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Abstract 

The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation 

in Parkinson’s disease.  Multiple trials that investigated subthalamic versus pallidal stimulation 

were unable to settle on a definitive optimal target between the two. One reason could be that 

the effect is mediated via a common network. To test this hypothesis, we calculated connectivity 

profiles seeding from deep brain stimulation electrodes in 94 patients that underwent 

subthalamic treatment and 28 patients with pallidal treatment based on a normative connectome 

atlas calculated from 1,000 healthy subjects. In each cohort, we calculated connectivity profiles 

that were associated with optimal clinical improvements. The two maps showed striking 

similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.38 at p 

< 0.001 & R = 0.35 at p = 0.027). Next, we calculated an agreement map which retained regions 

common of both target sites. Crucially, this map was able to explain an additional amount of 

variance in clinical improvements of either cohort when compared to the maps calculated on 

the two cohorts alone. Finally, we tested profiles and predictive utility of connectivity maps 

calculated from different motor symptom subscores with a specific focus on bradykinesia and 

rigidity. While our study is based on retrospective data and indirect connectivity metrics, it 

delivers empirical data to support the hypothesis of a largely overlapping network associated 

with effective deep brain stimulation in Parkinson’s disease irrespective of the specific target. 

 

 

Keywords: Deep brain stimulation, connectivity, subthalamic nucleus/STN, internal globus 

pallidus/GPi, Parkinson’s disease 

Abbreviations: STN = subthalamic nucleus; GPi = internal globus pallidus; DBS = deep brain 

stimulation
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Introduction 

Deep brain stimulation (DBS) is an effective treatment option in patients suffering from 

Parkinson’s disease and two surgical target structures have been established to be most 

effective.1,2 The subthalamic nucleus (STN) and the internal pallidum (GPi) have been reported 

to result in comparable improvements of motor symptoms in prospective double-blinded 

trials.3,4 

A recent study has investigated optimal connectivity profiles for treatment of Parkinson’s 

disease based on STN-DBS.5 The study investigated network profiles of active stimulation sites 

and their relationships to clinical improvements as measured by the motor part of the Unified 

Parkinson’s Disease Rating Scale (UPDRS-III). Applying normative connectome data to brain 

stimulation sites in 95 patients from two centers, the study concluded that effective STN-DBS 

electrodes would modulate a region within the STN that was functionally connected to large 

portions of the prefrontal cortex, including supplementary motor area (SMA) and inferior 

frontal cortex (IFC) and functionally anticorrelated with primary motor cortex (M1). Similar 

studies accumulated evidence that neuromodulation of a specific network may result in clinical 

responses specific to a certain symptom (for a review see Horn and Fox6). Following this 

concept of circuitopathies – networks with impact on specific symptoms or behaviors – it might 

be possible to modulate the same network at different stimulation sites to reach similar changes 

in clinical or behavioral outcomes.7,8 As mentioned above, since the 2000s, attempts including 

large randomized clinical trials have been carried out with the aim of establishing a gold 

standard – either targeting STN or GPi to treat Parkinson's disease. However, most clinical 

studies reached the conclusion that neither of the two can be disregarded as a potential 

target.3,4,9,10 This does not imply that modulating either target would lead to identical effects. 

For instance, while STN-DBS has led to greater amount of L-Dopa reduction, GPi-DBS was 

associated with a lower rate of neuropsychiatric side effects.11 Still, a natural hypothesis could 
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be that both STN- and GPi-DBS might modulate an overlapping functional network in patients 

suffering from Parkinson’s disease. Needless to say, we know this is the case for the STN and 

GPi. Both nuclei are crucial integrator hubs in the subcortex and direct interactions between the 

well-studied indirect and hyperdirect pathways have been established.12 We have known at least 

since the seminal work of Oskar and Cecile Vogt in the 1920ies that GPi and STN are tightly 

interlinked, forming part of what they referred to as the striatal system.13 Both nuclei play 

crucial parts to integrate information within the motor control and action-selection system 

supported by the basal ganglia.14 

Here, we use the aforementioned network calculated from a multi-center cohort of 95 STN-

DBS patients to cross-predict clinical improvements in a cohort of 28 patients that underwent 

GPi-DBS.3,5 In a next step, we calculate an optimal treatment network from the GPi-DBS cohort 

and use it to cross-predict outcomes in the original STN-DBS cohort. We compare optimal 

network profiles of both cohorts and describe commonalities and differences of both maps. 

