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Abstract 

Background: To reduce lung cancer burden in the US, a better understanding of biological mechanisms 

in early disease development could provide new opportunities for risk stratification.  

Methods: In a nested case-control study, we measured blood leukocyte DNA methylation levels in pre-

diagnostic samples collected from 430 men and women in the 1989 CLUE II cohort. Median time from 

blood drawn to diagnosis was 14 years for all participants. We compared DNA methylation levels by 

case/control status to identify novel genomic regions, both single CpG sites and differentially methylated 

regions (DMRs), while controlling for known DNA methylation changes associated with smoking using a 

previously described pack-years based smoking methylation score. Stratification analyses were conducted 

by time from blood draw to diagnosis, histology, and smoking status.  

Results: We identified sixteen single CpG sites and forty DMRs significantly associated with lung cancer 

risk (q < 0.05). The identified genomic regions were associated with genes including H19, HOXA4, 

RUNX3, BRICD5, PLXNB2, and RP13. For the single CpG sites, the strongest association was noted for 

cg09736286 in the DIABLO gene (OR [for 1 SD] = 2.99, 95% CI: 1.95-4.59, P-value = 4.81 x 10-7). For 

the DMRs, we found that CpG sites in the HOXA4 region were hypermethylated in cases compared to 

controls. 

Conclusion: The single CpG sites and DMRs that we identified represented significant measurable 

differences in lung cancer risk, providing new insights into the biological processes of early lung cancer 

development and potential biomarkers for lung cancer risk stratification.  

Keywords: Lung cancer, DNA methylation, Illumina MethylationEPIC array, epigenome-wide 
association study (EWAS), blood. 

  



Introduction 

Despite substantial reductions in lung cancer incidence and death rates over the past three decades 

(Siegel et al. 2020), lung cancer continues to be the leading cause of cancer death in the US and is projected 

to account for 135,720 deaths in 2020, approximately 22% of all cancer deaths (Siegel et al. 2020). To 

reduce the lung cancer burden in the US, cancer prevention and early detection remain a top priority (Moyer 

and Force 2014). However, while the conventional lung cancer screening method of using low-dose CT 

(LDCT) scans is effective in reducing lung cancer mortality (National Lung Screening Trial Research et al. 

2011), it leads to high false positives rates (>95% of pulmonary nodules detected are benign) (Fabrikant et 

al. 2018), over-diagnosis (Heleno et al. 2018; Patz et al. 2014), radiation exposure (McCunney and Li 2014), 

and has had poor uptake (Quaife et al. 2016). A better understanding of biological mechanisms in early 

disease development, especially understanding gained through using DNA methylation data, may 

contribute new insights into lung cancer development and provide new opportunities for risk stratification, 

screening prioritization, and drug development. 

Genome-wide DNA methylation profiling has provided new insight into risk factors, biological 

pathways, and disease processes. For instance, differences in blood leukocyte DNA methylation levels 

(proportion of CpGs methylated) have been associated with smoking (Baglietto et al. 2017; Shenker et al. 

2013), elevated subclinical inflammation (Ahsan et al. 2017; Ligthart et al. 2016), obesity (Wahl et al. 2016; 

Xu et al. 2018), type II diabetes (Chambers et al. 2015), and heart disease (Agha et al. 2019; Huan et al. 

2019). With respect to lung cancer, many of the alterations in blood leukocyte DNA methylation levels 

identified to date have been directly linked to smoking behaviors (Baglietto et al. 2017; Fasanelli et al. 

2015; Shenker et al. 2013; Zhang et al. 2016b; Zhang et al. 2016c). One recent meta-analysis that included 

over 15,000 individuals identified 2,623 differentially methylated CpG sites that are related to cigarette 

smoking (Joehanes et al. 2016). Some of the identified smoking-related CpG sites have also been shown to 

mediate the effects of smoking on lung cancer (Baglietto et al. 2017; Battram et al. 2019; Fasanelli et al. 

2015). Nevertheless, very few studies have investigated methylation changes associated with lung cancer 

risk that are not associated with smoking (Zhang et al. 2016a; Zhang et al. 2016b).  



While smoking remains the strongest risk factor for lung cancer, identifying DNA methylation 

alterations that are not caused by active smoking could reveal important biological pathways. Among 

smokers, variation in methylation may indicate different genetic susceptibility to lung cancer, since 

individuals often differ in their ability to detoxify carcinogenic compounds or to repair induced DNA 

damage, for example. Alternatively, variation in methylation could be a result of other environmental risk 

factors, such as occupational exposures, changes in the immune response, radon, or secondhand smoke. 

Using blood samples collected men and women without a cancer diagnosis in 1989 in the CLUE II cohort 

(Genkinger et al. 2004; Kakourou et al. 2015), we compared DNA methylation levels in individuals who 

later developed lung cancer with those who did not develop lung cancer in the same time frame. 

