testing	(green)	period,	separately.		704 

	705 

Fig	3.	Top10	model	fits	for	three	climate	forcing	models:	AH/T	(A),	AH/T/Vary	(B),	and	706 

AH/T/Strain	(C).	Black	crosses	show	observed	ILI+;	the	colored	lines	run	through	the	707 

crosses	are	the	top10	model	estimates.	The	vertical	dash	line	indicates	a	pandemic	(2009).	708 

The	shaded	region	represents	testing	years	(2013-2018),	while	the	rest	are	the	training	709 

years.	710 

	

Fig	4.	Estimated	relationship	between	influenza	transmission	with	AH	and	temperature.		

We	use	the	basic	reproductive	number	(R0)	to	represent	the	level	of	influenza	transmission.		

Each	point	shows	the	estimated	R0	at	different	specific	humidity,	a	measure	of	AH,	(and	

temperature	if	included)	calculated	per	the	AH/T	model	(left)	or	the	AH	model	(right)	

using	the	top	10	parameter	combinations	for	the	corresponding	model.	For	the	AH/T	

model	(left	panel),	the	color	of	the	point	shows	the	concurrent	temperature	included	in	the	

model	to	moderate	the	relationship	between	R0	and	specific	humidity.	

	

Fig	5.	Comparison	of	the	reproductive	numbers	estimated	by	the	AH/T	model	with	711 

laboratory	observed	virus	survival	rate	and	transmission	rate	in	guinea	pigs.	Left	panel	712 

plots	the	viral	survival	rate	(A)	and	transmission	rate	(C)	against	R0	calculated	using	Eqn	3	713 

and	best-fit	parameters	for	the	AH/T	model.	Right	panel	plots	the	viral	survival	rate	(B)	714 

and	transmission	rate	(D)	against	Re,	where	Re	is	calculated	as	R0	multiplied	by	the	715 

estimated	mean	population	susceptibility	during	the	study	period.	The	grey	vertical	line	716 

indicates	where	Re	=1.		The	viral	survival	data	came	from	Harper	1961	[35]	and	717 

transmission	rate	data	came	from	Lowen	et	al.	2007	and	2008	[39,	40].		718 

	

Supplementary	Table	Captions	

Table	S1.	The	model	performance	ranks	for	each	comparison	metric	using	training	and	719 

testing	data	(excluding	the	2009	pandemic).	The	rankings	are	determined	by	the	model’s	720 
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absolute	mean	rank	differences	with	the	best-ranked	model.	Different	rankings	between	721 

models	indicate	significantly	different	absolute	mean	ranks	(i.e.,	p-value<0.007).		The	mean	722 

value	of	the	corresponding	metric	is	shown	in	the	parentheses.	723 

	

Supplementary	Figure	Captions	

Fig	S1.	The	change	of	mean	ILI+	of	each	influenza	(sub)type	in	circulation	within	a	year.	724 

The	mean	ILI+	took	average	of	the	ILI+	observed	in	Hong	Kong	over	21	years	(1998-2018).	725 

	

Fig	S2.	Top10	model	fits	for	Null1	(A),	Null2	(B),	and	AH	(C)	model.	Black	crosses	show	726 

observed	ILI+;	the	colored	lines	run	through	the	crosses	show	the	top	10	model	estimates.	727 

The	vertical	dash	line	indicates	the	onset	of	the	2009	pandemic.	The	shaded	regions	728 

indicate	testing	years	(2013-2018);	and	the	rest	are	the	training	years.	729 

	
Fig	S3.	Top10	model	fits	for	the	observed	seasonality	(averaged	over	training	or	testing	730 

years)	for	the	seven	models:	Null1	(A),	Null2	(B),	AH	(C),	AH/T	(D),	AH/T/Short(E)	731 

AH/T/Vary	(F)	and	AH/T/Strain	(G).	Black	crosses	show	observed	averaged	ILI+	over	732 

training	or	testing	years;	colored	lines	run	through	the	crosses	show	the	top10	model	733 

estimates.	Left	panels	show	model	fits	for	the	training	period	and	the	right	panels	show	734 

model	fits	for	the	testing	period.	735 

	736 
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Tables:	737 
Table	1.	Descriptions	and	estimates	of	the	parameter	ranges.		The	estimated	parameter	ranges	are	the	95%	highest	density	738 
intervals,	obtained	after	two	rounds	of	parameter	selection	from	the	initial	ranges	(shown	in	parentheses).		739 

Parameter	
and	sources	of	
initial	ranges	

Parameter	Description	 Null1	 Null2	 AH	 AH/T	 AH/T/	
Strain	

AH/T/	
Short	

AH/T/	
Vary	

R0		
[12,	34,	36-

38]	

The	basic	reproductive	number	
(i.e.,	the	average	number	of	cases	
caused	by	a	primary	case	in	a	fully	

susceptible	population).	