Specifically, this is done by ways of a novel method to identify the agreement network between 

both cohorts. In this way, we are able to identify regions that are predictive for positive clinical 

outcome in both cohorts. 
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Materials and Methods 

Patients and Cohorts 

In this study, patients with Parkinson’s disease that underwent DBS were retrospectively 

enrolled. In addition to data from a previously published study (95 STN patients stimulated in 

two German centers5; Berlin and Würzburg), a second cohort of 28 patients that underwent 

GPi-DBS surgery (subcohort of patients operated at the Amsterdam Medical Center enrolled in 

a prior clinical study) was included.3 For one of the 95 STN-patients, subscore improvement 

scores were not available, hence the patient was excluded. All patients received brain imaging 

before and after surgery in form of preoperative MRI and postoperative CT or MRI scans (see 

table 1 for imaging choice and basic patient demographics). Both target groups where clinically 

evaluated before and >12 months after surgery, under active stimulation, using the motor 

features of the Unified Parkinson Disease Rating Scale III (motor UPDRS), after withdrawal 

from dopaminergic treatment for >12 hours (Med OFF). 

As secondary outcome, we calculated improvements for rigidity (item 22), bradykinesia (items 

23-26) and tremor (items 20-21) subscores. Total improvements as well as bradykinesia and 

rigidity improvements were calculated as %-improvements from baseline. For tremor, the 

absolute difference was calculated due to a lower baseline in items 20-21 and patients with a 

baseline score below 2 points were excluded from this subanalysis. Demographic features are 

displayed in table 1, detailed information about the two cohorts have been published 

elsewhere.3,5 

 

Localisation and VTA calculation 

Electrodes in both cohorts were localized using the Lead-DBS software15; www.lead-dbs.org) 

following the updated pipeline of the second version.16 Briefly, preoperative MRI and 
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postoperative CT or MRI scans where linearly co-registered using advanced normalization tools 

(Advanced Normalization Tools; ANTs, http://stnava.github.io/ANTs/). In order to minimise 

bias introduced by a nonlinear deformation of the brain due to pneumocephalus, the brain shift 

correction step in Lead-DBS was carried out.16 Multispectral preoperative volumes were then 

used to compute a spatial normalization warpfield into ICBM 2009b Non-linear Asymmetric 

(“MNI”) space using the SyN Diffeomorphic Mapping approach implemented in ANTs.17 As 

shown in a recent study, the precision of this normalization protocol may lead to results 

comparable with manual expert segmentations of the STN and GPi and the method was top-

performer in two comparative studies for normalizations of the subcortex.18,19 Subsequently, 

DBS electrodes were localized using the PaCER algorithm for CT volumes or the TRAC/CORE 

method for MRI volumes.15,20 Results were carefully inspected and manually refined, if 

necessary, using Lead-DBS. Anatomical segmentations of subcortical structures shown in the 

present manuscript were defined by the DISTAL Atlas using the Lead Group Analysis tool.21,22 

Electric fields (E-fields) were calculated applying a Finite Element Method (FEM)-based model 

in each patient.16 

 

Statistical analysis 

DBS network mapping 

Seeding from voxels contained in the E-Field model, a functional connectivity profile was 

calculated using data from 1,000 healthy subjects acquired within the Brain Genomics 

Superstruct Project.23,24 Values in the E-Fields served as weights to generate the connectivity 

profile using the Lead Connectome Mapper tool included within Lead-DBS. This led to 

connectivity fingerprints for each patient describing (average) positive and negative functional 

connectivity between the pair of E-Fields and other voxels of the brain (figure 1 A). 
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Clinical improvements were then correlated with connectivity fingerprints in a voxel-wise 

fashion across the two cohorts following the approach reported in a coherent study published 

previously.5 This resulted in R-map models of “optimal” connectivity (figure 1 C). These R-

maps denote positive (Pearson’s correlation) coefficients for regions that were positively 

connected predominantly to electrodes of top responders and negative coefficients for the ones 

predominantly connected to electrodes in poor responding patients. 

The R-map model was then used to predict outcomes about clinical improvements in out-of-

sample patients. To do so, the connectivity fingerprints (seeding from E-Fields in a specific 

patient) were spatially compared to the R-map model. The more similar each patient’s 

fingerprint would be to the R-map, the higher our prediction about their clinical improvements. 

Here, similarity was calculated by means of spatial correlation across grey matter voxels in the 

cortex and cerebellum (subcortical voxels were not compared to exclude confounding local 

effects introduced by electrode placement). Crucially, this prediction step was done in out-of-

sample data (in a leave-one-out fashion) to avoid circularity of our prediction model. For 

instance, the R-map model was calculated on STN-DBS patients to predict outcomes in the GPi 

sample, and vice versa. 

