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Abstract. We describe a time dependent stochastic dynamic model in discrete time for

the evolution of the COVID-19 pandemic in various states of USA. The proposed multi-

compartment model is expressed through a system of difference equations that describe

their temporal dynamics. Various compartments in our model is connected to the social

distancing measures and diagnostic testing rates. A nonparametric estimation strat-

egy is employed for obtaining estimates of interpretable temporally static and dynamic

epidemiological rate parameters. The confidence bands of the parameters are obtained

using a residual bootstrap procedure. A key feature of the methodology is its ability to

estimate latent compartments such as the trajectory of the number of asymptomatic but

infected individuals which are the key vectors of COVID-19 spread. The nature of the

disease dynamics is further quantified by the proposed epidemiological markers, which

use estimates of such key latent compartments.
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2 INFERENCE ON COVID-19 DYNAMICS
1. Introduction

The novel coronavirus has been ravaging the world since early 2020. First identified

in Wuhan, Hubei Province, China, the epidemic has since spread to every corner of the

world. As of January 25, 2021 [1], more than 99 million people have been infected, out

of which more than 2.1 million have died of the disease. The World Health Organization

declared the situation a pandemic on March 11, 2020. Since then various parts of the world

have gone through multiple waves surges in the number of new infections. The pandemic

has severely affected the world economy. Repeated lockdowns, travel restrictions, and

other measures of containment have severely impacted the economy of many countries,

stretched healthcare systems to the extreme, and caused mental health crisis for large

chunks of the populations.

The new pathogen (SARS-CoV-2) which causes the disease [2] is mostly unknown in

terms of its infectivity and clinical profile. It is well-known that the infection primarily

spreads through infected but asymptomatic people. The number of such people remains

unknown. The reported number is based on symptomatic or positively tested persons,

which grossly underestimates of the true value. Because of the undetermined denomina-

tor effect, important epidemiological markers like the death rate, hospitalisation rate etc

remains non-determinable from the observed data. Various estimates [3, 4, 5, 6, 7] of these

markers have been postulated by many authors. Mathematical modelling and quantifi-

cation of the epidemiological parameters [8, 9, 10, 11, 12, 13] of the pandemic have been

crucial in understanding and interpreting the transmission dynamics from the perspective

of public health researchers and policymakers around the globe [14, 15, 16, 17].

A number of popular compartmental epidemiological models e.g. SIR, SEIR, SIRD etc.

have been employed to describe the dynamics of COVID-19 [18, 19, 20, 21]. Such models

yield estimates of epidemilogical markers such as the basic reproduction number (R0), and
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Inference on COVID-19 dynamics 3
various doubling and case fatality rates that are indicators of the disease growth pattern

[22, 23]. Prediction of epidemiological characteristics and transmission patterns in this

context have also attracted major attention [24, 25, 26, 27]. Advanced statistical methods

have been employed in forecasting the number of cases worldwide [28] or quantifying the

effects of prevention mechanisms like social distancing [29, 30, 31, 32, 33, 34], public

gathering, and travel restrictions [35, 36, 37] for various countries. Due to the difference

in analytical methods and assumptions, the parameter estimates describing COVID-19

dynamics vary widely. This variability is also reflected in the estimates of the effectiveness

of public health interventions implemented worldwide. Most epidemiological models of

disease transmission are simplistic and use time-invariant transmission rates. However,

in reality, due to mitigation efforts and the evolving nature of the infection mechanism,

such rates become temporally dynamic. Furthermore, most SIER-type models exclude

the effects of testing and subsequent quarantining, and occasionally, even hospitalization.

Such practices fail to adequately account for the size of the susceptible population and

therefore tend to provide unreliable estimates of the number of asymptomatic persons

infected by COVID-19 in the population.

