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Abstract

Background and Objective

Although automated Skin Lesion Classification (SLC) is a crucial integral step in computer-

aided diagnosis, it remains a challenging task due to inconsistency in texture, color, indis-

tinguishable boundaries, and shapes.

Methods

In this article, we propose an automatic and robust framework for the dermoscopic SLC

named Dermoscopic Expert (DermoExpert). The DermoExpert consists of a preprocessing,

a hybrid Convolutional Neural Network (hybrid-CNN), and transfer learning. The proposed

hybrid-CNN classifier consists of three distinct feature extractors, with the same input im-

ages, which are fused to achieve better-depth feature maps of the corresponding lesion.

Those distinct and fused feature maps are classified using the different fully connected lay-

ers, which are then ensembled to get a final prediction probability. In the preprocessing,

we use lesion segmentation, augmentation, and class rebalancing. For boosting the lesion

recognition, we have also employed geometric and intensity-based augmentation as well as

the class rebalancing by penalizing the loss of the majority class and adding extra images to

the minority classes. Additionally, we leverage the knowledge from a pre-trained model, also

known as transfer learning, to build a generic classifier, although small datasets are being

used. In the end, we design and implement a web application by deploying the weights of

our DermoExpert for automatic lesion recognition.
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Results

We evaluate our DermoExpert on the ISIC-2016, ISIC-2017, and ISIC-2018 datasets,

where our DermoExpert has achieved the area under the receiver operating characteristic

curve (AUC) of 0.96, 0.95, and 0.97, respectively. The experimental results outperform

the recent state-of-the-art by a margin of 10.0 % and 2.0 % respectively for ISIC-2016 and

ISIC-2017 datasets in terms of AUC. The DermoExpert also outperforms, in concerning a

balanced accuracy, by a margin of 3.0 % for ISIC-2018 dataset.

Conclusion

Since our framework can provide better-classification on three different test datasets,

even with limited training data, it can lead to better-recognition of melanoma to aid der-

matologists. Our source code, and segmented masks, for ISIC-2018 dataset, will be made

publicly available for the research community for further improvements.

Keywords: Skin lesion classification, Dermoscopic lesion Segmentation, Convolutional

neural networks, Transfer learning, Image Augmentation.

1. Introduction

1.1. Problem Presentation

Skin cancer, one in every three cancers worldwide (Ge et al., 2017), is a common type of

cancer that originates in the epidermis layer of skin. Ultraviolet radiation exposure is one of

the prominent sources of roughly 90 % skin cancer (Narayanamurthy et al., 2018). In 2018,

in the United States (US), it is one of the most fifth common diseases in a region under

the strong sunshine (Ries et al., 2006). Approximately 2, 490 females and 4, 740 males lost

their lives in 2019 (Zhang et al., 2020) due to melanoma, whereas, in the US alone, nearly
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20 people die from melanoma per day. Age-standardized rates of melanoma of the top 20

countries, as shown in Fig. 1, anticipates the rate of disease that a population would have if

it had a standard age structure. The statistical results, in Fig. 1, show that the probability

of having melanoma is more in males patients than females. In 2020, roughly 1.0 million new
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Figure 1: Age-standardized rates per 1.0 million of the top 20 countries with higher melanoma in 2018 (Amer-

ican Institute for Cancer Research, 2018). The bars from left to right are for the decreasing melanoma case

of the countries such as Australia (AUS), New Zealand (NZ), Norway (NOR), Denmark (DEN), Netherlands

(NET), Sweden (SWE), Germany (GER), Switzerland (SWI), Belgium (BEL), Slovenia (SLO), Luxembourg

(LUX), Ireland (IRE), Finland (FIN), United Kingdom (UK) Austria (AS), France (FR), United States of

America (USA), Czech Republic (CR), Canada (CA), Italy (IT).

cases of melanoma will recognize. Roughly, 6, 850 new case of deaths due to melanoma are

anticipated in 2020, which will contain 4, 610 males and 2, 240 females (Siegel et al., 2020).

However, a precise and robust early recognition is very important as the survival rate was as

high as apparently 90 % in advance recognition (Ge et al., 2017). Several imaging techniques,

like confocal scanning laser microscopy, optical coherence tomography, ultrasound imaging,

and dermoscopic imaging, are currently being used to diagnose skin cancer (Smith and

MacNeil, 2011). Dermoscopic images, also known as epiluminescence light microscopy, are

most widely used to investigate pigmented skin lesions by the dermatologists (Friedman

et al., 1985). Such a visual assessment, via the naked eye, may introduce a faulty-recognition,

as it endures from the comparability between the lesions and healthy tissues (Al-Masni et al.,
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2020; Jones et al., 2019). The manual inspection by the dermatologists is often a tedious,

time-consuming, and subjective, which can also lead to different recognition results (Al-

Masni et al., 2020). However, to mitigate all of the above-motioned limitations and to

improve the preciseness in skin cancer recognition, Computer-aided Diagnosis (CAD) has

been developed (Jalalian et al., 2017). The classification step, in a CAD system for the

SLC, is a crucial component, which is a challenging task due to the presence of diverse

artifacts such as markers, body hair & fibers, air bubbles, reflections, on-uniform lighting,

rolling lines, shadows, non-uniform vignetting, and patient-specific effects like lesion texture

& color, size of affected lesion area (Hasan et al., 2020; Mishraa and Celebi, 2016) as shown

in Fig. 2.
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Figure 2: An example of the challenging dermoscopic images in ISIC dataset (Codella et al., 2019, 2018;

Gutman et al., 2016; Tschandl et al., 2018) with different artifacts (Hasan et al., 2020).

1.2. Related Works

Nowadays, several methods are being used for the SLC (Brinker et al., 2018; Ma et al.,

2015). Yu et al. (2016) had proposed a novel CNN architecture for SLC, where CNN learned

from the multiple-image resolutions while leveraging pre-trained CNNs. They constructed

a Fully Convolutional Residual Network (FCRN) and enhanced its capability by incorpo-

rating a multi-scale contextual information integration scheme. They also integrated their

proposed FCRN (for segmentation) and a very deep residual network (for classification) to

build a two-stage framework. Majtner et al. (2016a) had presented an automatic melanoma

detection system by employing the deep learning method combined with so-called hand-

crafted RSurf features (Majtner et al., 2016b) and Local Binary Patterns (Ahonen et al.,
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2006). Finally, they had used Support Vector Machine (SVM) (Furey et al., 2000) for the

classification of the skin lesion. Transfer learning in VGGNet architecture (Simonyan and

Zisserman, 2014) was implemented by Lopez et al. (2017), where they compared the clas-

sification results with the CNN training from scratch. A novel multi-tasking deep learning

model based on GoogleNet (Szegedy et al., 2015) and UNet (Ronneberger et al., 2015) was

proposed by Yang et al. (2017) for concurrent segmentation and classification, where they

passed both the RGB and HSV dermoscopic images as an input. Quang et al. (2017) had

presented a fully encoder-decoder architecture for segmentation, which was then classified

using the VGG16. Structural Co-occurrence Matrix (Zucker and Terzopoulos, 1980) of the

main frequencies were extracted from dermoscopic images and classified using the multilayer

perceptron by Rebouças Filho et al. (2018), where they employed exhaustive preprocessing

steps. A framework for dermoscopic image recognition via both a deep learning method

and a local descriptor encoding strategy was proposed by Yu et al. (2018). The deep repre-

sentations of a rescaled dermoscopic images were extracted via a very deep Residual neural

Network (ResNet) (He et al., 2016a), which were then aggregated by the orderless visual

statistic features based on Fisher Vector (FV). Finally, the FV encoded representations

were used to classify melanoma images using an SVM with a Chi-squared kernel (Li et al.,

2013). Rehman et al. (2018) performed segmentation using the intensity thresholding on

each channel. They used CNN for feature extraction, which was then classified using the

neural network-based classifier. A classification of skin lesions using a deep CNN (Inception-

V4) (Szegedy et al., 2017), data augmentation, and traditional machine learning classifiers

were proposed by Pham et al. (2018). They also performed both geometric and color aug-

mentation, and then deep CNN was used as a feature extractor. Finally, those features

were classified using SVM, Random Forest (Liaw et al., 2002), and Neural Network (Beale

et al., 1996). A multi-channel-ResNet was proposed by Guo and Yang (2018), where the

original images were passed through several channels. Each channel of which corresponds

to a preprocessing method, which was concatenated to obtain the final probability. Transfer

learning strategy on VGG16 and GoogLeNet architectures were employed by Majtner et al.