Specifically, we aimed to identify both single CpG sites, and differentially methylated regions, measured 

in pre-diagnostic blood samples of lung cancer cases and matched controls, that represent measurable 

differences in lung cancer risk independent of smoking exposures.  

Materials and Methods 

Study population – CLUE I/II cohort 

Subjects for this study were selected from among participants of the CLUE II cohort who had 

also participated in the CLUE I cohort study (flowchart in Supplemental Figure 1 and additional details 

in Supplemental Methods). Both cohorts were based in Washington County, MD, and were initially 

established to identify serological precursors to cancer and other chronic diseases (Genkinger et al. 2004; 

Kakourou et al. 2015; Schober et al. 1987). CLUE II was conducted from May through October 1989, 

during which 32,894 individuals (25,076 were Washington County residents) provided a blood sample 

(Comstock et al. 1991). Among all participants, 98.3% were white, reflecting the population of this 

county at the time, and 59% were female. Participants provided health information at baseline, including 

the potential confounders attained education, cigarette smoking status, number of cigarettes smoked 

daily, cigar/pipe smoking status, and self-reported weight and height, from which body mass index (BMI) 

was calculated.  

Lung cancer ascertainment 



All incident lung cancer cases (ICD9 162 and ICD10 C34) were ascertained from linkage to the 

Washington County cancer registry (before 1992 to the present) and the Maryland Cancer Registry (since 

1992 when it began to the present). We selected all 241 first primary incident lung cancer cases who had 

participated in CLUE I and were diagnosed after the day of blood draw in CLUE II through January 

2018. Using incidence density sampling, we selected 1 control per case matching on age, sex, cigarette 

smoking status, number of cigarettes smoked daily, cigar/pipe smoking status, and date of CLUE II blood 

draw.  

DNA methylation measurements  

DNA extracted from buffy coat was bisulfite-treated using the EZ DNA Methylation Kit (Zymo) 

and DNA methylation was measured at specific CpG sites across the genome using the 850K Illumina 

Infinium MethylationEPIC BeadArray (Illumina, Inc, CA, USA) at the University of Minnesota Genomic 

Center (details in Supplemental Methods).  

Statistical analysis 

In the current nested case-control study, we aimed to identify novel genomic regions, both single 

CpG sites and differentially methylated regions where differences in DNA methylation levels are not 

explained by smoking exposures, by controlling for the known DNA methylation changes associated with 

smoking in the statistical analysis. To examine the association between CpG-specific DNA methylation 

and lung cancer risk, we conducted epigenome-wide association analysis using unconditional multivariable 

logistic regression to estimate odds ratios (OR) of lung cancer per 1 SD increase in methylation level at 

single CpG sites. To maximize power, we used unconditional logistic regression to include cases and 

controls without a matched pair, and included participants every time they were sampled. All models were 

adjusted for age at blood draw, sex, surrogate variables for batch effects (Leek et al. 2012; Leek et al. 2010), 

smoking status (never, former, current), pack-years based smoking methylation score (details in 

Supplemental Methods), BMI, and leukocyte cell composition (Houseman et al. 2012; Salas et al. 2018) 

(given the potential for confounding by cell composition) (Adalsteinsson et al. 2012). All p-values were 



adjusted for multiple comparisons using the false discovery rate (FDR) method. Analyses of single CpGs 

with lung cancer were also stratified by smoking status and time from blood-draw to diagnosis, and 

separately by non-small cell (NSCLC) and small cell (SCLC) histology. All controls were included in these 

three types of stratification analyses. All statistical analyses were performed in R (version 3.5.0).  

We used the DMRcate Bioconductor R package (Peters et al. 2015) to identify differentially 

methylated regions (DMRs) associated with lung cancer risk. Adjusting for the same covariates as in the 

single CpG analyses, DMRs were calculated using a parameter setting of lambda=1,000 and kernel 

adjustment C=2 (default setting) (Peters et al. 2015). Statistically significant DMRs were required to have 

a minimum of two statistically significant single CpGs and to meet the multiple testing adjustment criteria 

of FDR<0.1. Associations were also examined by time from blood-draw to diagnosis and lung cancer 

histology. Two of the most statistically significant regions were further evaluated for patterns by time to 

diagnosis. 

Results 

Population characteristics  

Table 1 presents the characteristics of the 208 lung cancer cases and 222 controls that we included 

in this study. Over 99% of the majority of participants were white. The median time to lung cancer diagnosis 

was 14 years. The median age at blood draw in 1989 was 59 and 57 years in cases and controls, respectively. 

Overall, 55% of cases and controls were women and 11% were never smokers (Table 1).  

Single CpG EWAS analysis 

The EWAS analysis identified 16 differentially methylated CpGs that were statistically significant 

after multiple comparisons correction (q<0.05). Results are presented in Table 2 (statistically significant 

CpGs were sorted by q-value) and Figure 1. Among the 16 CpGs, many were located in genomic regions 

that have been previously associated with lung cancer or other malignancies (RUNX3 (Sato et al. 2005), 

H19 (Huang et al. 2018), BAIAP2L2 (Liu et al. 2020), GPR132 (Chen et al. 2017), CUEDC1 (Lopes et al. 