We propose a detailed discrete time semiparametric stochastic dynamic model for

COVID-19 spread. The model is expressed through a system of difference equations

connecting various interpretable compartments in the disease dynamics such as individu-

als who are susceptible, asymptomatic but infected, quarantined, hospitalized, dead and

have recovered from the disease. We introduce interpretable time-varying parameters to

reflect various temporally dynamic rates. Our model also includes available information

on the number of tests. On the other hand, the proposed model does not make restrictive

and often untestable distributional assumptions about compartments or parameters that

are commonplace in various probablistic models for the epidemiological dynamics.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.01.21250936doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.01.21250936
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 INFERENCE ON COVID-19 DYNAMICS
We employ nonlinear nonparametric regression techniques through a profiling based es-

timation procedure to estimate the model parameters and the number of people in different

compartments. Using residual bootstrap based techniques, we also provide point-wise con-

fidence intervals (bands) for the time-invariant (time-varying) parameters. The proposed

model and estimation procedure relies on linear kernel weighting and fairly low dimen-

sional optimization, thus avoiding Markov Chain Monte Carlo and other computationally

expensive methods employed by Bayesian inference schemes for standard epidemiological

models. Therefore, the estimates can be obtained almost instantaneously. Another key

feature of our method is the ability of identifying and estimating unobservable quantities

such as the actual number of asymptomatic but infected people at any given time. The

estimated trajectory of the infected but asymptomatic population over time, its doubling

rate, the true case fatality rate, and an analogue of the basic reproduction rate are crucial

in interpreting the time-dynamics of the pandemic. They have important implications for

policy decisions regarding appropriate mitigation strategies.

2. A Multi-compartment Model for Disease Spread

We consider a closed population without emmigration or immigration and propose a

model for the Covid-19 pandemic spread in terms of various observable and partially or

totally unobservable compartments.

Suppose at time t, Ct, Dt, Tt, respectively, denote the number of confirmed cases,

number of deaths due to the disease and the number of tests performed up to time t.

These variables are non-decreasing cumulative counts and are generally fully observed.

The number of hospitalised persons due to Covid-19 infection at time t (denoted Ht) is

also generally observed (see Section 3.2 for more detail). Furthermore, we observe Qt, the
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Inference on COVID-19 dynamics 5
number of asymptomatic individuals who are in quarantine at time t. These individuals

have been tested positive, but show no significant symptoms requiring hospitalisation.

The most crucial unobserved compartment is At, i.e. the number of infected but asymp-

tomatic individuals at time t. It is well known that the people in this group are primary

spreaders of the disease. Furthermore, due to under-reporting, the number of confirmed

cases would be a fraction of At. Since we do not observe how many in the population are

currently infected, the number of susceptible individuals at time t, (denoted St) is also

unobserved.

The number of recovered individuals (denoted Rt) up to time t can be partially ob-

served. To understand this, note that the recoveries from quarantine centres and hospi-

tals, (denoted RQ
t and RH

t respectively) are reported, though not necessarily separately

(see Supplement Section S2., for the case when RQ
t and RH

t are reported separately).

But since At is unobserved, the number of asymptomatic but infected people who recover

without being quarantined or hospitalised (denoted RA
t ) cannot be observed. That is,

even though Rreported
t = RQ

t +RH
t is available from the data, the total recovery Rt is not.

The proposed disease propagation model are based of the following assumptions:

A1 Only an asymptomatic individual who is not either in quarantine or in hospital

can transmit the disease to a susceptible individual.

A2 People who recover from the disease are immune from subsequent infection.

A3 False positive rate for the test is negligible, so that if somebody is confirmed to be

positive, then he/she is assumed to be infected.

A4 Anybody who shows significant symptoms, whether being in quarantine or not, is

immediately hospitalized, and is tested to be positive.
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6 INFERENCE ON COVID-19 DYNAMICS
A5 There is no effective treatment regime for the asymptomatic individuals, and so

they recover or turn symptomatic at the same rate regardless of whether they are

tested positive (and hence quarantined) or not.

A graphical representation of the proposed disease propagation model is presented in

Figure 1 below. The assumptions A1-A5 are quite general and concur to the observed

dynamics of Covid-19 pandemic so far, even though a relatively tiny fraction of people

do get infected by prolonged exposure to symptomatic patients, typically in hospitals.

However, this small violation of assumption A1 is unlikely to have a significant influence

on the overall dynamics, and in any case, the requisite data to account for this violation

is practically unavailable. The number of reported reinfection after recovery is negligible,

so are the false positive rates of both RTPCR and antigen tests (estimated to be less

than 5% [38, 39, 40, 41]). If necessary, the assumptions A2 and A3 can be generalised

by adding a fraction of the recovered people in the susceptible category. Assumption A5

implies that the rate of transfer from compartment At to RA
t is same as that of transfer

from the compartments Qt to RQ
t and the rate of transfer from the compartments At and

Qt to Ht are equal.