2.06-
2.11	
(1.0-
3.0)	

	

NA	 NA	 NA	 NA	 NA	 NA	

R0mx		
[12,	34,	
36-38]	

The	theoretical	value	of	R0	at	q	=	
qmin	and	q	=	qmax,	when	T	=	Tc	

NA	 2.52-
2.69	

(1.5-3.0)	

1.95-
2.50	
(1.5-
3.0)	

2.34-
2.93	
(1.5-
3.0)	

2.38-
2.88	
(1.5-
3.0)	

2.13-
2.67	
(1.5-
3.0)	

2.27-
2.66	

(1.5-3.0)	

R0diff	 The	difference	between	R0max,	
and	R0	at	q	=	qmid.	

NA	 1.10-
1.20	

(0.6-1.2)	

0.60-
1.18	
(0.6-
1.2)	

0.86-
1.18	
(0.6-
1.2)	

0.70-
1.17	
(0.6-
1.2)	

0.65-
1.09	
(0.6-
1.2)	

0.72-
1.12	

(0.6-1.2)	

qmin	(g/kg)	 The	absolute	humidity	value	at	
which	R0	=	R0max	when	T	=	Tc;	the	
minimum	value	of	absolute	

humidity	permitted.	

NA	 NA	 7.7-8.0	
(2.0-
8.0)	

2.2-4.0	
(2.0-
8.0)	

2.0-3.6	
(2.0-
8.0)	

2.1-3.4	
(2.0-
8.0)	

2.1-3.7	
(2.0-8.0)	

qmax	
(g/kg)	

The	absolute	humidity	value	at	
which	R0	=	R0max	when	T	=	Tc;	the	
maximum	value	of	absolute	

humidity	permitted.	

NA	 NA	 22.6-
23.0	
(16.0-
23.0)	

17.0-
20.0	
(16.0-
23.0)	

17.0-
19.0	
(16.0-
23.0)	

18.0-
19.0	
(16.0-
23.0)	

17.0-
19.0	
(16.0-
23.0)	

qmid	(g/kg)	 The	absolute	humidity	value	at	
which	R0	=	R0max	–	R0diff.	

NA	 NA	 12.6-
13.0	
(10.0-
13.0)	

10.2-
11.3	
(10.0-
13.0)	

10.2-
12.5	
(10.0-
13.0)	

10-12.2	
(10.0-
13.0)	

10.2-
12.6	
(10.0-
13.0)	
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Tc	(°C)		
[33,	35]	

The	cutoff	temperature	above	
which	temperature	negatively	

impacts	R0.	

NA	 NA	 NA	 20.24-
24.0	

(20-25)	

20.04-
24.46	
(20-
25)	

20.16-
24.47	
(20-

25)	

20.52-
23.87	
(20-

25)	
Tdiff	(°C)	 A	parameter	that,	when	

subtracted	from	Tc,	yields	the	
minimum	temperature	permitted	as	

a	model	input.	

NA	 NA	 NA	 0.40-
5.09	
(0-15)	

1.28-
7.05	(0-
15)	

1.34-
5.31	(0-
15)	

0.77-
4.46	(0-
15)	

Texp	 An	exponent	determining	the	
strength	of	the	impact	of	
temperature	on	R0.	

NA	 NA	 NA	 0.95-
1.54	
(0.5-
2.0)	

0.67-
1.49	
(0.5-
2.0)	

0.78-
1.33	
(0.5-
2.0)	

0.78-
1.34	

(0.5-2.0)	

D	(days)		
[12,	30,	
31,	38]	

The	duration	of	influenza	infection.	 3.35-
3.71	
(2-

5)	

4.68-
4.98	
(2-5)	

2.56-
4.99	
(2-
5)	

4.05-
4.99	
(2-5)	

3.50-
4.70	
(2-
5)	

3.87-
4.98	
(2-
5)	

3.67-
4.90	
(2-5)	

L	(days)	
[12,	22,	

23,	36,	38]	

The	duration	of	influenza	immunity;	
in	the	AH/T/Vary	model,	the	

duration	of	immunity	among	those	
who	do	not	lose	immunity	at	an	

accelerated	rate.	