2018), SSBP4 (Guo et al. 2018), AMPD2 (Gao et al. 2020), ADAM11 (Sieuwerts et al. 2005), and RTN4R 

(He et al. 2020); the top 1000 CpGs based on q-value are presented in Supplemental Table 1).   



CpGs previously reported to be associated with lung cancer risk, including cg05575921 in the 

AHRR gene (Fasanelli et al. 2015), cg03636183 in the F2RL3 gene (Fasanelli et al. 2015), cg23387569 in 

the AGAP2 gene (Baglietto et al. 2017), cg10151248 in the PC gene (Sandanger et al. 2018), and 

cg13482620 in the B3GNTL1 gene (Sandanger et al. 2018), were not statistically significant in our analyses 

in which we adjusted for a pack-years methylation score. Adjusting for smoking status (never, former, 

current) but not for the packyears methylation score, two CpGs in the AHRR and F2RL3 genes had similar-

sized associations with lung cancer risk as previously reported (AHRR: OR [for 1 SD] = 0.43, 95% CI: 

0.31-0.60, P-value = 6.76 x 10-7 vs. previously reported OR [for 1 SD] = 0.39, 95% CI: 0.24-0.61, P-value 

= 2.55 x 10-5 for cg05575921; F2RL3: OR for [1 SD] = 0.53, 95% CI: 0.40-0.70, P-value = 7.91 x 10-6 vs. 

previously reported OR [for 1 SD] = 0.51, 95% CI: 0.35-0.73, P-value = 4.19 x 10-4 for cg03636183) 

(Fasanelli et al. 2015). In addition, in the complete EWAS analysis conducted without adjusting for the 

packyears methylation score, only one CpG (cg14391737) was statistically significantly associated with 

lung cancer risk after adjusting for multiple comparisons. This CpG has been related to smoking in multiple 

studies (Joehanes et al. 2016) (top 1000 CpGs presented in Supplemental Table 2).   

To further examine the associations of the significant CpGs with lung cancer risk, we stratified by 

time from blood draw to diagnosis (≤10, >10 years). The magnitude of risk was similar in the two strata; 

small differences in risk were likely due to statistical variability (Table 2). For these 16 differentially 

methylated CpGs, the ORs of lung cancer were in general slightly higher for former smokers and for SCLC, 

than among current smokers or for NSCLC, respectively (Supplemental Table 3).  

DMR analysis 

Using the DMRcate package in R, we identified differentially methylated regions (DMRs) by 

case/control status (Peters et al. 2015). Instead of focusing on single CpG identification, the DMRcate 

method identifies regions of chromosomes that are differentially methylated by case-control status. After 

adjusting for both smoking status and packyears methylation score, forty DMRs were found to be 

statistically significantly associated with lung cancer risk (Table 3). Many of the top regions identified 



included genes that have been linked to lung cancer in previous studies (H19 (Huang et al. 2018), HOXA4 

(Xu et al. 2019), PLXNB2 (Liu and Zhao 2019), PRDM1(Zhu et al. 2017), TSPAN4 (Ying et al. 2019), 

PHPT1(Xu et al. 2010), MSI2 (Kudinov et al. 2016), CBX5 (Yu et al. 2012),  RCAN1 (Ma et al. 2017), 

CCL5 (Huang et al. 2009), and BRDT (Grunwald et al. 2006)). 

We conducted stratified analyses to examine whether our DMR results were modified by time to 

diagnosis or differed by histology. Among those with ≤10 years between blood draw and diagnosis, a region 

located on chromosome 20:36148699-36149271 (genes NNAT and BLCAP) was statistically significantly 

associated with lung cancer. By histology, one region located in H19 gene and one region located in 

MYEOV gene were statistically significant DMRs for NSCLC and SCLC, respectively (Supplemental Table 

4). 

We conducted further analyses for two of the most statistically significant DMRs. These two 

regions, located on the chromosome 11 (H19 gene) and 7 (HOXA4 gene), consisted of 31 and 20 CpGs, 

respectively, that differed between the cases and controls (all were q-value<0.1 FDR adjusted). For each of 

these two regions, we selected the CpGs with the strongest associations with lung cancer risk for 

comparison by time to cancer diagnosis (≤10, >10 years). Results for CpGs in these two regions are 

presented in Table 4 (top 10 statistically significant CpGs are included), with additional tables presented in 

Supplemental Table 5. For CpGs located in the HOXA4 region, 18 out of 20 were statistically significant 

and all sites were hypermethylated in cases compared to controls. Results for these HOXA4 region CpGs 

were similar in the ≤10 and >10 year time to diagnosis groups. In the H19 region, the strongest association 

was noted for cg00237904. This CpG was also identified in the top statistically significant CpGs in the 

single CpG EWAS (Table 2, q-value<0.05).  