2.1. Disease Propagation Model. We assume an underlying Poisson process model

for describing the disease dynamics. Let ∆Ct = Ct+1 − Ct be the increments in the

number of observed confirmed cases in day t + 1. The increments ∆At, etc. are defined

similarly. Under our model, conditionally on the current values of different compartments

(collectively denoted by Ft), the above increments follow Poisson distributions with their

mean depending on Ft and a set of rate parameter. Based on our assumptions, the

evolution model are expressed as follows:
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Inference on COVID-19 dynamics 7

Figure 1. A graphical representation of the disease propagation model.
St, At, Ht, Qt, Dt are the number of susceptible, infected, hospitalized,
quarantined, and deceased people at time t respectively. RQ

t , R
H
t , R

A
t

represent the recovered population from quarantined, hospitalization, and
infected but asymptotic stages respectively. The rate parameters are as
described in Section 2.1.

E[∆St|Ft] = −
(

St
St + At +Rt

)
ακ2

tAt, ,(1)

E[∆At|Ft] = −(θ(t) + γ + ρA)At +

(
St

St + At +Rt

)
ακ2

tAt,(2)

E[∆Qt|Ft] = θ(t)At − (γ + ρA)Qt,(3)

E[∆Ht|Ft] = γ(At +Qt)− (ρH(t) + δ(t))Ht, E[∆Dt|Ft] = δ(t)Ht,(4)

E[∆Ct|Ft] = (θ(t) + γ)At,(5)

E[∆RA
t |Ft] = ρAAt, E[∆RQ

t |Ft] = ρAQt, E[∆RH
t |Ft] = ρH(t)Ht,(6)

E[∆Rt|Ft] = E[∆RH
t |Ft] + E[∆RQ

t |Ft] + E[∆RA
t |Ft].(7)
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8 INFERENCE ON COVID-19 DYNAMICS
A schematic diagram of the proposed model can be found in Figure 1. All parameters

in the proposed model are nonnegative. The parameter α is the baseline infection rate, in

the absence of any social distancing. This means, α is the average number of susceptible

individuals who may be infected on any given day by an asymptomatic but infected

individual. The rate of daily recovery directly from the asymptomatic compartment is

denoted by ρA. By assumption A5, this is also the daily rate at which a quarantined

individual directly recovers. We use γ to describe the rate at which an asymptomatic

individual may become symptomatic on a given day. By assumption A5, this rate is

the same whether the individual is free or in quarantine. The symbols, ρH(t) and δ(t),

respectively, denote is the rate at which people recover and die from the hospitalized

compartment. We assume both these rates to be time-varying to reflect the changing levels

of effectiveness of treatment regimes over time. We emphasize that Poisson distributions

for the increments of various compartments is only a working assumption which guides

our estimation strategy (e.g., by formulating appropriate transformations of variables).

In Supplement Sections S6. and S7., we carry out a detailed numerical simulation under

the Poisson model to validate the statistical performance of the proposed estimation

procedure.

Information about daily tests is included in the model using the function θ(t). We call

it the confirmed fraction (CF), i.e. the fraction of currently asymptomatic individuals

who are detected through testing. Parameter θ(t) would depend on the daily number

of tests, as well as the efficiency of the testing strategy in identifying the infected and

asymptomatic individuals. The contact tracing strategies were introduced by many states

[42, 43] with varying success. In many parts of the world, people in close contact of

hospitalised patients are routinely tested. This strategy is closely connected to cluster

sampling, where a cluster is defined by the contacts of a hospitalised person.
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Inference on COVID-19 dynamics 9
Guided by the above consideration, we reformulate the parameter θ(t) by expressing it

as follows:

(8) θ(t) = φ(t)
∆Tt
Ht

,

where φ(t) is interpreted as the testing efficiency (TE) since it measures the fraction of

confirmed asymptomatic cases per test, per (currently) hospitalized patient. In Section 5

we estimate φ(t) by minimising certain loss function, from which θ(t) is subsequently

estimated.