369-
391	
(365-
3650)	

421-607	
(365-
3650)	

1298-
2860	
(365-
3650)	

376-
489	
(365-
3650)	

536-
838	
(365-
3650)	

310-	
451	
(183-
548)	

374-567	
(365-
3650)	

LS	(days)	 The	duration	of	influenza	
immunity	among	those	with	

accelerated	immunity	loss	in	the	
AH/T/Vary	model.	

NA	 NA	 NA	 NA	 NA	 NA	 82-	336	
(30-
365)	

ρ	 The	proportion	of	the	population	
with	accelerated	immunity	loss	in	

the	AH/T/Vary	model.	

NA	 NA	 NA	 NA	 NA	 NA	 0.0006-
0.29	
(0-0.5)	

S0	 The	number	of	people	susceptible	to	
influenza	at	the	beginning	of	the	

model	run.	

48.78%
-	

76.16%	

78.77%-	
79.98%	
(40%-
80%)	

71.58%
-

79.71%	

59.27%
-

76.79%	

57.03%
-	

69.86%	

67.03%
-	

77.61%	

66.02%-
79.36	
(40%-
80%)	
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(40%-
80%)	

(40%-
80%)	

(40%-
80%)	

(40%-
80%)	

(40%-
80%)	

I0	 The	number	of	people	infected	at	
the	beginning	of	the	model	run.	

520-
1489	
(500-
1500)	

534-851	
(500-
1500)	

611-
1161	
(500-
1500)	

515-
1052	
(500-
1500)	

512-
1105	
(500-
1500)	

515-
900	
(500-
1500)	

519-
1256	
(500-
1500)	

p	 An	exponent	to	allow	for	imperfect	
mixing.	Homogenous	mixing	occurs	

when	p	=	1.0.	

0.97	 0.97	 0.97	 0.97	 0.97	 0.97	 0.97	

740 
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Table	2.	The	model	performance	ranks	for	each	comparison	metric	using	training	and	741 
testing	data.	The	rankings	are	determined	by	the	model’s	absolute	mean	rank	differences	742 
with	the	best-ranked	model.	Different	rankings	between	models	indicate	significantly	743 
different	absolute	mean	ranks	(i.e.,	p-value<0.007).		The	mean	value	of	the	corresponding	744 
metric	is	shown	in	the	parenthesis.	745 
	 Models	 Null1	 Null2	 AH	 AH/T	 AH/T/	

Strain	
AH/T/	
Short	

AH/T/	
Vary	

Train	

full.RMSE	 6	
(772)	

4	
(675)	
	

7	
(804)	
	

1	
(611)	
	

6	
(720)	
	

1	
(604)	

1	
(611)	

avg.RMSE	 6	
(422)	

	

5	
(349)	
	

7	
(541)	
	

1	
(243)	

4	
(310)	
	

1	
(240)	

1	
(249)	

full.Correlation	 7	
(0.12)	
	

5	
(0.43)	

	

6	
(0.32)	
	

2	
(0.53)	
	

4	
(0.50)	
	

1	
(0.55)	

2	
(0.52)	
	

avg.Correlation	 7	
(-0.16)	

5	
(0.73)	

6	
(0.62)	
	

3	
(0.87)	
	

1	
(0.88)	

1	
(0.89)	

3	
(0.87)	

Average	rank	 6.5	 4.75	 6.5	 1.75	 3.75	 1	 1.75	

Test	
	
	

	
full.RMSE	

6	
(620)	

3	
(478)	

5	
(613)	

2	
(479)	
	

7	
(676)	

3	
(492)	

1	
(470)	

avg.RMSE	
	
	

6	
(434)	

2	
(237)	

4	
(422)	

2	
(249)	

6	
(476)	

4	
(274)	

1	
(228)	

full.Correlation	
	
	

7	
(-0.0005)	

5	
(0.49)	

6	
(0.10)	

3	
(0.54)	

1	
(0.55)	

1	
(0.54)	