 

Toward an agreement model across DBS targets 

Our aim was to show differences and similarities of responsive network profiles in STN- and 

GPi-DBS. To calculate the set of regions predictive for clinical outcomes regardless of target 

choice, a novel type of map was calculated that we termed agreement map.  To do so, the R-

maps of the two cohorts were superimposed and areas that were either positive or negative in 

both maps were retained (other areas were discarded). To preserve weighting, the remaining 

values were multiplied across maps while preserving the sign. For instance, if a voxel had 

values of R = 0.3 and R = 0.2 in the two (STN and GPi) maps, the resulting value in the 
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agreement map would be 0.06. A combination of -0.3 and -0.2 would lead to -0.06 while one 

of -0.3 and 0.2 would lead to exclusion of the voxel. We hypothesized that regions retained in 

the agreement map could be more specific to predict clinical outcomes in both cohorts than a 

model that had seen all data without segregation into the two targets – or a model that was 

informed by either cohort alone. Hence, we calculated a “conventional” R-map across all 

datapoints (patients from both the STN and GPi cohort) and compared its predictive utility with 

the agreement map. 

 

 

Figure 1: Methods Overview. (A) The connectivity profile of each patient’s VTA is determined by using a functional normative 

connectome to estimate functional connectivity seeding from the VTA (B) to other areas of the brain. C) This led to connectivity 

fingerprints for each patient based on which voxel-wise correlation maps with %-improvement scores along the UPDRS were 

calculated (R-maps). Here, areas to which connectivity was associated with symptom relief are shown in warm colours and 

the ones associated with poor improvements in cool colours. D) Based on two R-maps, an agreement map was calculated based 

by retaining areas that had the same sign on both maps (and multiplying their absolute values) and discarding areas in which 

signs on the two maps were conflicting. This is illustrated in a single example focusing on negative associations with the 

primary motor cortex.
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Data availability statement 

The DBS MRI datasets generated during and analyzed during the current study are not publicly 

available due to data privacy regulations of patient data but are available from the corresponding 

author upon reasonable request. All code used to analyze the dataset is openly available within 

Lead-DBS/-Connectome software (https://github.com/leaddbs/leaddbs). 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.02.21250817doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21250817


Results  

The STN cohort included 94 patients of 2 independent datasets (29 female, mean age = 60 ± 8 

years, with an UPDRS baseline of 44 ± 14 and UPDRS improvement after DBS of 47 ± 23%). 

The GPi cohort included 28 patients (10 female, mean age = 60 ± 6 years, with an UPDRS 

baseline of 43 ± 14 and UPDRS improvement after DBS of 13 ± 42%). See Table 1 for further 

demographic and imaging data. Electrode locations showed DBS electrodes of all patients 

placed within respective the target regions (figure 2). 

Table 1: Patient demographics. 

 

Cohort Age, yr Included 

No. 

(female) 

UPDRS-

III 

Baseline 

OFF 

UPDRS-

III 

Baseline 

ON 

Improve

ment % 

Improve

ment 

Absolute 

Postop 

Imaging 

MR/CT 

GPi 

Odekerken 

2013 

60(±6) 28(10) 43(±14) 34(±12) 13(±42) 9(±16) 0/28 

STN 

Horn 2017 
60(±8) 94(29) 44(±14) 22(±10) 47(±23) 22(±13) 35/59 
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Figure 2: Electrode localizations of the two cohorts shown from posterior. A: STN-cohort described by Horn et al.5 B: GPi 

cohort described by Odekerken et al.3 STN: orange, GPi: light blue, GPe: dark blue. Colors of the two cohorts match colors 

in subsequent figures of the manuscript. In the back, a coronal slice from the BigBrain atlas is shown.25 

  

The first R-map model was calculated exclusively on data from the 94 STN-DBS patients 

(figure 3 top left). Similarity estimates between this map and each whole-brain connectivity 

fingerprint (seeding from the two DBS electrodes) from the GPi-DBS cohort was calculated 

and correlated with empirical improvement values in this cohort (figure 3 top right; R = 0.35 at 

p = 0.027). When repeated vice versa (calculating the R-map model in the GPi sample; figure 

3 bottom right; to cross-predict outcomes in the STN sample; bottom left), the correlation was 

of the same magnitude (R = 0.38 at p = 0.001). In both R-maps, functional connectivity to 
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regions in the frontal lobe, in particular cingulate gyrus, middle and inferior temporal gyri, 

inferior parietal gyri and motor cerebellum were associated with optimal clinical response (table 

2). 