In addition, our model (see (1)) depends on a variable κt, which is the current state

of the level of interaction among individuals. Expressed as a fraction, taking value 1 for

normal activity, and 0 for complete lockdown, this variable measures the prevalent social

distancing in the population. In general κt is not observable. However, often a surrogate

variable based on data collected by internet service providers such as Google from the

usage of smartphones [44] can be used [45, 46, 47].

From (1) the variable ακ2
t approximately measures the daily rate at which a susceptible

individual turns asymptomatic-infected. In the early stage of the epidemic, the fraction

St/(St+At+Rt) ≈ 1. Furthermore, rather than waiting for herd immunity to be achieved,

mitigation measures are implemented in most affected places or countries to contain the

spread of the disease. As a consequence, at any given time, the number of non-susceptible

people is much lower as compared to the susceptible population. So St/(St +At +Rt) has

remained quite close to 1 for almost the duration of the pandemic until this point, due to

the absence of mass-scale vaccination.

Notice that (5), provides a connection between the daily reported confirmed cases

∆Ct and the number of asymptomatic-infected individuals At in the population. In our

model, an asymptomatic-infected person can be discovered either through a positive test
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10 INFERENCE ON COVID-19 DYNAMICS
and subsequent quarantining, or through hospitalisation upon showing severe symptoms.

Therefore, once the estimates of θ(t) and γ are available, equation(5) allows us to estimate

the unknown At from the observed Ct. It is also clear that, due to unavoidable severe

under-reporting, ∆Ct will only be a fraction of the number of total infected individuals

at any time point.

2.2. Some relevant epidemiological markers. The proposed model is more realistic

than the traditional SIR, SEIR etc. models and allows us to estimate different epidemio-

logical markers which can measure the dynamics of disease spread. Our focus here is on

estimating epidemiological markers related to the number of asymptomatic but infected

persons (i.e. At) in the population. It is well-known that the disease is mostly spread

through persons in that group. Thus the proposed epidemiological markers reveal more

fundamental trends of disease dynamics, than what can be obtained only by the confirmed

case counts. In particular, we define the following epidemiological markers:

2.2.1. Relative Change in Confirmed Fraction (RCCF). The relative change in confirmed

fraction measures the change in the fraction of currently asymptomatic-infected individ-

uals who are caught in the quarantine net through testing relative to the total fraction

of currently infected individuals are either quarantined or hospitalised. From Section 2.1

we get:

(9) RCCF (t) =
∆θ(t)

θ(t) + γ
.

The marker RCCF (t) measures the dynamics of the efficacy of the testing regime to

isolate the asymptomatic but infected individuals from the population into quarantine.

From (8), this marker is directly controlled by the prevalent testing strategy and efficiency.
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Inference on COVID-19 dynamics 11
2.2.2. Crude infection rate (CIR) and Net Infection Rate (NIR). The crude infection rate

is defined as the fraction of change in the daily confirmed cases on a day to the number

of confirmed cases on that day. In our notation, it follows that:

(10) CIR(t) =
∆2Ct
∆Ct

.

Since CIR suffers from the under-representation inherent in the reported number of con-

firmed cases, we define a model-based estimate for the infection rate, denoted Net Infection

Rate (NIR), which is the ratio of the daily change in the number of asymptomatic-infected

persons to the number of the asymptomatic-infected persons. In our notation:

(11) NIR(t) =
∆At
At

=
CIR(t)−RCCF (t)

1 +RCCF (t)
.

2.2.3. Daily New Infections (NI). From our model and assumptions, the daily number of

new infections are given by the number of susceptible population who turn asymptomatic-

infected on that day. From (1) we define this marker as:

(12) NI(t) = ακ2
t

(
St

St + At +Rt

)
At.

The cumulative number of new infections up to time t can be defined as CNI(t) =∑t
i=1 NI(i).

2.2.4. Doubling Times and Rates: The doubling time at time t, denoted td(t) measures

how much longer it would take for the number of infected upto time t to double. The

doubling rate at time t, ξ̃(t) is given by the inverse of the doubling time. A higher doubling

rate reflects the faster spread of infection. This rate is often used to measure the effect of

social distancing campaigns, improved hygiene and case tracking.
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12 INFERENCE ON COVID-19 DYNAMICS
The doubling time for Ct computed using the relationship Ct+td(t)/Ct = 2. It can

be shown (see the Supplement Section S4.) td(t) =
[
d
dt

logCt
]−1

. That is the doubling

rate ξ̃(t) = td(t)
−1 = d

dt
logCt. Doubling rates for other compartments can be computed

similarly.