4	
(0.52)	

avg.Correlation	
	
	

7	
(-0.0007)	

5	
(0.76)	

6	
(0.11)	

1	
(0.78)	

1	
(0.78)	

1	
(0.79)	

4	
(0.78)	

Average	rank	 6.5	 3.75	 5.25	 2	 3.75	 2.25	 2.5	
746 
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Figures:	
Fig	1.		Influenza	epidemics	observed	in	Hong	Kong	during	1998-2018	and	the	
corresponding	mean	daily	temperature	and	AH.	Upper	panel:	stacked	barplot	of	the	weekly	
ILI+	incidence	time	series.	Segments	of	the	bar	represent	different	virus	(sub)types	
circulating	during	the	week.	Lower	panel:	daily	mean	temperature	and	specific	humidity	(a	
measure	of	AH)	observed	during	1998-2018.
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Fig	2.	Model	performance.	Boxes	and	whiskers	show	the	median	(thick	horizontal	lines),	
interquartile	range	and	95%	CI	of	RMSE	(1st	row),	average	RMSE	(2nd	row),	correlation	(3rd	
row)	and	average	correlation	(4th	row)	of	the	top	1000	parameter	combinations	for	each	
model,	during	the	training	(red)	and	testing	(green)	period,	separately.		
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Fig	3.	Top10	model	fits	for	three	climate	forcing	models:	AH/T	(A),	AH/T/Vary	(B),	and	
AH/T/Strain	(C).	Black	crosses	show	observed	ILI+;	the	colored	lines	run	through	the	
crosses	are	the	top10	model	estimates.	The	vertical	dash	line	indicates	a	pandemic	(2009).	
The	shaded	region	represents	testing	years	(2013-2018),	while	the	rest	are	the	training	
years.	

	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 8, 2021. ; https://doi.org/10.1101/2021.02.04.21251148doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251148


 34 

Fig	4.	Estimated	relationship	between	influenza	transmission	with	AH	and	temperature.		
We	use	the	basic	reproductive	number	(R0)	to	represent	the	level	of	influenza	transmission.		
Each	point	shows	the	estimated	R0	at	different	specific	humidity,	a	measure	of	AH,	(and	
temperature	if	included)	calculated	per	the	AH/T	model	(left)	or	the	AH	model	(right)	
using	the	top	10	parameter	combinations	for	the	corresponding	model.	For	the	AH/T	
model	(left	panel),	the	color	of	the	point	shows	the	concurrent	temperature	included	in	the	
model	to	moderate	the	relationship	between	R0	and	specific	humidity.	
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Fig	5	Comparison	of	the	reproductive	numbers	estimated	by	the	AH/T	model	with	
laboratory	observed	virus	survival	rate	and	transmission	rate	in	guinea	pigs.	Left	panel	
plots	the	viral	survival	rate	(A)	and	transmission	rate	(C)	against	R0	calculated	using	Eqn	3	
and	best-fit	parameters	for	the	AH/T	model.	Right	panel	plots	the	viral	survival	rate	(B)	
and	transmission	rate	(D)	against	Re,	where	Re	is	calculated	as	R0	multiplied	by	the	
estimated	mean	population	susceptibility	during	the	study	period.	The	grey	vertical	line	
indicates	where	Re	=1.		The	viral	survival	data	came	from	Harper	1961	[35]	and	
transmission	rate	data	came	from	Lowen	et	al.	2007	and	2008	[39,	40].		
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Supporting	Information		1 
Modeling	influenza	seasonality	in	tropics	and	subtropics	2 

Haokun	Yuan,	Sarah	Kramer,	Eric	H.	Y.	Lau,	Benjamin	J.	Cowling,	Wan	Yang	3 
	4 
This	supplemental	document	includes	1)	Preliminary	data	processing;	and	2)	Simulation	5 
methods	and	modeling	details.		6 
	7 
1.		Preliminary	data	processing	8 
1.1	Calculation	of	absolute	humidity	[1]	9 
First,	we	calculated	saturation	vapor	pressure	as:	10 
	11 
	

!"($) = !"($') × !
)
*+
, -./

0-.1	
	

	
[S4]	

	12 
	13 
where	es(T)	is	the	saturation	vapor	pressure	at	temperature	T	(in	K),	es(T0)	is	the	saturation	14 
vapor	pressure	at	273.15	K,	L	is	the	latent	heat	of	evaporation	for	water,	Rv	is	the	gas	15 
constant	for	water	vapor.	We	then	computed	vapor	pressure	at	each	time	point	as:	16 
	17 
	 ! = !"($) 2

34
100

7	
	

	
[S5]	

	18 
	19 
where	RH	represents	relative	humidity.	We	calculated	the	mixing	ratio,	mr,	as:	20 
	21 
	 89 =

3:
3;
2

!
<' − !