Discussion 

In this study, we identified both single CpGs and DMRs in lung cancer that are not primarily driven 

by smoking history, by using a DNA methylation-based packyears score to adjust for cumulative smoking. 

Using a prospective study design (with pre-diagnostic blood), we identified 16 single CpG sites and 40 



DMRs regions that were associated with lung cancer risk; genes in these regions included H19, HOXA4, 

RUNX3, BRICD5, RP13, and PLXNB2.  

Previous studies have used either case-control or nested case-control designs to study the 

association between methylation markers and lung cancer risk. Retrospective case-control studies on this 

topic are not comparable to our study because they either used a different methodology to measure blood 

leukocyte methylation (Wang et al. 2010), or measured methylation biomarkers in sputum as a classifier 

for lung cancer risk (Leng et al. 2017; Liu et al. 2017). Three nested case-control studies previously used 

pre-diagnostic, peripheral blood samples to examine DNA methylation levels associated with lung cancer 

risk, while adjusting for smoking using self-reported information (Baglietto et al. 2017; Fasanelli et al. 

2015; Sandanger et al. 2018). Fasanelli 2015 (Fasanelli et al. 2015) and Baglietto 2016 (Baglietto et al. 

2017) together identified six CpGs (cg05951221, cg21566642, cg05575921, cg06126421, cg23387569 and 

cg03636183) with significant ORs for lung cancer after adjusting for smoking using self-reported smoking 

status. Further stratification showed that five of the six CpGs had methylation levels strongly influenced by 

smoking. Sandanger 2018 found two additional CpGs, cg10151248 (PC) and cg13482620 (B3GNTL1), to 

be significantly associated with lung cancer risk after adjusting for smoking status, pack-years, and a 

comprehensive smoking index built using self-reported information (Sandanger et al. 2018). In our 

analyses, cg05575921 (AHRR), cg03636183 (F2RL3), and cg21566642 methylation levels were 

statistically significantly associated with lung cancer when we adjusted for self-reported smoking status, 

whereas cg10151248 (PC), cg13482620 (B3GNTL1), and cg23387569 (AGAP2) methylation levels did not 

significantly differ between the cases and controls regardless of whether we adjusted for the pack-years 

methylation score or not. cg05951221 and cg06126421 were not associated with lung cancer.  

Our analyses identified novel genomic regions that are independent of smoking exposures. Many 

of the significant single CpGs we identified through EWAS were located in genomic regions that have been 

previously associated with lung cancer or other malignancies (RUNX3 (Sato et al. 2005), H19 (Huang et al. 

2018), BAIAP2L2 (Liu et al. 2020), GPR132 (Chen et al. 2017), CUEDC1 (Lopes et al. 2018), SSBP4 (Guo 

et al. 2018), AMPD2 (Gao et al. 2020), ADAM11 (Sieuwerts et al. 2005), and RTN4R (He et al. 2020)).  For 



instance, the RUNX3 region is a tumor suppressor gene that is implicated in lung cancer oncogenesis (Sato 

et al. 2005). Promoter hypermethylation of RUNX3 has been associated with NSCLC survival (Yanagawa 

et al. 2007). Many of the top differentially methylated regions we identified using the DMRcate analysis 

included genes that have been previously linked to lung cancer in other studies (H19 (Huang et al. 2018), 

HOXA4 (Xu et al. 2019),  PLXNB2 (Liu and Zhao 2019), PRDM1(Zhu et al. 2017), TSPAN4 (Ying et al. 

2019), PHPT1(Xu et al. 2010), MSI2 (Kudinov et al. 2016), CBX5 (Yu et al. 2012), RCAN1 (Ma et al. 

2017), CCL5 (Huang et al. 2009), and BRDT (Grunwald et al. 2006)), providing support for our findings. 

Of these eleven genetic regions already linked to lung cancer, many are shown to be connected to poor 

outcome in lung cancer. For instance, decreased expressed levels of PLXNB2 (Liu and Zhao 2019) and 

PRDM1 (Zhu et al. 2017) have been found to be correlated with poor prognosis in lung cancer, while 

TSPAN4 (Ying et al. 2019), PHPT1(Xu et al. 2010), MSI2 (Kudinov et al. 2016), and CBX5 (Yu et al. 2012) 

are linked to metastasis. In addition, HOXA4 (Xu et al. 2019),  RCAN1 (Ma et al. 2017), and CCL5 (Huang 

et al. 2009) are involved in the growth, development, and migration of lung cancer cells. Other top regions 

identified in our study include genes that have been linked to breast cancer (NNAT (Nass et al. 2017), 

RPL7A (Zhu et al. 2001), and HIST1H2BO (Xie et al. 2019)), colorectal cancer (RP11 (Sun et al. 2017; Wu 

et al. 2019)), endometrial cancer (HELZ2 (Qiao et al. 2019)), pancreatic cancer (LFNG (Liu et al. 2016)), 

prostate cancer (MAST3 (Dahlman et al. 2012)), renal cell carcinoma (KCNJ1 (Guo et al. 2015)), and tumor 

progression (ZC3H12D (Huang et al. 2012)).  