2.2.5. Crude and Net Case Fatality Rates. In general a case fatality rate at time t is given

by the ratio of the total death count and the total case count at that time. Depending on

whether the reported case counts or the actual case counts are used, we can define two

different case fatality rates. The crude case fatality rate (CFR) is defined as:

(13) CFR(t) =
Dt

Ct
× 100,

whereas the net case fatality rate is given by

(14) NFR(t) =
Dt

CNI(t)
× 100.

2.2.6. The Basic Reproduction Rate. In the conventional SIR or SIER models, basic re-

production rate (R0), which measures the expected number of cases directly generated by

one case in a population where all individuals are susceptible to infection [48] is used to

determine the nature and rate of growth of the pandemic. Unlike these models, our model

is more detailed and allows for time varying parameters and as a result, the conventional

R0 cannot be directly estimated from our model. The closest epidemiological quantity we

can observe is the background infection rate, α, measuring the average number of suscep-

tible individuals who may be infected on any given day by an asymptomatic but infected

individual. However, by following the next generation method [49, 50] an analogue of the

basic reproduction rate for the compartment At can be computed.
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Inference on COVID-19 dynamics 13
By focusing on the compartment At, under our assumptions from (2) new infections

arrive at the compartment at the rate of ακ2
tSt/(St + At + Rt) and leave at the rate of

(θ(t) + γ + ρA). There is no other pathway for disease spread. Thus we can define an

analogue of the basic reproduction rate as:

(15) R̃0(t) =
ακ2

t

θ(t) + γ + ρA

(
St

St + At +Rt

)
.

Note that, the proposed R̃0(t) can be interpreted in the same way as the conventional basic

reproduction rate. By construction R̃0(t) < 1 indicates negative growth of the number of

asymptomatic-infected persons, whereas R̃0(t) > 1 indicates its positive growth. However,

temporal variation of R̃0(t) is more complex. Assuming that, St/(St+At+Rt) ≈ 1, R̃0 can

decrease with time either due to reduction in κt, that is the current state of interaction

among individuals, or due to an increase in the confirmed fraction θ(t). That is, the

proposed R̃0(t) is directly influenced by the mitigation efforts such as social distancing,

adherence to use of masks, increased testing and subsequent quarantining, hospitalisation

of symptomatic patients etc.

Most epidemiological models such as SIR, SIER etc., assume fixed doubling rate param-

eters. In reality, however, the doubling time is a dynamic quantity, which changes con-

tinuously due to mitigation efforts and the inherently changing nature of virus-spreading

mechanisms. It is then vital that policymakers and researchers have access to frequent and

up-to-date estimates of doubling time [51]. For example, [52] provided early, fixed-in-time

estimates of epidemic parameters of COVID-19 (e.g. growth rate, doubling time, basic

reproduction number, case detection rate) during the first 50 days of onset in China. In

recent work [53, 54] the basic reproduction number and doubling time have been studied

in a dynamic manner by considering a varying coefficient model with daily new cases

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.01.21250936doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.01.21250936
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 INFERENCE ON COVID-19 DYNAMICS
as the response and time as a predictor. A related approach focused on the real-time

estimation of case fatality rates using Poisson mixture models can be found in [55].

3. Results : Application to COVID-19 data from the USA

3.1. Data Preparation. We consider the dynamics of the spread of COVID-19 in var-

ious states of USA for a tentative time window of late April to mid December. The

proposed model is based on the observed state-wise daily counts of confirmed infec-

tions, deaths, hospitalisations and reported recoveries from the hospitals and quar-

antining facilities. Daily counts of the confirmed COVID-19 cases in various states

were obtained from the COVID-19 Data Repository maintained by the Center for Sys-

tems Science and Engineering (CSSE) at Johns Hopkins University. This is publicly

available at https://github.com/CSSEGISandData/COVID-19 and was accessed on De-

cember 15, 2020. The state-wise daily counts of positive and negative COVID-19 test

results, current hospitalization, and recovery per day and state, were obtained from

the CDC data repository -the COVID Tracking Project and are publicly available at

https://COVIDtracking.com/ (accessed on December 15, 2020.)