 

 

 

Figure 3: Cross-Predicting DBS outcomes across cohorts and targets. R-maps for both STN-DBS (top left) and GPi-DBS 

(bottom right) were used to cross-predict clinical outcomes in the other cohort, respectively (rop right shows predictions of 

outcomes in the GPi-DBS cohort based on the STN-DBS R-map model, bottom left shows the opposite). 
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Table 2: Overlap between spatial correlations and significant connectivity measures. Peak coordinates of STN, GPi and 

their agreement map (AGR) 

 
POSITIVE 

CORRELATIONS 
 

  

 
NEGATIVE 

CORRELATIONS 
 

region 

x/y/z of 

GPi 

STN 

AGR 

t 

  

region 

x/y/z of 

GPi 

STN 

AGR 

t 

right 

anterior 

cingulate 

cortex 

8/32/16 

16/30/34 

12/30/30 

0.53 

0.53 

0.16 

  

left 

temporal 

lobe 

-42/-30/-16 

-50/-12/-2 

-50/-70/-14 

-0.54 

-0.48 

-0.14 

left 

superior 

frontal 

gyrus 

 

-26/56/28 

-18/4/58 

-28/56/28 

0.56 

0.52 

0.13 

  

left 

precentral 

gyrus 

-40/-4/64 

-30/-20/52 

-40/-6/64 

-0.19 

-0.46 

-0.05 

left 

cerebellum 

-50/-62/-38 

-26/-36/-30 

-50/-62/-38 

0.43 

0.49 

0.1 

  left 

middle 

occipital 

gyrus 

-36/-92/26 

-4/-98/16 

-46/-72/10 

-0.42 

-0.38 

-0.12 

left 

parental 

lobe 

-50/-52/46 

-30/-54/40 

-48/-54/50 

0.44 

0.39 

0.1 

  

 
 

 
 

In a next step, we aimed at creating a model that would be maximally predictive of clinical 

outcomes regardless of DBS target (STN vs. GPi). A first attempt was to calculate an R-map 

across the whole group of patients, i.e., simply by correlating clinical outcomes with all 122 

patient’s connectivity fingerprints. Not surprisingly, this map (not shown) was again highly 

similar to the ones shown in figure 3. When using this map to explain variance in clinical 

outcomes, it was mildly predictive in the STN cohort (R = 0.25 at p = 0.015) but estimates did 

not significantly correlate with clinical outcomes of the GPi cohort (R = 0.28 at p = 0.15). A 

subsequent, more deliberate approach was to create an agreement map from the two R-maps 

that were obtained in each cohort, separately (STN R-map and GPi R-map) by discarding 

regions that did not agree in sign between the two maps (see methods). This type of map is 
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novel in the present context and could intuitively be perceived as a common denominator 

network across the two targets. It was able to significantly explain variance in clinical outcomes 

in both cohorts (R = 0.37 at p < 0.001 for the STN cohort and R = 0.42 at p = 0.017 for the GPi 

cohort). Crucially, the amount of variance explained by the agreement map was larger to the 

one explained by each of the target specific maps (STN and GPi R-map, see figure 4). Hence, 

by refining the predictive model from data in a second target (albeit with an independent 

cohort), the amount of explained variance could be increased. Of note, these values are meant 

for direct head-to-head comparisons and should be interpreted with care since the analysis setup 

is somewhat circular. However, by integrating these results with leave-one-out predictions 

(figure 3) and the regions within the agreement map (figure 4), the agreement map could inform 

a hypothesis of a common treatment network for Parkinson’s disease that will be made openly 

available to empower further validation in subsequent studies. 

 

 

Figure 4: Variance in clinical outcomes explained by different models. Predictive utility of the R-map calculated in each 

target (left) and an agreement map, in which only regions predictive for both targets were retained (right). Using the the R-

map calculated on either target alone, a significant portion of variance in outcomes in both cohorts could be explained (R = 

0.30 at p < 0.001 for STN; R = 0.36 at p = 0.026 for GPi). The agreement map was able to explain additional variance in each 

of the two cohorts (R = 0.37 at p < 0.001 for STN; R = 0.42 at p = 0.017). Single target maps on the left correspond to 

renderings in figure 4 and are shown as volumetric cuts at z = -50, -30, -10, 10, 30 & 50 mm. The agreement map is shown 

both in volumetric and surface fashion. The BigBrain atlas served as backdrop for volumetric representations.25 
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As a final analysis, we calculated symptom-specific improvements (bradykinesia, rigidity and 

tremor). R-Maps calculated for rigidity and bradykinesia independently were highly similar to 

each other (not shown), hence they were combined to form a bradykinesia-rigidity improvement 

that was contrasted with tremor improvements. This goes in line with prior reports .26 While the 

R-map model for bradykinetic-rigid symptoms were similar and cross-predictive across cohorts 

(R = 0.48 at p < 0.01 when calculating the R-map based on STN patients to predict outcomes 

in the GPi cohort; R = 0.31 at p < 0.01 vice versa), they were not for tremor (STN>GPi: R = -

0.28 at p = 0.11; GPi>STN: R = 0.12 at p = 0.18; figure 5). While these results could give first 

hints, due to the small sample size in the GPi cohort and further exclusion of 40 (STN) & 9 

(GPi) patients with tremor baseline scores below two, these results should not be 

overinterpreted. Still, repeating the analysis with different baseline score exclusion criteria (<0-

5 points) did not alter results qualitatively, suggesting that results were not dependent on this 

thresholding process. 
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Figure 5: Connectivity maps associated with optimal clinical subscore outcomes. Rigidity and bradykinesia were summarized 

due to high similarity when analysed independently. Only this map & pattern led to significant cross-predictions across STN- 

and GPi-targets. Instead, effects on tremor were associated with a different connectivity pattern – also across targets and the 

cross-prediction did not yield significant effects. 