Of all the novel genomic regions that we identified as associated with lung cancer risk, the H19 

region was the only one that appeared in both of the single CpG EWAS and DMRcate results. The H19 

long noncoding RNA (LncRNA) has been previously implicated in lung cancer causation. Inhibition of 

LncRNA H19 has been found to suppress the growth, migration, and invasion of NSCLC (Huang et al. 

2018). In terms of disease development, loss of imprinting of the H19 gene has been connected to a genome-

wide loss of methylation, and associated with the transformation from normal to NSCLC (Anisowicz et al. 

2008; Kondo et al. 1995; Langevin et al. 2015). In our analyses, we found that hypermethylation of many 

H19 region CpGs were associated with lung cancer risk in CLUE II. The direction of this association was 



unexpected since the overexpression of H19 LncRNA in lung tumor is often correlated with 

hypomethylation of the promoter region CpGs (Kondo et al. 1995). H19 LncRNA belongs to a highly 

conserved imprinted gene cluster that plays important roles in embryonal development and growth control 

(Gabory et al. 2010) and H19 region methylation has been found to be influenced by early life exposures, 

including maternal factors during pregnancy (Miyaso et al. 2017), suggesting the possibility that external 

exposures could impact H19 methylation. Since the blood samples were drawn years before cancer 

diagnosis in this study, the methylation patterns we observed could be regions that are modulated early on 

in lung cancer development. More research is needed to investigate the methylation pattern in blood prior 

to cancer diagnosis.  

Use of the DMRcate analysis methods and the Illumina Infinium MethylationEPIC 850K 

BeadArray allowed us to investigate genome-wide regional methylation level differences between lung 

cancer cases and controls. Some of the regions we identified that have not previously been associated with 

lung cancer should be investigated in other populations. It is possible that some of single CpGs and DMRs 

that we identified after adjusting for the packyear methylation score could be related to risk factors unique 

to CLUE II. Further studies are needed to investigate pathways related to the novel genomic regions that 

we identified.   

This study demonstrated the importance of carefully controlling for known DNA methylation 

changes associated with smoking to be able to identify novel genomic regions. We showed the potential for 

this approach to identify DMRs (i.e., not single CpG alterations) by case/control status using peripheral 

blood collected prior to lung cancer diagnosis. These findings suggest that methylation changes detectable 

years prior to cancer diagnosis could potentially influence lung cancer risk, providing new insights into the 

biological processes of early lung cancer development. Further work in other populations should be 

conducted to validate regions that we observed to be associated with lung cancer risk independent of 

smoking exposures, especially among different ethnic and racial groups.  
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Table 1. Pre-diagnostic characteristics of lung cancer cases and matched controls nested in the CLUE II 
cohort study 

 Lung Cancer Cases Controls 

N 208 222 

Median Age (Range, Years) 59 (30-83) 57 (28-81) 

   

Sex   

   Male 95 (46%) b 98 (44%) 

   Female 113 (54%) 124 (56%) 

   

Cigarette Smoking Status   

   Never Smoker 22 (11%) 22 (10%) 

   Ever Smoker 80 (38%) 88 (40%) 

   Current Smoker 106 (51%) 112 (50%) 

   

Median Smoking Intensity (Range, Cig/Day) a  20 (0-80) 20 (0-80) 

   

Cigar or Pipe Smoking   

   Never 178 (86%) 189 (85%) 

   Ever 30 (14%) 33 (15%) 

   

Median BMI, kg/m2 (Range) 25.6 (15.5-42.6) 25.9 (18.0-40.9) 

Median Time before diagnosis (Range, Years) 14 (0-29) -- 

a 2 missing in cases and 2 missing in controls 
b Percentages were calculated among cases or among controls 



Table 2. Association between single CpGs and lung cancer, CLUE II: statistically significant CpGs after multiple comparisons correction (q<0.05) 

CpG 

Annotation Methylation Beta Value Odds Ratio per 1 SD increase (95% CI) a 

Chr Position Gene 
Mean in 

 Case 

Mean in  

Control 
SD Diff/SD Overall 

Time to diagnosis 

≤ 10 years > 10 years 

cg06581459 chr19 6577668  0.606 0.585 0.055 0.383 2.26(1.70, 3.01) 2.27(1.55, 3.32) 2.15(1.54, 2.99) 

cg21432334 chr16 2262293 BRICD5, PGP, C16orf79, RP11 0.819 0.809 0.034 0.312 2.28(1.69, 3.07) 2.37(1.56, 3.60) 2.10(1.48, 2.97) 

cg11343375 chr20 61268342 RP13 0.673 0.657 0.047 0.343 2.42(1.74, 3.36) 2.27(1.44, 3.59) 2.44(1.66, 3.59) 