7	

	

	
[S6]	

	22 
where	Rd	is	the	gas	constant	for	dry	air	and	p0	is	the	atmospheric	pressure	at	sea	level.	23 
Finally,	absolute	humidity	was	calculated	as:	24 
	25 
	 >4 =

89
1 + 89

	 	
[S7]	

	 	 	
		26 
	27 
2.	Simulation	methods	and	modeling	details	28 
2.1	Stochastic	Model	Runs	29 
Similar	to	the	climate	forcing	model	used	to	model	influenza	in	temperate	region	by	30 
Shaman	et	al.	[2],	we	constructed	a	stochastic	Markov	chain,	where	stochastic	is	introduced	31 
by	the	transition	between	states.	The	number	of	individuals	moving	from	one	state	to	32 
another	(i.e.	susceptible	to	infected,	infected	to	recovered)	is	random	draw	from	a	Poisson	33 
distribution	with	a	rate	determined	by	Eqn	1.	34 
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	35 
2.2	Climate	forcing	model	for	temperate	regions	(Null2)	36 
The	climate	forcing	model	for	temperate	regions,	first	introduced	by	Shaman	et	al	[2],	37 
assumes	influenza	transmission	decreases	monotonically	with	increasing	absolute	38 
humidity.	This	relationship	is	modeled	as:	39 
	40 
	 3'(@) = !A<(B × C(@) + D) + 3'EFG	 [S8]	

	41 
Where	B = −180,	D = log(3'EMN − 3'EFG) , 3'EMN 	is	the	maximum	daily	basic	reproductive	42 
number,	while	3'EFG 	is	the	minimum	daily	basic	reproductive	number.	43 
	44 
	45 
	46 
2.3	Climate	forcing	model	for	(sub)tropical	regions	(AH/T,	AH/T/Short,	AH/T/Vary,	47 
AH/T/Strain)	48 
Absolute	humidity	alone	was	proposed	to	have	a	bimodal	effect	on	influenza	transmission.	49 
And	the	formula	can	be	written	as	follow:	50 
	51 
	 3'(@) = BCO(@) + DC(@) + P	
	

[S6]	

	52 
	53 
Values	of	a,	b,	and	c	are	defined	as:	54 
	55 
	

																																	

⎩
⎪⎪
⎨

⎪⎪
⎧ B =

−D
CEMN + CEFG

																																											

															D =
23'VWX − ,3'VWX − 3'YZ[[17 (CEMN + CEFG)

(CEMN − CEF:)(CEFG − CEF:)

P = ,3'VWX − 3'YZ[[1 − BCEF:
O − DCEF:

	

	

	
	
	
	
	
	
[S7]	

	56 
Given	equation	S6,	the	derivation	of	equation	S7	is	shown	as	below:	57 
	58 

3'VWX = BCEFGO + DCEFG + P		(1)
3'VWX = BCEMNO + DCEMN + P	(2)
3'VZ] = BCEF:O + DCEF: + P			(3)

	59 

	 	60 
Subtracting	(1)	from	(2),	we	can	get:	61 
	62 

B(CEMNO − CEFGO ) + 	D(C_`a − q_cd) = 0	63 
	 	64 
Rearrange	the	equation:	 	65 
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B = −
D

CEMN + CEFG
	66 

	 	67 
Moreover,	by	subtracting	(3)	from	(2),	we	can	get:	68 
	69 

R'fgh − R'fij = B(CEMNO − CEF:O ) + 	D(CEMN − CEF:)	70 
	 	71 
Plug	in	B:	72 

R'fgh − R'fij = D k(CEMN − CEF:) −
CEMNO − CEF:O

CEMN + CEFG
l		73 

	 	74 
Move	D	to	the	left-hand	side	and	rearrange:	75 
	76 

D =
,R'fgh − mR'fgh − R'nioop1 (CEMN + CEFG)