 

One difference we did note across cohorts was that in the GPi cohort, especially the bradykinetic 

symptoms of some patients got worse under DBS. The induction of bradykinetic symptoms by 

GPi-DBS has been reported even in cohorts without Parkinson’s disease (such as dystonia), 

before.27,28 Hence, as an opportunity to study this relationship further, we contrasted functional 

connectivity profiles calculated from the six GPi patients in which bradykinesia improved most 

strongly (by 67.9 ±11.6 percent) with the six ones in which bradykinesia worsened most 

strongly (by -58.4 ±19.7 percent). This revealed significant differences in connectivity profiles. 

Namely, stimulation sites in worsening patients were less connected to left superior, middle and 
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inferior frontal gyrus and more strongly connected to bilateral cerebellar and occipital regions 

as well as to the parieto-occipital sulcus (figure 6). 

 

 

Figure 6: Effects of GPi-DBS on bradykinesia. Within the GPi cohort, it was noted that in some patients, bradykinetic 

symptoms worsened under DBS – as stated by previous reports, as well. A paired t-test contrast between connectivity 

fingerprints of top six improving and bottom six worsening patients revealed positive association with left middle and inferior 

frontal gyrus and negative association with bilateral cerebellar & occipital regions, as well as the parieto-occipital sulcus 

(family wise estimate corrected on cluster level at p < 0.05).  
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Discussion 

Three main conclusions may be drawn from this study. First, based on our results, optimal 

connectivity profiles of DBS to the STN and GPi for effective treatment of Parkinson’s disease 

are highly similar. For both targets, a functional connectivity profile with anticorrelations to 

sensorimotor cortices and positive connectivity to specific regions in the frontal cortex and 

motor cerebellum (among other regions) were associated with optimal clinical outcomes. This 

finding was quantified by cross-predicting across DBS targets. In other words, a model of 

optimal connectivity was calculated based on one target and used to predict outcomes in patients 

from the second target, and vice versa. This finding suggests that regardless of STN or GPi 

stimulation, a shared functional network could be responsible for motor symptom 

improvements in Parkinson’s disease. Second, we introduced a novel method to combine 

models of optimal network response across DBS targets (in form of an agreement map) and 

showed that it was able to explain variance in outcomes regardless of DBS target choice. 

Finally, third, our data suggests that while optimal connectivity profiles of electrodes for 

maximal improvements of bradykinetic-rigid symptoms were similar across targets, the ones 

for tremor seemed to differ.  

Explanations of the pathophysiology of basal ganglia disorders such as Parkinson’s disease 

have been dominated by the Albin et al. and DeLong model and its subsequent 

modifications.29,30 This model describes a fronto-basal-ganglia-thalamo-cortical feedback loop, 

and one general concept is that inhibition of either STN or GPi due to DBS may lead to a net 

shift of balance leading to disinhibition of the thalamus and a propagation of motor output. In 

this way, effects of DBS on hypokinetic symptoms such as bradykinesia and rigidity have been 

explained. While this model has proven valid and powerful in many occasions, the so-called 

paradox of functional neurosurgery consists in the fact that both STN-DBS and GPi-DBS have 

equally been effective targets for hyperkinetic movement disorders such as dystonia.31-34  
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Hence, the working mechanism of the functional network targeted by DBS is thought to be 

more complex. A popular concept is that DBS reduces a noisy feedback-signal that may be 

present across the whole basal ganglia cortical loop.31,35-37 Namely, pathologically 

synchronized activity can be recorded from several sites of the basal ganglia in the beta 

frequency range (13-30 Hz) and is found to be supressed by either DBS or dopaminergic 

medication and to relate to bradykinetic-rigid symptoms (and not tremor).38-42 In this 

framework, the main mechanism of action of DBS seems to be to disrupt (pathological) 

information flow – likely in a specific frequency domain – throughout the motor loop.32 In turn, 

physiological information flow could be restored by reopening the necessary bandwidth. This 

could explain why both lesions and DBS to both STN and GPi are highly effective (and for 

both Parkinson’s disease and dystonia): A pathological noise carrier signal needs to be present 

for DBS to have a profound effect in that it disrupts largely monotonic and synchronized 

oscillating brain network activity (in case of dystonia, a similar noise signal has been described 

as pathologically synchronized theta activity.43 

The method we apply here (resting-state functional MRI) is several orders of magnitude too 

crude to resolve aforementioned temporal dynamics. However, the present study may still 

contribute to this framework in form of a better spatial characterization of exactly which 

connections seem to matter most. Which are the underlying anatomical regions that seem to 

play the most crucial part in this oscillating noise loop.  