(2018), where a preprocessing, based on image augmentation such as horizontal flipping &
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rotation and color normalization, was also used to build a generic network. A deep learning

framework, consisting of two FCRNs, was proposed by Li and Shen (2018) to get segmen-

tation and coarse classification results concurrently. They also developed a Lesion Index

Calculation Unit (LICU) to calculate the distance heat-map, where the coarse classification

result was refined according to that generated distance map. Brinker et al. (2019) used

transfer learning in ResNet-50 architecture to classify the skin lesion in a very generic man-

ner. For doing so, they performed three techniques such as exclusive training of the adapted

last layer, fine-tuning the parameters of all layers, and sudden increases of the learning rate

at specific time steps during fine-tuning. Mahbod et al. (2019) proposed an ensemble scheme

by combining intra- and inter-architecture network fusion, where they used fine-tuning of

AlexNet (Krizhevsky et al., 2012), VGGNet, and two variations of ResNets. The final predic-

tion was accomplished using the SVM, where the average classification vectors from different

sets were fused. Akar et al. (2019) had designed and implemented a cloud-based SLC system

that consists of a CNN-based classifier and a mobile application that runs on Android and

iOS. Zhang et al. (2019) had proposed an Attention Residual Learning CNN (ARL-CNN)

model for the SLC, which was composed of multiple ARL blocks, a global average pooling

layer, and a classification layer. Each ARL block jointly used residual and novel attention

learning mechanisms to improve its ability for discriminating representation. Instead of us-

ing extra learnable layers, they proposed an attention learning mechanism to exploit the

intrinsic self-attention ability of DCNNs. Amin et al. (2020) had performed the segmenta-

tion using the 2-D wavelet transform and Ostu algorithm, where they converted the RGB

images to Lab images. They also extracted deep features using AlexNet and VGG16 model,

which were selected using the Principle Component Analysis (PCA). Finally, they obtained

the classification results by employing the k-nearest Neighbour (k-NN) (Cunningham and

Delany, 2007) and SVM. Al-Masni et al. (2020) had employed the segmentation and classi-

fication on the segmented images, where they employed four different CNN networks such

as Inception-V3 (Szegedy et al., 2016), ResNet-50, Inception-ResNet-V2 (Szegedy et al.,

2017), and DenseNet-201 (Huang et al., 2017) for the classification. They performed dif-

ferent geometric augmentation and transfer learning. The stacking ensemble method based
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on the meta-learning algorithm was proposed by Ghalejoogh et al. (2020), where two new

hybrid approaches were also introduced to combine the heterogeneous classifiers. The effect

of dermoscopic image size based on pre-trained CNNs and transfer learning was analyzed

by Mahbod et al. (2020), where they resized from 224 × 224 to 450 × 450. Three well-

established CNNs such as EfficientNetB0, EfficientNetB1, and SeReNeXt-50 were explored

for the SLC. They had also proposed and evaluated a multi-scale multi-CNN (MSM-CNN)

fusion approach based on a three-level ensemble strategy that utilizes the three network ar-

chitectures trained on cropped dermoscopic images of different scales. An architecture search

framework was presented by Kwasigroch et al. (2020) to detect the malignant melanoma.

The hill-climbing search strategy was employed along with network morphism operations

to explore the search space for finding a suitable network structure. Such morphism oper-

ations allow the increment of network size with the use of the previously trained network.

Valle et al. (2020) optimized the hyperparameter of the deep CNN models like ResNet-

101-V2 (He et al., 2016b) and Inception-V4 employing transfer learning and segmentation.

They enhanced the invariance properties of the network utilizing the image augmentation.

They also performed extensive experiments to select the best performing classifier using

the ANOVA test. Finally, the authors concluded that the transfer learning and ensembling

model is a better choice for designing the SLC systems. A Multi-class Multi-level (MCML)

algorithm was proposed by Hameed et al. (2020), which was based on “divide and conquer”

method for the SLC. The MCML consists of four integral parts: pre-processing, segmen-

tation, feature extraction, and classification. They used traditional machine learning and

deep learning models as classifiers. However, their pipeline highly dependent on preprocess-

ing like hair, black frame, and circle removing. Gessert et al. (2020) ensembled several deep

learning methods, including EfficientNets, SENet (Hu et al., 2018), and ResNeXt (Mahajan

et al., 2018), utilizing a selection strategy. They used multi-resolution input by cropping

the original images. The authors also fed the metadata as a feature vector, which was then

concatenated with the CNN models. Khan et al. (2020) developed a framework for the

SLC, which consists of the localization of lesion ROI via faster region-based CNN, feature

extraction, and feature selection by iteration-controlled Newton-Raphson method. Firstly,
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an artificial bee colony method was used for the contrast stretching, which was then used for

the lesion segmentation. The DenseNet-201 was then utilized to extract the deep features.

Finally, the authors employed a multilayer perceptron as a classifier. A Generative Adver-

sarial Network (GAN) was employed by Qin et al. (2020) for the generation of high-quality

synthetic skin images. A ResNet-50, with pre-trained ImageNet weights, was used as a lesion

classifier. To classify skin lesion, Chaturvedi et al. (2020) developed a diagnosis system based

on MobileNet (Howard et al., 2017) using transfer learning. They used different geometric

augmentations such as rotation, zoom, horizontal and vertical flip. Almaraz-Damian et al.

(2020) proposed a pipeline, which consists of different integral steps such as preprocessing,

feature extraction, feature fusion, and classification. As a preprocessing, authors extracted

ROIs of the lesion, where they also enhanced the intensity of the extracted ROIs. They

extracted different handcraft features like shape, color, texture, and CNN features, where

mutual information was employed to extract CNN features. To classify the ROIs, several

classification methods such as Linear Regression (LR), SVM, and Relevant Vector Machines

(RVMs) were used. As a preprocessing, Mporas et al. (2020) used a median filter, which was

followed by bottom-hat filtering to detect the hair or similar noise. The segmentation was

performed to extract lesion ROIs on the grayscale image using the active contour model.

Finally, different color based features were extracted, which were then classified using mul-

tilayer perceptron and different machine learning algorithms. Yilmaz and Trocan (2020)

compared the performance of deep CNN such as AlexNet, GoogLeNet, and ResNet-50 for

the classification of skin lesions. The authors experimentally demonstrated that ResNet-50

was the best performing classifier, whereas AlexNet was better for time complexity. Pereira

et al. (2020) used the gradient-based histogram thresholding and local binary pattern clus-

tering for the border-line characteristics of skin lesions. Then, border-line characteristics are

concatenated with CNN to boost the lesion classification performance.

1.3. Our Contributions

In this literature, we propose a robust and generic framework for the dermoscopic SLC,

called DermoExpert, where the preprocessing, the proposed hybrid-CNN classifier, and the
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transfer learning are the integral steps. The proposed hybrid-CNN classifier uses a two-

level ensembling. In the first level, we have concatenated, in channel-wise, 2D feature maps

of different feature map generators to enhance the depth information. The concatenated

or fused feature map and individual feature maps are trained together. Finally, we have

aggregated the different outputs at the second level. In the proposed preprocessing, we

employ a lesion segmentation, augmentation, and rebalancing, where the ROIs segmentation

enables the classifier to learn only the features from the specific lesion areas while avoiding

the surrounding healthy tissues. The precise segmentation, with less-coarseness, is a critical

prerequisite step for the classification as it extracts abstract region and detailed structural

description of various types of skin lesions. The segmentation has performed by using our

recent state-of-the-art DSNet (Hasan et al., 2020) after fine-tuning with other ISIC datasets.

We use geometry and intensity-based image augmentation, as a preprocessing, to increase

the number of training images and overcome the overfitting. We also use a class rebalancing

by adding extra images from the ISIC archive and weighting the loss function to tackle the

unwanted biasing toward the majority class. Moreover, the transfer learning, by leveraging

the weights from a pre-trained model, was applied to all the distinct feature extractors in

the proposed classifier. To our best knowledge, our proposed DermoExpert has achieved

state-of-the-art results on the three IEEE International Symposium on Biomedical Imaging

(ISBI) datasets such as ISIC-2016, ISIC-2017, and ISIC-2018 with respectively two, three,

and seven types of skin lesion, while being an end-to-end system for the SLC. Additionally, we

have implemented and compared the performance of our DermoExpert against several well-

established deep learning classifications approaches like Xception, ResNet, and DenseNet

under the same experimental environments and preprocessing using the same dataset. At

last, we have implemented a web application by deploying the trained DermoExpert for the

clinical application, which runs in a web browser.

The remaining sections of the article are organized as follows: section 2 explains the pro-

posed methodologies and datasets, where we explicitly mention the extensive experiments.

Section 3 describes the obtained results from different extensive experiments. The results

are explained with a proper interpretation in section 4, where we also present a user appli-
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cation by employing the trained model for the SLC. Finally, section 5 concludes the article

with future works.

2. Methods and Materials

This section focuses on methods and materials used for the study, where subsection

2.1 explains the proposed DermoExpert and datasets for the SLC. In subsection 2.2, we

present the metrics for evaluation and hardware used to conduct this research. Subsection

2.3 presents the training protocol and experimental details.

2.1. Proposed Framework

The proposed DermoExpert, as shown in Fig. 3, consists of dermoscopic image prepro-

cessing, transfer learning, and proposed hybrid-CNN classifier, where we have employed

lesion segmentation for ROI extraction, augmentation, and rebalancing the target classes as

a preprocessing. We have validated our DermoExpert with three different datasets having a

different number of target classes to provide the evidence of generality and versatility of the

proposed DermoExpert. In the proposed DermoExpert, there are three distinct inputs for

three different datasets, which are termed as I1, I2, and I3. The input I1, I2, or I3 generates

the corresponding output O1, O2, or O3 using the proposed preprocessing and hybrid-CNN

classifier. The different integral and crucial parts of the DermoExpert are briefly described

as follows:

2.1.1. Datasets

The three well-known datasets of skin lesions such as ISIC-2016 (Gutman et al., 2016),

ISIC-2017 (Codella et al., 2018), and ISIC-2018 (Codella et al., 2019; Tschandl et al., 2018)

are used, in this research, to evaluate the proposed DermoExpert (see Fig. 3), which are

respectively denoted by I1, I2, and I3 as an input to the DermoExpert. Table 1 shows

the class-wise distributions and short descriptions of the used datasets. The ISIC-2016 is a

binary classification task to classify the lesions as either Nevus (Nev) or Melanoma (Mel).