cg08739693 chr1 110165726 AMPD2 0.785 0.776 0.036 0.256 2.17(1.62, 2.92) 2.28(1.52, 3.41) 2.21(1.56, 3.13) 

cg11744966 chr22 38506771 BAIAP2L2 0.949 0.942 0.014 0.508 1.87(1.47, 2.37) 2.04(1.45, 2.88) 1.85(1.39, 2.46) 

cg00237904 chr11 2020314 H19 0.519 0.489 0.076 0.401 1.94(1.50, 2.51) 1.78(1.27, 2.49) 1.87(1.40, 2.50) 

cg12483301 chr1 25239107 RUNX3 0.697 0.678 0.058 0.333 2.81(1.88, 4.19) 3.05(1.70, 5.47) 2.72(1.72, 4.29) 

cg11385536 chr1 227133801 CABC1, ADCK3 0.719 0.698 0.056 0.369 2.10(1.57, 2.80) 2.00(1.34, 2.98) 2.22(1.57, 3.12) 

cg09736286 chr12 122712925 DIABLO 0.867 0.849 0.056 0.33 2.99(1.95, 4.59) 3.10(1.67, 5.74) 3.33(1.97, 5.64) 

cg22032485 chr19 18531769 SSBP4 0.632 0.615 0.062 0.269 2.47(1.73, 3.52) 2.63(1.60, 4.30) 2.23(1.49, 3.33) 

cg18332677 chr22 20239823 RTN4R 0.826 0.806 0.061 0.327 2.77(1.86, 4.13) 2.34(1.35, 4.07) 2.80(1.75, 4.48) 

cg09447640 chr17 42854853 ADAM11 0.664 0.647 0.058 0.303 2.37(1.69, 3.34) 3.44(2.05, 5.79) 1.99(1.36, 2.92) 

cg15979932 chr17 55980107 CUEDC1 0.812 0.796 0.04 0.389 2.01(1.53, 2.66) 2.36(1.54, 3.62) 1.84(1.34, 2.53) 

cg02211449 chr10 110671609  0.126 0.143 0.046 -0.361 0.40(0.28, 0.58) 0.46(0.28, 0.77) 0.33(0.21, 0.51) 

cg19907023 chr2 96803532 ASTL 0.839 0.823 0.043 0.379 2.10(1.56, 2.81) 1.76(1.18, 2.63) 2.23(1.57, 3.15) 

cg12796320 chr14 105530592 GPR132 0.504 0.487 0.059 0.279 2.20(1.60, 3.01) 2.02(1.28, 3.18) 2.41(1.65, 3.52) 

a Model adjusted for age at blood draw, sex, smoking status (never, former, current), pack-years based methylation score, BMI, surrogate variables for batch effects, and 
cell proportions. 

 



Table 3. Association between differential methylated regions (DMR) and lung cancer in CLUE II participants a  

seqnames start end width no.cpgs minfdr maxbetafc meanbetafc overlapping.promoters 

chr1 6646079 6646156 78 3 5.15E-06 0.00930873 0.00646122 ZBTB48-007, ZBTB48-002, ZBTB48-003 

chr1 28261367 28261706 340 8 2.45E-06 -0.0078132 -0.0039881 SMPDL3B-002, SMPDL3B-001, SMPDL3B-003, SMPDL3B-
004, SMPDL3B-006, SMPDL3B-007 

chr1 92414221 92414985 765 11 2.03E-10 0.03582019 0.0135806 BRDT-008, BRDT-001, BRDT-002, BRDT-201, BRDT-202, 
BRDT-004, BRDT-005, BRDT-012, BRDT-003, BRDT-013, 
BRDT-007, BRDT-016, BRDT-017, BRDT-011, BRDT-009, 
BRDT-010, BRDT-015, BRDT-019, BRDT-020 

chr1 173174650 173174920 271 6 6.58E-06 -0.0114329 -0.005826 TNFSF4-001, TNFSF4-002, TNFSF4-003 

chr1 206306094 206306498 405 4 3.37E-06 -0.0156001 -0.0114794 RP11-38J22.6-001, RP11-38J22.6-003 

chr2 164204752 164205188 437 5 5.72E-06 0.02526139 0.0170268 NA 

chr3 6902824 6903067 244 6 7.67E-06 -0.0183154 -0.0088293 GRM7-001, GRM7-004, GRM7-003, GRM7-201, GRM7-202, 
GRM7-007, GRM7-002, GRM7-013, GRM7-015 

chr3 71275993 71276631 639 5 2.44E-07 0.02400706 0.0153042 NA 

chr5 134783229 134783581 353 3 1.91E-06 0.00988655 0.00539191 C5orf20-001 

chr6 27859476 27859811 336 3 2.27E-07 0.01242064 0.01074769 HIST1H2BO-001, HIST1H3J-001, HIST1H2AM-001, 
HIST1H3J-002 

chr6 74364495 74364700 206 4 2.63E-06 0.02515135 0.02166436 SLC17A5-001, SLC17A5-201 