Not only are the optimal network maps calculated from the two DBS targets highly similar 

(figure 4), but there are even specific brain regions that are quantifiably predictive of clinical 

outcome when modulating either of the two targets (described as the agreement map). The 

agreement map includes connections that i) exist in both the STN and the GPi cohort and ii) are 

associated with a good clinical outcome in both. It hence constitutes a model of areas to which 

the DBS electrode should be connected to maximize its treatment capability – regardless of the 
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DBS target. When seen from the angle of a noisy feedback model described above, we could 

speculate that this circuitry might be exactly where the noisy signal should be most 

predominantly expressed. A gap that makes it close to impossible to directly relate connectivity 

information derived from resting-state fMRI and electrophysiological recordings in the beta 

range, however, is time. As mentioned above, temporal resolution differs by orders of 

magnitude and make the two signals measured by either method a completely different one. 

Still, some indirect hints shows that the networks identified with two methods may converge. 

First, we know that optimal stimulation in the STN is reached within its sensorimotor functional 

zone which is where beta power and STN-cortical beta coherence at rest is strongest.16,26,44-49 

Second, regions with maximal expression of beta power were most strongly connected to 

prefrontal regions in a diffusion MRI based tractography study that compared connectivity 

profiles seeding from contacts with high beta activity to others.50 

Accumulating evidence suggests that while the effective network responses for maximal 

treatment of bradykinesia and rigidity are overlapping, the ones for tremor are more distinct.26,44 

Here, some studies attribute the effect on tremor to structures outside the STN such as the 

dentatorubrothalamic tract.51,52 In contrast, the main effect on bradykinetic-rigid symptoms has 

been located to a highly agreeing region within the dorsolateral STN proper by multiple groups, 

world-wide.16,44,53-55 In line with this segregation of symptoms, elevated beta power in the STN 

was found to correlate with severity of bradykinetic-rigid symptoms but not tremor.56 

The divergence in responsive connectivity we observe in the current data is consistent with the 

existence of akinetic/rigid and tremor dominant subtypes of Parkinson’s disease. While the 

pathogenesis of the first type can be described using the conventional theory of an amplified 

balance in favor of the indirect pathway (at cost of the direct pathway), tremor is attributed a 

compensatory cause downwards of the stream, involving a cerebello-thalamic network.57-59 Our 

current set of datapoints is unable to characterize a tremor-network in Parkinson’s disease by 
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good evidence. What we note is that networks calculated for bradykinesia seem similar across 

targets (and can be used to cross-predict outcomes) while the ones for tremor are not. 

Augmenting such an analysis with additional cohorts could one day lead to a personalized DBS 

targeting the network tailored to the leading symptom in each patient.6 

Finally, previous studies have reported for GPi-DBS in dystonia to in fact induce bradykinetic 

symptoms.27,28 In direct comparison with the two cohorts shown here, we noted that 

bradykinetic symptoms became worse in a larger fraction of patients from the GPi-DBS cohort. 

When contrasting DBS connectivity profiles in the six patients in which bradykinetic symptoms 

worsened most with the ones in which it improved most, connectivity to cerebellar, occipital 

and parieto-occipital regions was associated with symptom worsening. The parieto-occipital 

sulcus specifically has been reported to be involved in finger-tapping tasks in patients suffering 

Parkinson’s disease, especially when contrasting externally vs. self-paced movements.60 

Similar to findings relating to subscores, these explorative findings should not be 

overinterpreted since the study was not designed to exactly address this question. Instead, both 

could be helpful to form hypotheses that could be addressed in future work. 

Several limitations apply to this study. First and foremost, the two cohorts were not balanced 

in size. Since the results of the STN cohort were used from a larger prior publication that the 

present paper builds upon, this could not easily be accounted for. Despite the predominant 

agreement of the R-maps, there are regions that remain incongruent. Especially connectivity to 

medial frontal gyrus and paracentral lobulus differed fundamentally between the two targets. 