The ISIC-2017 and ISIC-2018 are the multi-class classification tasks. In the ISIC-2017, the

10

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


Nev Mel

ISIC-2016

Nev SK Mel

ISIC-2017

Nev SK

DF VL Mel

BCC AK

ISIC-2018

Segmentation

ISIC-2016 ISIC-2017 ISIC-2018

Rebalancing

Preprocessing

Classifier

I1

I2

I3

P1

P2

P3

O1

O2

O3

Augmentation

Figure 3: The proposed DermoExpert for the SLC, where the preprocessing has incorporated with the

pipeline to build a precise and robust diagnostic system. The input I1, I2, or I3 is followed by the prepro-

cessing (P1, P2, or P3) and then by the proposed classifier to generate the corresponding output O1, O2, or

O3.

lesion requires to classify as either Nevus (Nev) or Seborrheic keratosis (SK) or Melanoma

(Mel). The ISIC-2018 comprises of Nevus (Nev), Seborrheic keratosis (SK), Basal Cell

Carcinoma (BCC), Actinic Keratosis (AK), Dermatofibroma (DF), Vascular Lesion (VL),

and Melanoma (Mel) classes. However, the ground-truths of validation and test images are

not provided for the ISIC-2018 dataset. We have applied a cross-validation technique for

ISIC-2018 dataset to select training, validation, and testing images. The resolutions, in

pixels, of all 8-bit dermoscopic images, as in Table 1, are 540×576 to 2848×4288, 540×576

to 4499×6748, and 450×600 respectively for ISIC-2016, ISIC-2017, and ISIC-2018 datasets.

The class-distribution of all ISIC datasets, as shown in Table 1, demonstrates that the images

are imbalanced, which makes the classifier to be biased to the particular class having more

samples. However, we have employed several techniques for rebalancing to build a generic

classifier for the skin lesion diagnosis even though datasets are imbalanced.
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Table 1: A concise description and class-distribution of the ISIC-2016, 2017, and 2018 datasets.

SL # Class Types Description Train Validation Test

01 Nevus (Nev) Benign tumor derived from melanocytic 727 * 304

02 Melanoma (Mel) Malignant tumor derived from melanocytic 173 * 75

Total Images in ISIC-2016 900 * 379

01 Nevus (Nev) Benign tumor derived from melanocytic 1372 78 393

02 Seborrheic Keratosis (SK) Benign tumor derived from non-melanocytic 254 42 90

03 Melanoma (Mel) Malignant tumor derived from melanocytic 374 30 117

Total Images in ISIC-2017 2000 150 600

01 Nevus (Nev) Benign tumor derived from melanocytic 6705 * *

02 Seborrheic Keratosis (SK) Benign tumor derived from non-melanocytic 1099 * *

03 Basal Cell Carcinoma (BCC) Benign tumor derived from nonmelanocytic 514 * *

04 Actinic Keratosis (AK) Benign tumor derived from keratinocytes 327 * *

05 Dermatofibroma (DF) Benign tumor derived from histiocytes 115 * *

06 Vascular Lesion (VL) Benign tumor derived from blood vessel cell 142 * *

07 Melanoma (Mel) Malignant tumor derived from melanocytic 1113 * *

Total Images in ISIC-2018 10015 * *

*: Not available publicly

2.1.2. Proposed Preprocessing

The proposed preprocessing, as shown in Fig. 3, consists of segmentation, augmentation,

and class rebalancing, which are briefly described as follows:

Segmentation. The segmentation, to separate homogeneous lesion areas, is the critical

component for diagnosis and treatment pipeline (Hesamian et al., 2019). It is also a crucial

prerequisite for the skin lesion diagnosis as it extracts promising skin lesion features and de-

livers critical information about the shapes and structures. A recent state-of-the-art DSNet

(Hasan et al., 2020), for dermoscopic skin lesion (ISIC-2017) segmentation, has been used as

a lesion ROI extractor. We fine-tune the adopted DSNet with the ISIC-2016 and ISIC-2018

datasets to extract the lesion ROI of all three datasets as it was trained and tested on only

the ISIC-2017 dataset (Hasan et al., 2020).

Augmentation. CNN’s are heavily reliant on big data to avoid overfitting. Unfor-

tunately, many application domains, such as automation in lesion disease diagnosis, suffer

from a small size as a huge number of manually annotated training images are not yet avail-

able (Harangi, 2018). Augmentation is a very potential preprocessing for training the deep
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learning models as they are highly discriminative (Hussain et al., 2017). Data augmentation

encompasses a technique that enhances the size and quality of training datasets to build a

better-CNN classifier (Shorten and Khoshgoftaar, 2019). The geometric-based augmenta-

tion such as rotation (around row/2 and col/2) of 180◦ and 270◦, and the intensity-based

augmentation such as gamma, logarithmic, & sigmoid corrections, and stretching, or shrink-

ing the intensity levels are employed in the proposed preprocessing. The gamma correction

with two gammas (γ) of 0.7 and 1.7 has performed to change the luminance of the dermo-

scopic images by Iout = Iγin, where Iout and Iin are the output and input luminance values.

The logarithmic correction, for enhancing an image that provides better contrast and a more

structural detailed image, has employed by Iout = G× log (1 + Iin), where G = 0.5 and Iout

& Iin are the gain and input & output images respectively. We have employed sigmoid cor-

rection by Iout = 1
1+expG×(C−Iin) , where G = 15, C = 0.4, and Iout & Iin are the multiplier in

exponential’s power, cutoff of the function that shifts the characteristic curve in horizontal

direction, and input & output images respectively. We also stretch or shrink the intensity

levels between the minimum and the maximum intensities.

Rebalancing. All of the three dermoscopic datasets are imbalanced, as presented in

Table 1, which means that the number of images in the classes of each dataset is not the

same. This scenario is quite common in the medical diagnosis field as manually annotated

training images are not sufficiently available (Harangi, 2018), where the positive cases are

the minority as compared to negative cases. The unwanted biasing toward the majority

class likely to happen in the case of supervised CNN classifiers. However, in this research,

we have added additional images from the ISIC archive website (ISIC, 2018), and we also

penalize the majority class by weighting the loss function. Such a weighting pays more

attention to samples from the minority class. Here, we increase the weight of samples from

underrepresented classes with a factor of Wj = N/Nj, where Wj, N , and Nj are the weight

for class j, the total number of samples, and the number of samples in class j respectively.

Preprocessing Employment. We have sub-divided the preprocessing (P ) into the

segmentation (P1), segmentation & class rebalancing (P2), and segmentation, class rebal-

ancing, & augmentation (P3) to investigate their effects in the proposed DermoExpert for
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the SLC.

2.1.3. Proposed CNN-based Classifier and Transfer Learning

Deep CNNs are an excellent feature extractor that can avoid complicated and expensive

feature engineering. It has achieved tremendous success since 2012 (Rawat and Wang,

2017). Sometimes it rivals human expertise. For example, in CheXNet (Rajpurkar et al.,

2017), a CNN, having 121 layers, was trained on more than 1.0 million chest X-rays. It was

capable of achieving a better performance than the four experts. Additionally, Kermany

et al. (2018) used Inception-V3 (Szegedy et al., 2016), where the training set contained

roughly 1.0 million optical coherence tomographic images. They compared the results with

six radiologists, where experts got high sensitivity but low specificity, while the CNN-based

system got high values of balanced accuracy. However, those above methods are blessed with

a huge number of labeled images, which are hard to collect as it needs a lot of professional

expertise for annotation (Yadav and Jadhav, 2019). Moreover, individual CNN architecture

may have different capabilities to characterize or represent the image data, which is often

linked to a network’s depth (Kumar et al., 2016). However, CNN’s maybe indirectly limited

when employed with highly variable and distinctive image datasets with limited samples such

as dermoscopic image datasets (Codella et al., 2019, 2018; Gutman et al., 2016; Tschandl

et al., 2018). In this context, we propose a hybrid-CNN classifier by leveraging several core

techniques of the current CNN networks to build a generic skin lesion diagnostic system

with limited images for training. Fig. 4 depicts the proposed hybrid-CNN classifier. In

our hybrid-CNN, the input batch of images is simultaneously passed through three different

Feature Map Generators (FMGs) to obtain different presentations of the feature maps (see

the output of the encoders in Fig. 4). The proposed hybrid-CNN classifier comprises of the

following integrated parts:

Feature Map Generators-1 (FMG-1). The FMG-1 (f 1) consists of the identity or

residual and convolutional blocks (He et al., 2016a), where the skip connections allow the

information to flow or skip. Fig. 5 shows the constructional details of the identity and

convolutional blocks. The skip connection in the residual blocks, as in the proposed hybrid-
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Figure 4: The proposed hybrid-CNN classifier, where three distinct feature extractors, also called an encoder,

receives the same input image (Iin). The first step, encoders, are followed by the second step, called a fusion

(first level ensembling). Then, the third step, called the FC layer, is followed by the fourth step, called an

averaging (second level ensembling), to get the final output (Oout).

1×1 3×3 1×1

+

Conv ReLU Batch Norm

+
Addition

Xin XoutF1

1×1 3×3 1×1

+

1×1

Conv ReLU Batch Norm

+
Addition

Xin XoutF1

F2

Figure 5: The residual (or identity) (left) and convolutional (right) blocks (He et al., 2016a) of the FMG-1.