The collected noisy data used is pre-processed and cleaned, removing the irregulari-

ties present in the recording and maintenance of the data repositories. Any missing or

evidently wrong (e.g. negative counts) observations were replaced by the average of the

data from adjacent five days. Inherent noise present in the daily counts was removed by

pre-smoothing the trajectories using a Lowess method [56, 57, 58, 59] with bandwidth

1/16.

3.2. Results. Unfortunately, a continuous record on hospitalization and recovery infor-

mation were not available for many states. For example, most counties in California are

not reporting recovery information. Data on Hospitalization is found to be updated once
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a week in Massachusetts and Florida. New York on the other hand started documenting

the hospitalization information only after the initial surge of the pandemic was over for

the state. In our analysis we only consider the states for which daily observations on Ct,

Dt, R
reported
t , Qt, and Ht are available throughout the time window under consideration.

Any missing/negative values are replaced by the average of the adjacent five days’ data.

For a few states e.g. Alabama, the available data turned out to be too unreliable. We

present results for fifteen states in US which demonstrate the efficacy of the proposed

model and the estimation methods. For succinct representation, the results from only one

state i.e. Utah is presented in details below. The results for other fourteen states can be

found in the Supplement Section S9.

3.2.1. Case study for the state Utah. We present our results for the state Utah for the time

window between 7th May, 2020 to 4th December, 2020. The time interval includes the

Thanksgiving weekend (27th -28th November, 2020), when due to the long holiday, the

reported data may be unreliable. In Figure 2 plots of various time-varying compartments

and epidemiological markers defined in Section 2.2. The plots of the parameters with

their residual bootstrap confidence intervals can be found in Figure 4. Due to unreliable

reporting around the Thanksgiving holiday, the estimates values after 21st November,

2020 should be interpreted with caution.

The curves in Figure 2(a) compare the observed and the fitted number of daily number

of people in the hospitals. It can be seen that, the fitted values obtained from the model

closely follow the observed values. This validates our proposed model and the estimation

procedure. From the data and the fit two waves of infection can be identified. It seems

the first wave starts at the end of May, 2020 stabilises and begins to die down around 7th

August, 2020. The daily number of people in hospitals starts increasing again around the

end of August, 2020.
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Figure 2. Temporal patterns of some compartments and epidemiological
markers for Utah.
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Figure 3. The profile loss as a function of γ and ρA respectively.

The estimated number of infected asymptomatic people (Figure 2(d)) shows a similar

pattern. From a high point around the beginning of August it dips to a low value at

the end of August. The number remains stable for a few weeks and starts growing again

at the end of September. The two waves can also be clearly observed from the plot

of the proposed analogue of the basic reproduction rate R̃0 in Figure 2(i). In the time

period under consideration, the estimated R̃0 was larger than one in two sub-intervals,

namely from middle May to middle of July and then from end of August to beginning

of November. The plot of the number of daily new and daily reported infections (Figure

2(e)) shows a local maxima near the middle of November. However, we cannot rule out

the boundary effect as its cause.

The plots of CIR and NIR seem to be similar (Figure 2(f)). In fact, the observed

doubling rate obtained from Ct and that estimated from CNI seems to be very close in

the second wave of the pandemic (see Figure 2(h)). This implies that in the second wave

the reporting kept pace with the spread of the disease. Figure 2(g) shows the crude and

net fatality rates. Due to the denominator effect, naturally the crude fatality rate is much

faster than the net fatality rate. However, our estimate of NFR is mostly below 0.25%,

which complies with widely held beliefs [60, 24, 61, 62].
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18 INFERENCE ON COVID-19 DYNAMICS
The estimate of δ(t) in Figure 4(d) seems to remain stable throughout the time period

under consideration. The ρ̂H(t) shows an overall increasing trend. On the other hand,

The estimate of θ(t) decreases to a near zero value at the end of the first wave (7th

August, 2020) it then increases to its maximum value at the end of September and starts

to decrease again. The parameters (γ, ρA) are estimated based on minimization of the

profile loss using a grid search algorithm with grid size 0.0001. In Figures 4(a) and 4(b)

the estimates from residual bootstrap samples take discrete values, resulting in a discrete

histogram counts.