This might be explained by brain areas that are not part of a causal network, but that were 

spuriously connected to DBS electrodes that led to high rates of response. Since the spontaneous 

activity of all connectomic voxels is recorded during a resting state functional MRI, all regions 

of the brain will either be functionally correlated or anticorrelated with the electrodes to some 

degree. Rs-fMRI itself constitutes an indirect measure of slow-dynamic brain connectivity. 
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Relationships to causal effects of DBS should not be drawn thoughtlessly (and if not supported 

by additional means of data, also see discussion above). Along the same lines, we applied 

normative connectome atlases to estimate connectivity. These datasets do not account for 

individual variations of connectivity but rather ask the question which connectivity profile an 

electrode at a specific site would have in an average human brain. This is a crucial distinction 

that should not be forgotten and largely impacts interpretation of our results. Still, use of 

normative connectomes in context of DBS has led to models that were predictive in out-of-

sample datasets.5,6,8,61-64 Finally, electrode models themselves have inaccuracies that are based 

on factors such as i) resolution constraints of underlying data, ii) complexity of and small size 

of subcortical targets and iii) registration errors when aggregating data across patients to make 

them comparable.16 To minimize impact of these constraints, we used a specialized DBS 

imaging pipeline that is based on multispectral normalizations evaluated for both STN and GPi, 

phantom-validated electrode localizations and careful manual inspection of results in each 

processing step.18,19,65 The electric field model around the electrode has limitations especially 

when modelling bipolar stimulation settings which were only applied in 6 out of 122 patients 

in the current dataset.66 Subsequent studies should aim at confirming results when applying 

more advanced electrode modelling concepts such as path activation or driving force models.67-

69 
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Conclusions 

In summary, our results illustrate a candidate network that could be responsible or at least 

associated with optimal clinical improvements in DBS for Parkinson’s disease – regardless of 

target choice.  By pinpointing the network associated with optimal outcomes from two different 

nodes (STN and GPi), we were likely able to identify regions that have higher probability to be 

causally involved. As such, a joint (agreement) model informed by both DBS targets was able 

to explain larger amounts of variance in clinical outcomes in patients operated with either target.  

Upon further validation, this set of brain regions could potentially inform neuromodulation 

targets associated with clinical improvements in Parkinson’s disease above and beyond the field 

DBS. 
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Figure Legends 

1. Methods Overview. (A) The connectivity profile of each patient’s VTA is determined by using a functional normative 

connectome to estimate functional connectivity seeding from the VTA (B) to other areas of the brain. C) This led to 

connectivity fingerprints for each patient based on which voxel-wise correlation maps with %-improvement scores 

along the UPDRS were calculated (R-maps). Here, areas to which connectivity was associated with symptom relief 

are shown in warm colours and the ones associated with poor improvements in cool colours. D) Based on two R-

maps, an agreement map was calculated based by retaining areas that had the same sign on both maps (and 

multiplying their absolute values) and discarding areas in which signs on the two maps were conflicting. This is 

illustrated in a single example focusing on negative associations with the primary motor cortex.

2. Electrode localizations of the two cohorts shown from posterior. A: STN-cohort described by Horn et al.5 B: GPi 

cohort described by Odekerken et al.3 STN: orange, GPi: light blue, GPe: dark blue. Colors of the two cohorts match 

colors in subsequent figures of the manuscript. In the back, a coronal slice from the BigBrain atlas is shown.25 

3. Cross-Predicting DBS outcomes across cohorts and targets. R-maps for both STN-DBS (top left) and GPi-DBS 

(bottom right) were used to cross-predict clinical outcomes in the other cohort, respectively (rop right shows 

predictions of outcomes in the GPi-DBS cohort based on the STN-DBS R-map model, bottom left shows the 

opposite). 

4. Variance in clinical outcomes explained by different models. Predictive utility of the R-map calculated in each 

target (left) and an agreement map, in which only regions predictive for both targets were retained (right). Using the 

the R-map calculated on either target alone, a significant portion of variance in outcomes in both cohorts could be 

explained (R = 0.30 at p < 0.001 for STN; R = 0.36 at p = 0.026 for GPi). The agreement map was able to explain 

additional variance in each of the two cohorts (R = 0.37 at p < 0.001 for STN; R = 0.42 at p = 0.017). Single target 

maps on the left correspond to renderings in figure 4 and are shown as volumetric cuts at z = -50, -30, -10, 10, 30 & 

50 mm. The agreement map is shown both in volumetric and surface fashion. The BigBrain atlas served as backdrop 

for volumetric representations.25 

5. Connectivity maps associated with optimal clinical subscore outcomes. Rigidity and bradykinesia were summarized 

due to high similarity when analysed independently. Only this map & pattern led to significant cross-predictions 

across STN- and GPi-targets. Instead, effects on tremor were associated with a different connectivity pattern – also 

across targets and the cross-prediction did not yield significant effects. 