The output (Xout) is the summation of Xin and the process (F ), where Xout = F1(Xin) +Xin for residual

block and Xout = F1(Xin) + F2(Xin) for convolutional block.
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CNN classifier, will have two benefits: firstly, the new layers will not hamper the performance

as regularisation will skip over them, and secondly, if the new layers are useful, even with the

presence of regularisation, the weights or kernels of the layers will be non-zero. However, in

FMG-1, a 7× 7 input convolution, followed by a max-pooling with a stride of 2, and a pool

size of 3× 3, is used before the identity and convolutional blocks. By stacking these blocks

on top of each other (see Fig. 4), an FMG-1 has formed to get the feature map, where the

notation (n×) under the identity block denotes the number of repetitions (n times). The

output feature map from the FMG-1 is defined as X1 = f 1(Iin), where X1 ∈ RB×H×W×D,

and B, H, W , and D respectively denote the batch size, height, width, and depth (channel).

Feature Map Generators-2 (FMG-2). The FMG-2 (f 2) consists of the entry flow

(Conv A), middle flow (Conv B), and exit flow (Conv C) blocks, which were originally

proposed by Chollet (2017). The constructional details of those blocks are given in Fig. 6.

The batch of images first go through the entry flow, then through the middle flow, which

is repeated eight times (8×), and finally through the exit flow. All the flows, as in the

proposed hybrid-CNN classifier, have used depth-wise separable convolution and residual

connection. The former one is used to build a lightweight network, whereas the latter one

for the benefits, which were mentioned earlier. The output feature map from the FMG-2 is

defined as X2 = f 2(Iin), where X2 ∈ RB×H×W×D, and B, H, W , and D respectively denote

the batch size, height, width, and depth (channel).

Feature Map Generators-3 (FMG-3). The remaining FMG-3 (f 3) consists of the

dense and transition blocks (Huang et al., 2017), where the constructions of those blocks

are shown in Fig. 7. The FMG-3, as in the proposed hybrid-CNN classifier, gets rid of

the requirement of learning repetitive features, which can learn the absolute features of the

skin lesion (Hasan et al., 2020). The feature re-usability of FMG-3 reduces the vanishing-

gradient problem as well as it strengthens the feature propagation (Huang et al., 2017). It

also enables the convolutional layer to access the gradients of all the previous layers by using

a skip connection as depicted in Fig. 7. However, the output feature map from the FMG-3 is

defined as X3 = f 3(Iin), where X3 ∈ RB×H×W×D, and B, H, W , and D respectively denote

the batch size, height, width, and depth (channel).
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3×3 3×3 3×3 3×3
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3×3 3×3

+
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1×1 1×1 1×1

Conv Sep Conv ReLU Max Pool

+
Addition

3×3 3×3 3×3

+

Sep Conv ReLU

+
Addition

3×3 3×3

+

1×1

3×3 3×3

Conv Sep Conv ReLU

+
Addition

Figure 6: The entry flow (Conv A) (top), middle flow (Conv B) (bottom-left), and exit flow (Conv C)

(bottom-right) blocks (Chollet, 2017) of the FMG-2, where depth-wise separable convolutions were employed

in lieu of traditional convolutions to make it lightweight for real-time applications.

X0 H1 X1 H2 X2 H3 X3 H4

H: Convolution + ReLU+Batch Normalization

Figure 7: Typical dense block of the FMG-3 for a growth rate of 3.0. Each nth layer of a dense block accepts

the feature maps of all previous convolutional layers. The mathematical expression (Huang et al., 2017) of

such a reusibiility is Xn = Hn([X0, X1, X2, ..., Xn−1]), where Hn is the composite function (Huang et al.,

2017) of the nth layer, which consists of a convolution, ReLU, and batch normalization.
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Fusion (First level ensembling). We have employed those three FMGs, to get the

distinct feature maps (see in Fig. 8 (c), Fig. 8 (d), and Fig. 8 (e)) for building a proposed

hybrid-CNN classifier. In doing so, it is very impractical, in the beginning, to select the

(a) (b) (c) (d)

(e) (f) (g)

Figure 8: The extracted feature map from different FMGs with corresponding original input image (a),

where (b) the down-sampled (7 × 7) image using nearest-neighbor interpolation, (c) the output of FMG-

1, (d) the output of FMG-2, (e) the output of FMG-3, (f) the average of the three FMGs, and (g) the

channel-wise concatenation of the output of the three FMGs.

fusion mechanism as there are many ways to get the better-fused map (XF ). However,

we perform two types of fusion such as fusion by channel-concatenation (see Fig. 8 (g))

and fusion by channel-averaging (see Fig. 8 (f)), and we have named them as a first-level

ensembling. In channel-concatenation, the fused feature map is XFC = [X1 ++X2 ++X3],

where XFC ∈ RB×H×W×3D and ++ denotes the channel concatenation. In channel-averaging,

the fused feature map is XFA = 1
N=3

∑N=3
n=1 Xn, where XFA ∈ RB×H×W×D,

∑
is the element-

wise summation, and N is the numbers of FMG.

Fully Connected Layer. The different feature maps are classified into desired cate-

gories using the Fully Connected (FC) layers, where the output is denoted by FM for M th

input feature map. However, to vectorize the 2D feature maps into a single long continuous
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linear vector before the FC layer, we use a Global Average Pooling (GAP) layer (Lin et al.,

2013), which improves generalization and prevents overfitting. The GAP layer performs a

more extreme dimensionality reduction to avoid overfitting. An height×weight× depth di-

mensional tensor, in GAP, is reduced to a 1×1×depth vector by transferring height×width
feature map to a single number. Such a GAP layer contributes to the lightweight design of

the CNN classifiers. Additionally, each FC layer is followed by a Dropout layer (Srivastava

et al., 2014) as a regulariser, where we randomly set 50.0 % neurons of the FC layer to zero

during the training. Such a Dropout layer can build a generic CNN classifier by reducing

the overfitting.

Averaging (Second level ensembling). Finally, the output probability (Oj=1,2,3) is

the average of the outputs of different FM , and we have named it as a second level ensembling.

The output (Oj=1,2,3) lies in N -dimensional space, where O1 ∈ RN=2, O2 ∈ RN=3, and

O3 ∈ RN=7 respectively for the inputs I1, I2, and I3 (see subsection 2.1 and Fig. 3) by

applying the proposed preprocessing (either P1 or P2 or P3).

Possible hybrid-CNN classifiers. However, in this literature, we propose five possible

ensembling classifiers by using first level and second level ensembling, which are enlisted as

follows:

1. Method-1: Selection of only the first-level ensembling by using the fused feature map

XFC , and performing the classification using an FC layer (FXFC
) for achieving a final

probability Oj

2. Method-2: Selection of only the first-level ensembling by using the fused feature map

XFA, and performing the classification using an FC layer (FXFA
) for achieving a final

probability Oj

3. Method-3: Selection of only the second-level ensembling by employing the feature

maps (X1, X2, and X3) except the fused maps (XFC and XFA), and performing the

classification using the FC layers (FX1 , FX2 , and FX3) for achieving a final probability

Oj
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4. Method-4: Selection of both the first and second-level ensembling by using the fea-

ture maps (X1, X2, X3, and XFA) except the fused map (XFC), and performing the

classification using the FC layers (FX1 , FX2 , FX3 , and FXFA
) for achieving a final

probability Oj

5. Method-5: Selection of both the first and second-level ensembling by using the fea-

ture maps (X1, X2, X3, and XFC) except the fused map (XFA), and performing the

classification using the FC layers (FX1 , FX2 , FX3 , and FXFC
) for achieving a final

probability Oj

However, we perform the ablation studies (see the subsection 3.3) on the above-mentioned

five different methods to obtain the best hybrid-CNN classifier for the SLC.

Transfer Learning. Moreover, when the number of data is relatively small, as the skin

lesion datasets in this literature, the model starts to overfit after several epochs. However,

the scarcity of such a relatively small medical image datasets has been partially overcome

by employing a transfer learning (Shin et al., 2016; Tajbakhsh et al., 2016). It uses the

representations learned by a previous model and employs a new domain, which also reduces

the need for large computational power (Talo et al., 2019). However, in the proposed Der-

moExpert, we use the previously trained weights to our FMG-1, FMG-2, and FMG-3 for

transferring the knowledge.

2.2. Hardware and Evaluation

Hardware. We have implemented our DermoExpert on a Windows-10 machine using

the Python programming language with different Python and Keras (Géron, 2019) APIs.

The hardware configuration of the used machine are: IntelR© CoreTM i7-7700 HQ CPU @

2.80GHz processor with Install memory (RAM): 16.0GB and GeForce GTX 1060 GPU

with 6GB GDDR5 memory.

Evaluation Metrics. We have evaluated the results using several metrics, where each

metric evaluates the model from different aspects. We use recall, specificity, and intersection

over union (IoU) for measuring the segmentation performance quantitatively as an accurate
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mask is the crucial prerequisite of the proposed DermoExpert. The recall and specificity

respectively measure the percentage of true and wrong regions, whereas the IoU measures the

amount of the overlapping between the true and predicted masks. We evaluate the proposed

DermoExpert using the recall, precision, and F1-score. The recall quantifies the type-II

error (the lesion, with the positive syndromes, inappropriately fails to be nullified), and

precision quantifies the positive predictive values (percentage of truly positive recognition

among all the positive recognition). The F1-score indicates the harmonic mean of recall

and precision, which shows the tradeoff between them. We have also reported the confusion

matrix for evaluating the DermoExpert by investigating the class-wise performance of the

SLC. Moreover, the Receiver Operating Characteristics (ROC) with Area Under the ROC

Curve (AUC) value is also used to quantify the prediction probability of any randomly picked

sample.

2.3. Training Protocol and Experiments

As we segment the lesion using the recent state-of-the-art DSNet, the kernels, in both

the encoder and decoder, have been initialized with the pre-trained weights of the DSNet.