chr6 106546074 106546824 751 8 4.62E-14 0.02624875 0.01650889 PRDM1-002, PRDM1-007, PRDM1-003, RP1-134E15.3-001 

chr6 149805995 149806659 665 11 1.81E-08 0.01785178 0.01265741 ZC3H12D-201, ZC3H12D-003, ZC3H12D-002, ZC3H12D-
202, ZC3H12D-004, ZC3H12D-203 

chr7 2556962 2557715 754 10 1.14E-08 0.01226153 0.00494892 LFNG-001, LFNG-201, LFNG-002, LFNG-004 

chr7 27169674 27171213 1540 20 3.16E-15 0.0371663 0.0205328 HOXA4-001, HOXA4-201, HOXA4-004, HOXA-AS3-003 

chr7 110730805 110731201 397 3 3.21E-06 -0.016941 -0.014336 LRRN3-003, LRRN3-001, LRRN3-002, LRRN3-201, 
LRRN3-004 

chr7 153584038 153584748 711 10 1.28E-07 -0.020429 -0.00886 DPP6-001 



chr8 101225181 101225902 722 6 2.40E-07 0.01812174 0.01370006 SPAG1-006 

chr9 136216873 136217303 431 5 1.35E-07 0.01245556 0.00840205 RPL7A-005, RPL7A-009, MED22-002, MED22-006, 
SNORD36A-201, SNORD36B-201, MED22-003, SNORD24-
201, RPL7A-004, MED22-005, MED22-010, RPL7A-001, 
RPL7A-003, MED22-004, MED22-009, RPL7A-006, RPL7A-
007, RPL7A-008, MED22-011, RPL7A-002, SNORD36C-201 

chr9 139745116 139745412 297 5 5.79E-08 0.01178954 0.00625226 PHPT1-001, MAMDC4-005, PHPT1-003, MAMDC4-201, 
PHPT1-005, PHPT1-004, MAMDC4-001, PHPT1-002, 
PHPT1-006, PHPT1-201 

chr10 63808314 63809170 857 14 4.11E-08 0.0110823 0.00745464 ARID5B-002 

chr10 104535792 104536052 261 8 6.65E-06 -0.0120183 -0.0071156 WBP1L-001 

chr11 847042 847072 31 2 7.57E-06 0.01410401 0.01263935 TSPAN4-017, TSPAN4-005, TSPAN4-002, TSPAN4-012, 
TSPAN4-013, TSPAN4-018 

chr11 2019436 2021103 1668 31 1.22E-28 0.03449739 0.00903111 H19-201, H19-008, H19-004, H19-002, H19-001, H19-005, 
H19-009, H19-012, H19-007, H19-013, H19-003, H19-006, 
H19-014 

chr11 128736844 128737467 624 8 1.17E-07 -0.0292492 -0.009666 KCNJ1-002, KCNJ1-001, KCNJ1-005, KCNJ1-201, KCNJ1-
003, KCNJ1-006 

chr12 54653403 54653788 386 4 6.51E-07 -0.0179083 -0.0145844 CBX5-004, CBX5-003, CBX5-005 

chr16 2261947 2262293 347 6 5.27E-11 0.01398617 0.00891788 BRICD5-001, RP11-304L19.8-001, PGP-003, BRICD5-002, 
BRICD5-003, BRICD5-004 

chr17 17464853 17465682 830 8 2.21E-09 0.02334441 0.01559593 NA 

chr17 34207332 34208012 681 6 4.60E-10 0.01767462 0.01343757 CCL5-001, CCL5-002, CCL5-003 

chr17 55362520 55363072 553 4 5.30E-07 -0.0150749 -0.0124685 MSI2-005 

chr19 17610751 17610785 35 2 2.91E-06 -0.0122955 -0.0107149 SLC27A1-009, SLC27A1-010 

chr19 18209584 18209746 163 5 3.52E-06 -0.0104941 -0.0047016 MAST3-001, IL12RB1-005, IL12RB1-006, IL12RB1-002 

chr20 36148133 36149750 1618 41 2.78E-17 0.02478338 0.0137516 NNAT-001, NNAT-002, BLCAP-009, BLCAP-010, BLCAP-
005 



chr20 62200050 62200711 662 6 6.94E-10 0.01497656 0.01241171 HELZ2-001, HELZ2-006 

chr20 62688192 62688896 705 9 1.60E-06 0.01441642 0.01071442 TCEA2-008, RP13-152O15.5-001 

chr21 35898717 35899468 752 8 5.29E-08 0.0200447 0.01593455 RCAN1-003, RCAN1-201, RCAN1-005, RCAN1-007 

chr21 38362230 38363160 931 10 1.08E-08 0.04123433 0.01288671 HLCS-001, HLCS-004 

chr22 31002362 31003283 922 14 1.55E-09 -0.0113028 -0.0050389 TCN2-001, PES1-003, PES1-002, TCN2-002, TCN2-003, 
TCN2-004, TCN2-005, PES1-012, PES1-007 

chr22 50738160 50738890 731 3 2.49E-08 0.02463834 0.02309907 PLXNB2-012 

chr22 51176117 51176734 618 7 1.57E-07 0.01094617 0.00757197 ACR-001, AC000036.4-001, ACR-003, ACR-002 

a Model adjusted for age at blood draw, sex, smoking status (never, former, current), pack-years based methylation score, BMI, surrogate variables for batch effects, and 
cell proportions. 