6. Effects of GPi-DBS on bradykinesia. Within the GPi cohort, it was noted that in some patients, bradykinetic 

symptoms worsened under DBS – as stated by previous reports, as well. A paired t-test contrast between connectivity 

fingerprints of top six improving and bottom six worsening patients revealed positive association with left middle 

and inferior frontal gyrus and negative association with bilateral cerebellar & occipital regions, as well as the 

parieto-occipital sulcus (family wise estimate corrected on cluster level at p < 0.05).  
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1 

STROBE statement:  Reporting guidelines checklist for cohort, case-control and cross-sectional studies 

SECTION ITEM 
NUMBER 

CHECKLIST ITEM REPORTED ON 
PAGE NUMBER: 

TITLE AND ABSTRACT    

 1a Indicate the study’s design with a commonly used term in the title or the abstract  2 

 1b Provide in the abstract an informative and balanced summary of what was done and what 
was found  

2 

INTRODUCTION    

Background and objectives 2 Explain the scientific background and rationale for the investigation being reported  3 

 3 State specific objectives, including any pre-specified hypotheses 4 

METHODS    

Study design 4 Present key elements of study design early in the paper 5 

Setting 5 Describe the setting, locations, and relevant dates, including periods of recruitment, 
exposure, follow-up, and data collection  

5 

Participants 6a Cohort study—Give the eligibility criteria, and the sources and methods of selection of 
participants. Describe methods of follow-up 
Case-control study—Give the eligibility criteria, and the sources and methods of case 
ascertainment and control selection. Give the rationale for the choice of cases and controls 
Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection 
of participants  

5 

 6b Cohort study—For matched studies, give matching criteria and number of exposed and 
unexposed 
Case-control study—For matched studies, give matching criteria and the number of controls 
per case  
Variables 

N/A 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect 
modifiers. Give diagnostic criteria, if applicable 

5-7 

Data sources/measurements 8* For each variable of interest, give sources of data and details of methods of assessment 5-7 
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2 

SECTION ITEM 
NUMBER 

CHECKLIST ITEM REPORTED ON 
PAGE NUMBER: 

(measurement). Describe comparability of assessment methods if there is more than one 
group.  

Bias 9 Describe any efforts to address potential sources of bias. 5,6 

Study size 10 Explain how the study size was arrived at 5 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which 
groupings were chosen and why. 

6-8 

Statistical methods 12a Describe all statistical methods, including those used to control for confounding  6-9 

 12b Describe any methods used to examine subgroups and interactions  6-9 

 12c Explain how missing data were addressed  5 

 12d Cohort study—If applicable, explain how loss to follow-up was addressed 
Case-control study—If applicable, explain how matching of cases and controls was addressed 
Cross-sectional study—If applicable, describe analytical methods taking account of sampling 
strategy  

N/A 

 12e Describe any sensitivity analyses  N/A 

RESULTS    

Participants 13a Report numbers of individuals at each stage of study—eg numbers potentially eligible, 
examined for eligibility, confirmed eligible, included in the study, completing follow-up, and 
analysed  

10 

 13b Give reasons for non-participation at each stage N/A 

 13c Consider use of a flow diagram  N/A 

Descriptive Data 14a Give characteristics of study participants (eg demographic, clinical, social) and information on 
exposures and potential confounders 

10 

 14b Indicate number of participants with missing data for each variable of interest  5 

 14c Cohort study—Summarise follow-up time (eg, average and total amount)  5,10 

Outcome Data 15* Cohort study—Report numbers of outcome events or summary measures over time  
Case-control study—Report numbers in each exposure category, or summary measures of 
exposure 
Cross-sectional study—Report numbers of outcome events or summary measures  

10 
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SECTION ITEM 
NUMBER 

CHECKLIST ITEM REPORTED ON 
PAGE NUMBER: 

Main Results 16a Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their 
precision (e.g. 95% confidence interval). Make clear which confounders were adjusted for 
and why they were included  

11-17 

 16b Report category boundaries when continuous variables were categorized  N/A 

 16c If relevant, consider translating estimates of relative risk into absolute risk for a meaningful 
time period  

N/A 

 16d Report results of any adjustments for multiple comparisons  N/A 

Other Analyses 17a Report other analyses done—e.g. analyses of subgroups and interactions, and sensitivity 
analyses  

14-17 

 17b If numerous genetic exposures (genetic variants) were examined, summarize results from all 
analyses undertaken  

N/A 

 17c If detailed results are available elsewhere, state how they can be accessed  N/A 

DISCUSSION    

Key Results 18 Summarise key results with reference to study objectives 18 

Limitations 19 Discuss limitations of the study, taking into account sources of potential bias or imprecision. 
Discuss both direction and magnitude of any potential bias  

21 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, limitations, 
multiplicity of analyses, results from similar studies, and other relevant evidence  

18-22 

Generalisability 21 Discuss the generalisability (external validity) of the study results  
Other information  

23 

FUNDING    

 22 Give the source of funding and the role of the funders for the present study and, if applicable, 
for the original study on which the present article is based  

25 

    

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-

sectional studies. 
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