We resize all the images to 192 × 256 pixels using the nearest-neighbor interpolation, for

the segmentation, as the DSNet receives the images having a resolution of 192× 256 pixels.

Additionally, we have standardized and rescaled the training images to [0 1]. The fine-tuning

of the DSNet has been performed using the following loss function (L) (Hasan et al., 2020)

as Eq. 1.

L (y, ŷ) = 1−

N∑
i=1

yi × ŷi

N∑
i=1

yi +
N∑
i=1

ŷi −
N∑
i=1

yi × ŷi
− 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

where y and ŷ, N respectively denote the true and predicted label, the total number of

pixels.

The pre-trained weights from ImageNet (Deng et al., 2009) were applied to initialize the

kernels of all the FMGs. Xavier distribution, also called glorot uniform distribution (Glorot
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and Bengio, 2010), is used to initialize the kernels in FC layers. It draws the samples from a

truncated normal distribution centered on 0.0 with a standard deviation of
√

(2/(Fin+Fout)).

Fin and Fout respectively denotes the number of input and output units in the weight tensor.

The aspect ratio distribution extracted ROIs, of the lesion for ISIC-2016, ISIC-2017, and

ISIC-2018 datasets reveal that most of the ROIs have an aspect ratio of 1 : 1. So, all

the ROIs have been resized to 192 × 192 pixels using a nearest-neighbor interpolation for

classification using the DermoExpert. The categorical cross-entropy function is used as a

loss function in our DermoExpert. However, it is very impractical to guesstimate the proper

optimizer and the learning rate as they are highly dependent on the networks and datasets.

In this literature, we perform extensive experiments for selecting those hyperparameters as

described in subsection 3.2. We set the initial epochs as 200 and stop the training using

a callback function when the validation loss has stopped improving. However, we perform

several extensive experiments to achieve the highest possible performance for a robust and

accurate SLC system. Firstly, we select the optimizer with learning rate and the best hybrid-

CNN classifier (see in subsection 2.1.3), for the proposed DermoExpert, via comprehensive

experiments. Then, we perform the following experiments:

1. We fine-tuned DSNet on the ISIC-n dataset, where n = 2016, 2017, 2018. Then, we

extract the lesion ROI and resize the images to 192× 192.

2. We perform the classification using the proposed DermoExpert on those segmented

ROIs.

3. We rebalance the lesion classes of the segmented ROIs since the class distributions are

imbalanced. Then, we perform the classification.

4. Finally, we add the intensity and geometry-based augmentation on the experiments-3

and perform the classification.

We have repeated all the above-mentioned experiments for the three different datasets

such as ISIC-2016, ISIC-2017, and ISIC-2018.
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3. Experimental Results

In this section, we are reporting the results obtained through several extensive exper-

iments, both qualitatively and quantitatively. First, the segmentation results of the fine-

tuned DSNet and the qualitative results for different augmentations are reported in sub-

section 3.1. Then, in subsection 3.2, we present ablation studies for optimizer and learning

rate selection as they play the crucial roles for training the CNNs, and we also present

the ablation studies, in subsection 3.3, for the best hybrid-CNN classifier selection (see in

subsection 2.1.3) for the DermoExpert. Then, the classification results on ISIC-2016, ISIC-

2017, and ISIC-2018 datasets are presented in the subsections 3.4, 3.5, and 3.6, respectively.

Finally, in subsection 3.7, we compare our results with the state-of-the-art results for lesion

classification.

3.1. Segmentation and Augmentation

Table 2 shows the quantitative results for the lesion ROI extraction (segmentation) for

further classification. The results, as shown in Table 2, demonstrate that the type-I errors

Table 2: Segmentation results on the test datasets of the ISIC-2016, ISIC-2017, and ISIC-2018 from the

fine-tuned DSNet, where the mRc, mSp, and mIoU respectively indicate the mean recall, specificity, and

IoU.

Performance metricsFine-tune

datasets

Testing

datasets mRc mSp mIoU

ISIC-2016 0.908± 0.12 0.962± 0.09 0.859± 0.13

ISIC-2017 0.880± 0.17 0.935± 0.15 0.794± 0.17
ISIC-2016

ISIC-2018
ISIC-2018 0.911± 0.14 0.954± 0.12 0.838± 0.14

are 3.8 %, 6.5 %, and 4.6 % respectively for ISIC-2016, ISIC-2017, and ISIC-2018 datasets,

whereas the type-II errors are 9.2 %, 12.0 %, and 8.9 % respectively for ISIC-2016, ISIC-2017,

and ISIC-2018 datasets. Such a less type-I and type-II errors reveal that our segmented

ROIs, of the skin lesion, are blessed with less false negative and positive respectively, which

make them better-applicable for the SLC. The qualitative results of the segmented masks,
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as shown in Fig. 9, depict that the extracted green ROIs are approximately coincided on the

true yellow ROIs. More segmentation results for all the test images are available in YouTube

(ISIC-20162, ISIC-20173, and ISIC-20184). The qualitative results, as shown in Fig. 9, show

that the segmented mask is also as better as in the microscopic skin images (first and

last columns of the second row). Both the quantitative and qualitative representation of the

ISIC-2016 ISIC-2017 ISIC-2018

Figure 9: The example of some extracted ROIs on the ISIC-2016, ISIC-2017, and ISIC-2018 test datasets

from the fine-tuned DSNet, where the green and yellow color denote the extracted and true bounding boxes.

segmentation results demonstrate that the mean overlapping between the true and predicted

mask, of all the test images, are as high as the recent state-of-the-art results for dermoscopic

lesion segmentation (Bi et al., 2019; Tang et al., 2020b; Xie et al., 2020; Zhu et al., 2020).

However, all the segmented ROIs are further processed for the augmentation as both the

quantitative and qualitative results of the segmentation show that it yields the most reliable

ROIs for the SLC.

Fig. 10 shows the typical examples of the augmented images of the segmented ROIs. The

qualitative presentation of the augmented images reveals the distinctiveness of each image,

which is very crucial for the training of CNNs. The image, as in Fig. 10 (d), shows that

the sigmoid corrected image provides the specified lesion region to the network for learning

about the lesion. The gamma-corrected (γ = 1.7), as in Fig. 10 (f), provides more intense

lesion area, whereas the gamma-corrected (γ = 0.7), as in Fig. 10 (e), is brighter than the

2ISIC-2016 (Segmentation): https://youtu.be/kB0Bf5D0WsA
3ISIC-2017 (Segmentation): https://youtu.be/m3u58LN9lns
4ISIC-2018 (Segmentation): https://youtu.be/r4hxv8WdQHM
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Example of the geometric and intensity-based augmentations of dermoscopic images, where (a)

the original image, (b) 180◦ rotated, (c) 270◦ rotated, (d) sigmoid corrected, (e) gamma corrected (γ = 0.7),

(f) gamma corrected (γ = 1.7), (g) logarithmic corrected, and (h) intensity re-scaling.

original image (see Fig. 10 (a)). The logarithmic corrected image, as in Fig. 10 (g), is also

a darker image, which also shows the distinctiveness.

3.2. Optimizer and Learning Rate Selection

The Learning Rate (LR) is one of the most important hyperparameters, which is very

challenging to select in the beginning. Too small an LR will make a training algorithm

converge slowly, while too large an LR will make the training algorithm diverge (Orr and

Müller, 2003). Determining a proper LR becomes more of an art than science for many

machine learning problems. The optimizer, to update the weight parameters for minimizing

the loss function, is also very critical and crucial to select. However, we have performed

several experiments to get better-LR and optimizer for the SLC. We have used input (I1)

and preprocessing (P1) to generate the output (O1) by employing different optimizers and

LR, which are presented in Fig. 11. This experiment has been conducted using the optimizers

such as Stochastic Gradient Descent (SGD) (Ruder, 2016), Adadelta (Zeiler, 2012), Adamax

& Adam (Kingma and Ba, 2014), and different LR scheduler schemes such as constant LR,

decaying LR with epochs, and Cyclical Learning Rates (CyLR) (Smith, 2017). For all
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Figure 11: The experimental results for different optimizers and LR, where (a) is for the training accuracy,

and (b) is for the validation accuracy.

the experiments, we set the initial epochs of 100 with the early stopping scheme, where

the training has terminated, when it stops improving the validation accuracy up to 10

epochs. The Adadelta optimizer, with an initial LR of 1.0, reaches the training accuracy of

100.0 % after few epochs, whereas the validation accuracy stagnates the improvement. Adam

optimizer also has stopped, improving in terms of training and validation accuracy, with the

increased epochs. The constant LR, decaying LR, and CyLR with SGD also produce many

overshoots and undershoots in training and validation accuracy. On the other hand, the

adaptive optimizer Adamax, with an initial LR of 0.0001, has smoothly increased training

accuracy with the highest validation accuracy, where we employed LR scheduler (reduction

of initial LR after 5 epochs if validation accuracy doesn’t improve) along with the Adamax.

However, those experiments reveal that an Adamax, with the LR scheduler, is a better choice

for the SLC in our proposed DermoExpert, which is employed in the rest of the upcoming

experiments.