  



Table 4. Odds ratio for top 10 CpGs (q-value<0.05) in two differentially methylated region (H19 and HOXA4) and lung cancer risk, and stratified by 

time to diagnosis in CLUE II participants 

region CpG chr pos 

methylation beta value Odds Ratio per 1 SD increase (95% CI) a 

mean in  

cases 

mean in  

controls 
SD Diff/SD overall 

by time to diagnosis 

≤ 10 years  >10 years 

Region 1 

(gene: H19) 

cg00237904 chr11 2020314 0.519 0.489 0.076 0.401 1.94(1.50, 2.51) 1.78(1.27, 2.49) 1.87(1.40, 2.50) 

cg27300742 chr11 2020129 0.569 0.550 0.067 0.288 1.86(1.43, 2.42) 1.57(1.10, 2.23) 1.97(1.45, 2.68) 

cg01895612 chr11 2020286 0.520 0.511 0.052 0.174 1.89(1.40, 2.56) 1.49(1.02, 2.17) 2.03(1.42, 2.91) 

cg24605090 chr11 2019943 0.562 0.549 0.060 0.216 1.86(1.39, 2.49) 1.65(1.09, 2.50) 2.02(1.43, 2.86) 

cg23476401 chr11 2020296 0.563 0.548 0.072 0.214 1.69(1.30, 2.19) 1.37(0.99, 1.90) 1.78(1.31, 2.41) 

cg25281616 chr11 2020279 0.588 0.580 0.056 0.151 1.75(1.30, 2.36) 1.41(0.96, 2.06) 1.84(1.30, 2.60) 

cg18362496 chr11 2019930 0.492 0.484 0.061 0.128 1.74(1.27, 2.38) 1.45(0.95, 2.21) 1.86(1.29, 2.69) 

cg03996735 chr11 2020104 0.744 0.729 0.055 0.274 1.42(1.14, 1.77) 1.22(0.92, 1.64) 1.58(1.21, 2.05) 

cg25579157 chr11 2020549 0.552 0.549 0.022 0.130 1.52(1.17, 1.98) 1.43(0.99, 2.06) 1.58(1.16, 2.16) 

cg01539474 chr11 2019862 0.639 0.633 0.064 0.096 1.55(1.15, 2.09) 1.63(1.06, 2.50) 1.62(1.12, 2.35) 

Region 2 

(gene: 
HOXA4,  

HOXA-AS3, 

 HOXA-AS2,  

HOXA3) 
 

cg11532431 chr7 27169674 0.810 0.781 0.100 0.282 1.45(1.17, 1.81) 1.70(1.22, 2.38) 1.38(1.07, 1.77) 

cg04317399 chr7 27170313 0.324 0.307 0.091 0.184 1.43(1.13, 1.82) 1.67(1.19, 2.36) 1.38(1.05, 1.82) 

cg17591595 chr7 27171051 0.732 0.720 0.074 0.167 1.39(1.12, 1.74) 1.33(0.98, 1.82) 1.51(1.16, 1.96) 

cg22997113 chr7 27170241 0.589 0.560 0.139 0.213 1.42(1.13, 1.78) 1.53(1.09, 2.13) 1.42(1.10, 1.84) 

cg07317062 chr7 27170388 0.393 0.371 0.123 0.182 1.40(1.11, 1.77) 1.50(1.08, 2.08) 1.39(1.06, 1.81) 

cg17457637 chr7 27170717 0.369 0.355 0.093 0.145 1.39(1.10, 1.76) 1.53(1.09, 2.15) 1.38(1.05, 1.80) 

cg00562553 chr7 27169740 0.875 0.862 0.073 0.184 1.34(1.08, 1.66) 1.47(1.07, 2.01) 1.34(1.05, 1.72) 

cg03724423 chr7 27170755 0.356 0.339 0.096 0.174 1.37(1.09, 1.73) 1.46(1.05, 2.04) 1.35(1.04, 1.76) 

cg23884241 chr7 27169957 0.562 0.556 0.066 0.091 1.40(1.10, 1.79) 1.53(1.07, 2.19) 1.33(1.02, 1.75) 



cg24169822 chr7 27170994 0.434 0.418 0.105 0.146 1.37(1.09, 1.72) 1.49(1.07, 2.07) 1.35(1.04, 1.76) 

a Model adjusted for age at blood draw, sex, smoking status (never, former, current), pack-years based methylation score, BMI, surrogate variables for batch 
effects, and cell proportions. 

 