(CEMN − CEF:)(CEFG − CEF:)
	77 

	78 
	 Plug	B	and	D	into	Eqn.	S7:	79 
	80 
	 	 	 							P = ,3'VWX − 3'YZ[[1 − BCEF:

O − DCEF: 	81 
	 	82 
	83 
	84 
	85 
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Supplementary	figures	98 
Fig	S1.	The	change	of	mean	ILI+	of	each	influenza	(sub)type	in	circulation	within	a	year.	99 
The	mean	ILI+	took	average	of	the	ILI+	observed	in	Hong	Kong	over	21	years	(1998-2018).	100 
	101 

	102 
	 	103 
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Fig	S2.	Top10	model	fits	for	Null1	(A),	Null2	(B),	and	AH	(C)	model.	Black	crosses	show	104 
observed	ILI+;	the	colored	lines	run	through	the	crosses	show	the	top	10	model	estimates.	105 
The	vertical	dash	line	indicates	the	onset	of	the	2009	pandemic.	The	shaded	regions	106 
indicate	testing	years	(2013-2018);	and	the	rest	are	the	training	years.	107 

	108 
	 	109 
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Fig	S3.	Top10	model	fits	for	the	observed	seasonality	(averaged	over	training	or	testing	110 
years)	for	the	seven	models:	Null1	(A),	Null2	(B),	AH	(C),	AH/T	(D),	AH/T/Short(E)	111 
AH/T/Vary	(F)	and	AH/T/Strain	(G).	Black	crosses	show	observed	averaged	ILI+	over	112 
training	or	testing	years;	the	colored	lines	run	through	the	crosses	are	the	top10	model	113 
estimates.	Left	panels	are	the	model	fit	towards	training	data,	and	the	right	panels	plot	the	114 
fit	for	testing.	115 
	116 

	 	117 
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Tables:	118 
Table	S1.	The	model	performance	ranks	for	each	comparison	metric	using	training	and	119 
testing	data	(excluding	the	2009	pandemic).	The	rankings	are	determined	by	the	model’s	120 
absolute	mean	rank	differences	with	the	best-ranked	model.	Different	rankings	between	121 
models	indicate	significantly	different	absolute	mean	ranks	(i.e.,	p-value<0.007).		The	mean	122 
value	of	the	corresponding	metric	is	shown	in	the	parenthesis.	123 
	 Models	 Null1	 Null2	 AH	 AH/T	 AH/T/	

Strain	
AH/T/	
Short	

AH/T/	
Vary	

Train	 full.RMSE	 6	
(781)	

4	
(644)	
	

7	
(821)	
	

1	
(606)	
	

5	
(701)	
	

1	
(602)	

1	
(612)	

avg.RMSE	 6	
(452)	

	

5	
(346)	
	

7	
(572)	
	

1	
(264)	

4	
(318)	
	

1	
(266)	

1	
(271)	

full.Correlation	 7	
(-0.08)	

	

5	
(0.51)	
	

6	
(0.27)	
	

2	
(0.55)	
	

4	
(0.52)	
	

1	
(0.56)	

2	
(0.55)	
	

avg.Correlation	 7	
(0.13)	

5	
(0.78)	

6	
(0.66)	
	

1	
(0.89)	
	

1	
(0.90)	

1	
(0.90)	

1	
(0.90)	

Average	rank	 6.5	 4.75	 6.5	 1.25	 3.5	 1	 1.25	
Test	

	
	

full.RMSE	 6	
(621)	

2	
(478)	

5	
(609)	

2	
(484)	
	

7	
(705)	

2	
(493)	

1	
(474)	

avg.RMSE	 5	
(434)	
	

1	
(238)	

5	
(421)	

3	
(256)	

5	
(499)	

4	
(274)	

1	
(235)	

full.Correlation	 7	
(-0.0007)	

5	
(0.49)	

6	
(0.11)	

1	
(0.54)	

1	
(0.54)	

1	
(0.54)	

4	
(0.53)	

	
avg.Correlation	

7	
(-0.0007)	

5	
(0.76)	

6	
(0.11)	

1	
(0.79)	

1	
(0.78)	

1	
(0.80)	

4	
(0.78)	

Average	rank	 6.25	 3.25	 5.5	 1.75	 3.5	 2	 2.5	
	124 
	125 
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