3.3. Classifier Selection

In this subsection, we present the ablation studies on the proposed hybrid-CNN clas-

sifiers, as described in subsection 2.1.3, by comparing them quantitatively. We have used

input (I1) and preprocessing (P1) to generate the output (O1) for five different classifiers,
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where we also apply the best optimizer and LR from the previous experiment. The results

of this experiment are presented in the ROC curve, as shown in Fig. 12, where we have

also reported AUC for different classifiers. The results, in Fig. 12, show that the Method-1
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Figure 12: The ROC curve for the ISIC-2016 test dataset by employing the proposed five different networks

and preprocessing (P3).

outperforms the Method-2 by a margin of 16.0 %, in term of AUC, as well as at 10.0 %

false-positive rates, the true-positive rates are approximately 50.0 % and 25.0 % respectively

for Method-1 and Method-2. Those results indicate that the channel-wise concatenation

(XFC) is better-fusion technique than the averaging (XFA) of the FMGs as the former has

3 times more depth information about the lesion. The comparison between the figures (see

Fig. 8 (b), Fig. 8 (c), Fig. 8 (d), Fig. 8 (e), and Fig. 8 (f)) also demonstrates that the

addition of those feature maps produces the scattered feature distribution, whereas the in-

dividual feature map from the FMG-1, FMG-2, and FMG-3 depicts better-feature maps of

the lesion (see Fig. 8 (b)). Those phenomena could be the possible reasons for achieving bet-

ter results from the Method-1 than Method-2. Again, Method-3, where we have employed

only the second level ensembling, beats the former two methods, which reveals that second-

level ensembling has good prospects in the proposed classifier than the first-level ensembling
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alone. The employment of the fusion-by-averaging (XFA) with all three distinct feature

maps, called as Method-4, further improves the results of Method-3 by a margin of 0.5 %

concerning the AUC. Finally, in Method-5, if we replace XFA by fusion-by-concatenation

(XFC) in Method-4, it shows a better performance comparing all the former methods as

XFC has a better representation of the lesion than the XFA. However, the Method-5 beats

all the other four methods by the margin of 8.3 %, 24.3 %, 7.0 %, and 6.5 % concerning

AUC respectively for Method-1, Method-2, Method-3, and Method-4. The above discussion

reveals that the hybrid-CNN classifier (Method-5) has better-prospect for the SLC, which

comprises of both the first and second-level ensembling. In the first level, we have used

fusion-by-concatenation, and in the second-level, we aggregate the individual probability

to get final prediction probability. However, for all the next experiments for the SLC on

the ISIC-2016, ISIC-2017, and ISIC-2018 datasets, we will use our proposed hybrid-CNN

classifier (Method-5) as it has better-prospects as a classifier for the robust DermoExpert.

3.4. Results on ISIC-2016

The performance, of the binary SLC of the proposed DermoExpert, has been validated

using 379 dermoscopic test images of the ISIC-2016 dataset. The overall quantitative re-

sults, from all the extensive experiments, are presented, in Table 3, in terms of the recall,

precision, and F1-score. The results, as presented in Table 3, show that the preprocessing

Table 3: The classification results on the ISIC-2016 test dataset from the different extensive experiments.

Recall Precision F1-score
Preprocessing

Nev Mel W. Avg. Nev Mel W. Avg. Nev Mel W. Avg.

P1 0.99 0.35 0.87 0.86 0.93 0.87 0.92 0.50 0.84

P2 0.98 0.69 0.93 0.93 0.91 0.93 0.96 0.79 0.92

P3 0.93 0.85 0.92 0.96 0.76 0.92 0.95 0.81 0.92

P1: Segmentation; P2: Segmentation and Rebalancing; P3: Segmentation, Rebalancing, and Augmentation.

(P3) along with the proposed hybrid-CNN classifier yields the best performance for binary

lesion classification. The recall of the positive class (Mel) reveals that the type-II errors are
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65.0 %, 31.0 %, and 15.0 % for the respective preprocessing P1, P2, and P3. It also shows

that rebalancing with segmentation improves the type-II errors by 34.0 %, whereas the re-

balancing and augmentation with segmentation significantly improves the type-II errors by

50.0 %. Although the FN is reducing, when we move from P1 to P3, the FP is increasing

accordingly. For a P3 preprocessing, the precision of the Mel class (76.0 %) also shows the

evidence of increasing FP with the decreasing of FN, as 24.0 % recognized positives are the

wrong positives. However, the decreasing FN-rates (65.0 % to 15.0 %) is better than the

increasing FP-rates (1.0 % to 7.0 %) in medical diagnosis applications. Moreover, the har-

monic mean of the precision and recall for both the classes (Nev and Mel) is improving,

when we move from P1 to P3 by the margins of 3.0 % and 31.0 % respectively for Nev and

Mel classes. The confusion matrix in Table 4, for more detailed analysis of the SLC-2016

Table 4: The confusion matrix for the ISIC-2016 test dataset by using the proposed CNN-based hybrid

classifier and preprocessing (P3).

Actual

Nev Mel

Nev
284

93.42 %

11

14.67 %

Predicted
Mel

20

6.58 %

64

85.33 %

results, shows that among 304 Nev samples, correctly classified samples are 284 (93.4 %),

whereas only 20 (6.58 %) samples are classified as Mel. It also shows that among 75 Mel

samples, correctly classified samples are 64 (85.33 %), whereas only 11 (14.67 %) samples are

classified as Nev. Fig. 13 shows the ROC curve of the best SLC-2016 and the baseline

Xception (Chollet, 2017), ResNet-50 (He et al., 2016a), and DenseNet-121 (Huang et al.,

2017). The proposed DermoExpert obtains an AUC of 0.96, which indicates the probabil-

ity of correct lesion recognition is as high as 96.0 % for any given random sample. It has

beaten the baseline Xception, ResNet-50, and DenseNet-121 respectively by 11.6 %, 13.0 %,

and 10.6 % in terms of AUC. Also from Fig. 13 and given a 10.0 % false-positive rates, the

29

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for Proposed hybrid-CNN (AUC  = 0.960)
ROC for Xception (AUC  = 0.844)
ROC for ResNet-50 (AUC  = 0.830)
ROC for DenseNet-121 (AUC  = 0.854)

Figure 13: The ROC curve for the ISIC-2016 test dataset by employing the proposed CNN-based hybrid

classifier and preprocessing (P3).

true-positive rates of the proposed DermoExpert, Xception, ResNet-50, and DenseNet-121

are approximately 83.0 %, 55.0 %, 50.0 %, and 58.0 % respectively. The above-discussions,

for the SLC on ISIC-2016 test dataset, indicate that the proposed DermoExpert can be

potentially used as a CAD tool for the lesion classification.

3.5. Results on ISIC-2017

This subsection represents the potentiality of the proposed DermoExpert to recognize

three different lesions as Nev, SK, and Mel. The quantitative results, on the ISIC-2017

test dataset, have been summarized, in Table 5, for the recall, precision, and F1-score.

The results, as in Table 5, also depicts the weighted metrics for aggregate cases concerning

the class population. The SLC results, as shown in Table 5, demonstrate that the recall is

increased by 24.0 %, and 17.0 % respectively for Mel and SK, when we employ the preprocess

P2 instead of baseline P1. The further employment of the preprocess P3 in place of P2 could

not reduce the type-II errors rather remains constant, but reduces type-II errors of the

Nev class by 5.0 %. The weighted average of the recall has increased, when we employ the

preprocess P2 instead of baseline P1, and then the preprocess P3 instead of baseline P2.

30

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 5, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


Table 5: The classification results on the ISIC-2017 test dataset from the different extensive experiments.

Recall Precision F1-score
Preprocessing

Nev SK Mel W. Avg. Nev SK Mel W. Avg. Nev SK Mel W. Avg.

P1 0.98 0.67 0.38 0.81 0.80 0.92 0.80 0.82 0.88 0.77 0.51 0.79

P2 0.90 0.84 0.62 0.84 0.88 0.68 0.84 0.84 0.89 0.75 0.71 0.84

P3 0.95 0.84 0.61 0.86 0.90 0.76 0.82 0.86 0.92 0.80 0.70 0.86

P1: Segmentation; P2: Segmentation and Rebalancing; P3: Segmentation, Rebalancing, and Augmentation.

However, it is beneficiary of applying the preprocess P3 instead of P2 and P1 in terms of

type-II errors. It is noticed, from Table 5, that the weighted precisions are increasing, when

we change the preprocess P1 to P2 and P2 to P3. The class-wise precision also reveals that

the FN is reducing by a significant amount, although the FP is increasing. However, such

a result in medical disease diagnosis, for the SLC, is acceptable as the patient, with the

positive symptom, should not be classified as the negative patient. Additionally, the class-

wise F1-score for the Nev, SK, and Mel have improved significantly, when we change the

prepossess P1 to P2, and then P2 to P3. The improved F1-score tells that both the recall and

precision are praiseworthy, although the uneven class distribution was being used. Details

of class-wise investigation, of the best performing SLC, has been present in the confusion

matrix in Table 6, where we apply the preprocessing (P3) and the proposed hybrid-CNN

classifier. The confusion matrix, as presented in Table 6, for the SLC-2017 shows that

Table 6: The confusion matrix for the ISIC-2017 test dataset by using the proposed hybrid-CNN classifier

and preprocessing (P3).

Actual

Nev SK Mel

Nev
372

94.66 %

6

6.67 %

35

29.91 %

SK
13

3.31 %

76

84.44 %

11

9.40 %
Predicted

Mel
8

2.03 %

8

8.89 %

71

60.69 %

94.66 % Nev samples are correctly classified as Nev, whereas 5.34 % (3.31 % as SK and
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2.03 % as Mel) samples are wrongly classified. 84.44 % SK samples are correctly classified

as SK, whereas 15.56 % (6.67 % as Nev and 8.89 % as Mel) samples are wrongly classified.

On the other hand, 60.69 % Mel samples are correctly classified as Mel, whereas 39.31 %

(29.91 % as Nev and 9.40 % as SK) samples are wrongly classified. Although the 39.31 % of

the positive samples (Mel) are wrongly classified, it is still better than the baseline 62.0 %

errors in the baseline preprocessing P1. Fig. 14 shows the ROC curve of the best SLC-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
False Positive Rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC for Proposed hybrid-CNN (AUC  = 0.947)
ROC for Xception (AUC  = 0.847)
ROC for ResNet-50 (AUC  = 0.824)
ROC for DenseNet-121 (AUC  = 0.750)

Figure 14: The ROC curve for the ISIC-2017 test dataset by employing the proposed classifier and prepro-

cessing (P3).

2017 and baseline state-of-the-art Xception, ResNet-50, and DenseNet-121. The proposed

DermoExpert, for the SLC-2017, obtains an AUC of 0.947, which indicates the probability

of correct lesion recognition is as high as 94.7 % for any given random sample. The proposed

DermoExpert outperforms the Xception, ResNet-50, and DenseNet-121 respectively by 10 %,

12.3 %, and 19.7 % for AUC. Also from Fig. 14 and given a 10.0 % false-positive rates, the

true-positive rates of the proposed DermoExpert, Xception, ResNet-50, and DenseNet-121

are approximately 85.0 %, 60.0 %, 55.0 %, and 41.0 % respectively. In contrast, the above-

discussions for the SLC on ISIC-2017 demonstrate that the proposed DermoExpert can be

potentially applied as an SLC-CAD tool.
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3.6. Results on ISIC-2018

This subsection represents the experimental results for the SLC-2018 from the proposed

DermoExpert for recognizing very challenging lesion categories into seven classes such as

Nev, SK, BCC, AK, DF, VL, and Mel. As it was presented earlier, in subsection 2.1.1,

that the ISIC-2018 provides only the training set. Therefore, we employed 5-fold cross-

validation, where 60.0 %, 20.0 %, and 20.0 % samples are used respectively for training,

validation, and testing. We repeat the experiments, for the SLC-2018, 5-times and the final

results, as presented in Fig. 15, are the average classification performance of the 5 folds.

The investigation on the results, as shown in Fig. 15, show that for a baseline preprocessing
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Figure 15: The experimental results for the ISIC-2018 test dataset classification, where blue, green, and

black bar of different class respectively denote the results (recall (a), precision (b), and F1-score (c)) for the

preprocessing P1, P2, and P3.
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(P1), the metrics (see blue bar in Fig. 15 (a), Fig. 15 (b), and Fig. 15 (c)) are varied in

a significant amount, where the recall, precision, and F1-score of the Nev class are higher

than other classes. Moreover, the melanoma class has a recall of 42.0 %, which is very

less. Additionally, the recall, precision, and F1-score for the DF class are 0.0 %, where all

the images, in the DF class, are classified as other classes. Such a weak result from the

proposed DermoExpert by applying the baseline preprocessing (P1) is due to the unequal

class distribution, where class distribution was 1.0 : 6.1 : 13.02 : 20.47 : 58.3 : 47.47 : 6.02

respectively for the classes Nev, SK, BCC, AK, DF, VL, and Mel. The weak performance of

the DF and VL classes, in terms of recall, precision, and F1-score, was likely to happen as

they are the most minority (underrepresented) classes. However, the rebalancing the class

distribution, as in the preprocessing (P2), boosts the class-wise performance in a significant

portions (see green bar in Fig. 15 (a), Fig. 15 (b), and Fig. 15 (c)), where the recall, precision,

and F1-score of the DF class respectively increase to 65.0 %, 64.0 %, and 64.0 % from the

baseline 0.0 for all metrics. Not only the DF class but also the other classes have improved

the performance, especially the recall of BCC, AK, and Mel class has increased by the

margin of 33.0 %, 29.0 %, and 11.0 % respectively. Another point can claim that the moving

the preprocessing, from P1 to P2, do not degrade the performance of the best performing

Nev class in P1, rather improves in terms of precision and F1-score, while the recall remains

constant. However, further addition of the proposed augmentation with the preprocessing

(P2) improves all the metrics for most of the classes, while the performance in the other

classes remain constant. The more improved class-wise precision and F1-score, due to the

appliance of the third preprocessing (P3), show that the positive predictive value and the

balanced precision-recall have more improved than the type-II errors (recall). The more

detailed class-wise assessment, of the best performing SLC for the ISIC-2018 test dataset,

has been presented in the confusion matrix in Table 7, where we apply the preprocessing (P3)

and the proposed hybrid-CNN classifier. The matrix, as shown in Table 7, reveals the FN and

FP for the SLC-2018, where number of wrongly classified images (type-I or type-II errors)

are 58/1341 (4.33 %), 72/220 (32.73 %), 18/102 (17.65 %), 29/65 (44.62 %), 7/23 (30.43 %),

1/29 (3.45 %), and 102/222 (45.94 %) respectively for the Nev, SK, BCC, AK, DF, VL and
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Table 7: The confusion matrix for the ISIC-2018 test dataset by using the proposed classifier and prepro-

cessing (P3).

Actual

Nev SK BCC AK DF VL Mel

Nev
1283

95.67 %

43

19.55 %

10

9.80 %

3

4.62 %

4

17.39 %

1

3.45 %

64

28.83 %

SK
21

1.57 %

148

67.27 %

7

6.86 %

11

16.92 %

2

8.69 %

0

0.0 %

27

12.16 %

BCC
9

0.67 %

4

1.82 %

84

82.36 %

8

12.31 %

0

0.0 %

0

0.0 %

3

1.35 %

AK
0

0.0 %

9

4.09 %

0

0.0 %

36

55.38 %

0

0.0 %

0

0.0 %

3

1.35 %

DF
5

0.37 %

2

0.91 %

0

0.0 %

1

1.54 %

16

69.57 %

0

0.0 %

0

0.0 %

VL
0

0.0 %

0

0.0 %

0

0.0 %

0

0.0 %

0

0.0 %

28

96.55 %

5

2.25 %

Predicted

Mel
23

1.72 %

14

6.36 %

1

0.98 %

6

9.23 %

1

4.35 %

0

0.0 %

120

54.06 %

Mel. Although the performance, in some classes, is not highly improved as in other classes

it is still better than the baseline process. Fig. 16 shows the ROC curve of the best SLC-

2018 and baseline state-of-the-art Xception, ResNet-50, and DenseNet-121. The proposed

DermoExpert, for SLC-2018, obtains an AUC of 0.969, which indicates the probability of

correct lesion recognition is as high as 96.9 % for any given random sample. It has defeated

all the baseline Xception, ResNet-50, and DenseNet-121 respectively by 2.4 %, 2.4 %, and

2.3 % with respect to AUC. Also from Fig. 16 and given a 10 % false-positive rates, the

true-positive rates of the proposed DermoExpert, Xception, ResNet-50, and DenseNet-121

are approximately 92.0 %, 83.0 %, 82.0 %, and 86.0 % respectively. In conclusion, the above-

discussions for the SLC on ISIC-2018 demonstrate that the proposed DermoExpert can be

potentially applied as a SLC-CAD tool.

3.7. Results Comparison

In this subsection, the performance of the proposed DermoExpert is compared and con-

trasted to several recent state-of-the-art methods.
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Figure 16: The ROC curve for the ISIC-2018 test dataset by employing the proposed network and prepro-

cessing (P3).

Table 8 represents the performance comparison of the proposed DermoExpert with other

recent methods for all the ISIC-2016, ISIC-2017, and ISIC-2018 datasets. To improve classi-

fication performance, authors, in several recent works, used the external data to train their

models, which are not publicly available yet. The improvement of the classification network

may not be due to the superiority of the network itself, but the characteristics of the external

data, which are similar to the test datasets. However, for the fairness in comparison, we

have reported the results, which were too strict the datasets on the ISIC archive only. The

proposed DermoExpert produces the best classification, as shown in Table 8, for five out of

the nine cases while performing second best with the winning methods on the other four

cases.

Comparison of SLC-2016. The proposed DermoExpert produces the best results for

the AUC by beating the state-of-the-art (Tang et al., 2020a; Yu et al., 2020) with a 10.0 %

margin. Concerning the type-II errors (recall), DermoExpert is behind the state-of-the-art

(Song et al., 2020) by 7.0 %, but the DermoExpert outperforms the FPRPN (Song et al.,

2020) by a 10.0 % margin concerning the positive predictive value (precision). However, in
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Table 8: The state-of-the-art comparison with proposed DermoExpert, which were trained, validated and

tested on the ISIC-2016, ISIC-2017, and ISIC-2018 datasets.

ISIC-2016 ISIC-2017 ISIC-2018
Methods

Recall Precision AUC Recall Precision AUC Recall Precision AUC

ResNet-50 (Brinker et al., 2019) 0.56 0.71 0.85 - - - - - -

GR (Serte and Demirel, 2019) - - - 0.15 - 0.91 - - -

ARLCNN (Zhang et al., 2019) - - - 0.77 - 0.92 - - -

IR (Al-Masni et al., 2020) 0.82 - 0.77 0.76 - - 0.81 - -

FPRPN (Song et al., 2020) 0.99 0.82 0.81 0.98 0.82 0.79 - - -

GCD (Tang et al., 2020a) 0.32 0.73 0.86 0.55 - 0.93 - - -

MFA (Yu et al., 2020) 0.60 0.69 0.86 - 0.72 0.90 - -

MIAG (MIA Group, 2018) - - - - - - 0.78 0.87 0.98

DenseNet (Li and Li, 2018) - - - - - - 0.80 0.85 0.98

RDI (Nozdryn-Plotnicki et al., 2018) - - - - - - 0.83 0.83 0.98

DermoExpert (Proposed, 2020) 0.92 0.92 0.96 0.86 0.86 0.95 0.86 0.85 0.97

GR: Gabor Wavelet-based CNN (Serte and Demirel, 2019)

ARLCNN: Attention residual learning convolutional neural network (ResNet-14 & ResNet-50) (Zhang et al., 2020)

IR: Inception-ResNet-V2 (ISIC-2016), ResNet-50 (ISIC-2017,ISIC-2018) (Al-Masni et al., 2020)

FPRPN: Feature Pyramid Network (FPN) and Region Proposal Network (RPN) (Song et al., 2020)

GCD: Global-Part CNN Model with Data-Transformed Ensemble Learning (Tang et al., 2020a)

MFA: Multi-network based feature aggregation (Yu et al., 2020)

MIAG: Emsembling classifier (MIA Group, 2018)

RDI: Emsembling of ResNet, DenseNet, and Inception (Nozdryn-Plotnicki et al., 2018)

terms of balanced accuracy (avg. of recall and precision), DermoExpert beats the state-of-

the-art (Song et al., 2020) by a 1.5 % margin.

Comparison of SLC-2017. For AUC, the DermoExpert wins by defeating the second-

highest (Tang et al., 2020a) by a margin of 2.0 %. DermoExpert has beaten the work of

Song et al. (2020) by the margins of 4.0 %, and 16.0 % with respective precision and AUC

although it lost by Song et al. (2020) in terms of recall. However, the proposed DermoExpert

produces the second-highest results by beating the third results (Zhang et al., 2019) with a

margin of 9.0 % for recall.

Comparison of SLC-2018. The results of DermoExpert for ISIC-2018 are compared

with the top three performers of the ISIC-2018 competition leaderboard (Li and Li, 2018;

MIA Group, 2018; Nozdryn-Plotnicki et al., 2018), where DermoExpert wins in recall and

serves as a second winner in other two metrics. It also beats the recently published method

of Al-Masni et al. (2020) by a margin of 5.0 % in terms of type-II errors. It means that 5.0 %

additional samples will be classified correctly as the true class than the method of Al-Masni

et al. (2020). However, in terms of the balanced accuracy, DermoExpert beats the challenge
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topper by a margin of 3.0 %. The recent method proposed by Mahbod et al. (2020), for the

test results of ISIC-2018, are not presented in Table 8, as they did not use the same dataset

to train their model, as in the proposed DermoExpert.

4. Discussion and Application

CNN-based classifiers are better-choice in different medical imaging context, where they

automatically learn low-, middle-, and high-level features directly from the input images.

Finally, fully connected neural networks, also known as multilayer perceptron, classify those

features. However, training of such deep CNN-based classifiers is an arduously challenging

process, especially when the train with a smaller dataset as in the ISIC skin lesion datasets.

There are two commonly occurring limitations in current CNN-based classifiers, namely:

prone to overfitting and vanishing gradient problem. Those two crucial limitations are

reduced, in this research, for the SLC.

To build a generic and robust end-to-end SLC system utilizing a smaller dataset, we

proposed a hybrid classifier, where we use three distinct feature map generators rather than

single generator as in Xception, ResNet-50, DenseNet-121, and etc. In each generator in the

proposed classifier, we use several skip connections, which enable each layer of the generator

to directly access to the gradients of all previous layers. However, such a design, of the

CNN network, alleviates the vanishing gradient problem, and partly reduces the overfitting

as the final feature map has a deeper presentation of the skin lesion. The adaptation

of pre-trained weights in place of the training of deep CNN classifier from scratch, with

any random initialization, also party reduces the overfitting and improves the performance.

The experimental results, as in subsection 3.3, have validated that multiple features from

different generators provide better results. Moreover, channel-wise concatenation of different

features is better than the addition of them as the latter one generates scattered feature

maps (see Fig. 8). In the same experimental conditions, the former approach outperforms

the latter approach by a margin of 16.0 % concerning AUC (see Fig. 12). Further addition

of second-level ensembling, as described in subsection 2.1.3, provides 7.0 % more AUC than

first- or second-level ensembling alone (see Fig. 12). Instead of a random selection of LR
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and optimizer, it is better to conduct several extensive experiments, as the cost functions

depend on the data distribution, size, and inter- or intra-class variability. However, our

experimental results, as presented in subsection 3.2, have demonstrated that the adaptive

optimizer Adamax, with an initial LR of 0.0001, has better-prospect for the SLC (see Fig. 11)

when the LR scheduler is incorporated with the Adamax.

The classification results by the proposed DermoExpert, for the ISIC-2016 (see subsec-

tion 3.4), ISIC-2017 (see subsection 3.5), and ISIC-2018 (see subsection 3.6), show that class

rebalancing along with the segmentation boost the performance of underrepresented class.

The F1-score of the test datasets of ISIC-2016, ISIC-2017, and ISIC-2018 are improved by the

margin of 8.0 %, 5.0 %, and 1.0 %, respectively, when we have added extra images to under-

represented class and weighted the loss function. Further addition of image augmentation,

with segmentation and rebalancing, improves the classification performance. It also reduces

the overfitting, for the lesion classification, by reducing the differences between the training

and testing performances. For all the test datasets of lesion classification, the proposed Der-

moExpert, with multiple feature map generators and two-level ensembling, performs better

than the classifier having a single generator (see Fig. 13, Fig. 14, and Fig. 16). The exper-

imental results, in subsections 3.4, 3.5, and 3.6, also demonstrated that the classification

performance for ISIC-2016 (two classes) is better than ISIC-2017 (three classes). The addi-

tion of SK class, as in ISIC-2017, reduces the F1-score of Nev and Mel classes respectively by

the margin of 3.0 %, and 11.0 %. The higher similarity of SK with Nev and Mel classes is the

possibility of such reduced performance in ISIC-2017 test results. Moreover, a more number

of classes tend to bring complications in the classifiers, especially when the training with

fewer examples and intra-class similarity, as in the SLC on the ISIC skin lesion dataset. It is

also observable that the classification performance, for ISIC-2018, has improved, although it

has more number of classes (7 classes). However, the data distribution of all ISIC, as shown

in Table 1, depicts that ISIC-2018 has much higher samples than ISIC-2016 and ISIC-2017.

However, those discussion reveals the superiority of the proposed DermoExpert for the

skin lesion classification, which shows it’s acceptance for the SLC-CAD system. A few

qualitative results, of the proposed DermoExpert, are illustrated in Fig. 17, where the seg-
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mented masks from the fine-tuned DSNet are used to detect the lesion ROI (yellow color

contour) along with the recognized class. More classification results for all the test images

are available in YouTube (ISIC-20165, ISIC-20176, and ISIC-20187). Fig. 17 also shows a

ISIC-2016 ISIC-2017 ISIC-2018

Figure 17: The qualitative classification results using the DermoExpert, where the classification has been

accomplished using the segmented ROIs (yellow color) and the proposed DermoExpert.

few challenging images to be classified as well as some wrongly recognized images. Although

those images are wrongly predicted by the DermoExpert, they visually seem like the pre-

dicted class. However, in this article, we have presented the prospective applications of the

DermoExpert by building a web application, as shown in Fig. 18 (a), for the user of the

DermoExpert. We have implemented the app in our local machine, which runs in a web

browser at “http://127.0.0.1:5000/” by accessing the CNN environments of that local ma-

chine. Our source code, and segmented masks, for ISIC-2018 dataset, will be made publicly

available in GitHub8.

5ISIC-2016 (Classification): https://youtu.be/wwHwkQmigqU
6ISIC-2017 (Classification): https://youtu.be/1Dn5l4g4h6Y
7ISIC-2018 (Classification): https://youtu.be/NXVw2cyqd6k
8https://github.com/kamruleee51/Web-App-of-Skin-Lesion-Classification
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(a) (b)

Figure 18: The web app, for the prediction of the lesion class, by employing the trained weights of the

DermoExpert. Users can drag or choose an image by clicking the button, as shown on the left side, as well

as they can clear if the selection is wrong. After that, by clicking the submit button, the user can see the

recognized result on the screen, as shown on the right side.

5. Conclusion

Automatic recognition of skin lesions is very important, although it is very challenging

due to high visual similarity and diverse artifacts. However, in this article, the skin lesion

recognition has been automated by proposing a pipeline called DermoExpert. This article

emphasized on a systematic evaluation of an integrated skin lesion recognition system in-

cluding lesion ROI extraction, image augmentation, rebalancing, and hybrid-CNN classifier.

Our experimental results demonstrate that the proposed DermoExpert can discriminate

against the lesion features more accurately as we concatenated features from three distinct

generators. Thus, it achieves state-of-the-art performance for the SLC of three different

datasets. The segmented skin lesions, rather than the whole images, can provide more

salient and representative features from the CNNs, which can lead to the improvement of

the SLC. Moreover, the rebalanced the class distribution attained better performance of

the SLC as compared to the imbalanced distribution. Additionally, the augmentation can

lead the CNN-based classifier to be more generic as CNNs can learn from diverse training
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samples. In the future, we will further explore and investigate the effects of the improve-

ment of segmentation and weighting of the underrepresented classes. The weights of the

DermoExpert will be deployed to the Google Cloud platform to make it publicly available.

We will provide our segmented masks of the ISIC-2018 dataset (Task 3: Lesion Diagnosis

(10, 015 images)) for the research purpose (on-request) as they are not available yet. The

proposed DermoExpert will be applied to other domains for medical imaging to verify its

versatility and generality.
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