The daily number of tests and its effect in quarantining asymptomatic but infected

people can be judged from the Figures 2(b) and 2(c). The state of Utah increased its

testing capacity by public-private partnership. Empirical comparison of the Figures 2(a)

and 2(b) seems to reveal that although the number of daily tests could keep pace with

daily number of hospitalised patients up to the third week of September, but growing

number of hospitalised people ultimately outpaced the number of daily tests. Note that,

estimated θ(t) increases at the onset of the second wave (see Figure 4(c) between 7th,

August and 21st, September), however, from figure 2(d), Ât remains more or less constant.

Thus, growth in the number of new infections could be due to the increase in κt, that is

due to more interaction among individuals and less social distancing.

3.2.2. Summary of Results for Other States. We present a summary of the results obtained

from applications of proposed method on the data procured from fifteen other states in

Estimate 95% Confidence Interval Mean s.d.

γ 0.0011 [0.0011, 0.0023] 0.0017 0.0003
ρA 0.0400 [0.0380, 0.0400] 0.0386 0.0010

Table 1. Estimates, and the residual bootstrap Confidence intervals,
mean and standard deviations for the time-invariant parameters for Utah.
The latter three are computed based on 1000 bootstrap resamples.
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Figure 4. Estimates and residual bootstrap based confidence intervals for
time invariant and time-varying parameters for the state of Utah. The
estimate from the data is in blue. The 95% confidence band is in yellow
and the mean of the bootstrap estimates are presented in red.

USA. The estimated parameters are in Table 2. The time-varying parameters, (φ(t),

ρH(t), δ(t)), are summarised by their means. The computed γ̂, that is, the rate for an

asymptomatic person turning symptomatic on a particular day is the smallest in Arizona

and largest in Tennessee. This estimate is smaller than 0.001 for Arizona and Idaho.

Minnesota, has by far the highest recovery rate for an asymptomatic person without

needing hospitalization on a particular day (i.e. ρ̂A). For Iowa, Nebraska, Pennsylvania,

and Utah this rate is comparable and reasonably high, whereas Arizona, Delaware and

Idaho have their ρ̂A value below 0.01. The average confirmed fraction θ̂ is larger than
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20 INFERENCE ON COVID-19 DYNAMICS

γ̂ ρ̂A δ̂(t) ρ̂H(t) θ̂(t)

Arizona 0.0003 0.002 0.0208 0.0023 0.0887
Arkansas 0.0029 0.094 0.0249 0.0975 0.0809
Delaware 0.0017 0.008 0.0159 0.0093 0.1076

Idaho 0.0009 0.010 0.0230 0.0138 0.0289
Iowa 0.0011 0.032 0.0263 0.0372 0.0478

Minnesota 0.0023 0.128 0.0315 0.0654 0.0899
Nebraska 0.0011 0.020 0.0141 0.0266 0.0394

Ohio 0.0023 0.048 0.0180 0.0532 0.0625
Oklahoma 0.0037 0.084 0.0122 0.1029 0.0494

Pennsylvania 0.0013 0.026 0.0293 0.0372 0.0535
South Dakota 0.0021 0.058 0.0190 0.0922 0.0262

Tennessee 0.0059 0.064 0.0158 0.0413 0.1206
Texas 0.0019 0.036 0.0207 0.0341 0.0212
Utah 0.0011 0.040 0.0144 0.0252 0.1434

Wisconsin 0.0017 0.068 0.0217 0.0707 0.0477

Table 2. Mean estimated parameters for different states in the USA.

0.1 in Delaware, Tennessee and Utah. It is lowest in Texas. This can be associated with

better estimates obtained for these states due to the availability of more reliable data,

whereas for Idaho, South Dakota, and Texas, a lower value of there epi-markers tend to

give evidence for a more relaxed testing paradigm. More testing is required for isolating

the confirmed cases to contain the disease faster, which can be reflected in the numbers

for these states. The detailed results and bootstrap confidence regions for these additional

states can be found in the Supplement Section S9.

Among the states not included in Table 2, many, such as California did not report all

the required compartments. For many states such Alabama, Colorado, Maryland, Mas-

sachusetts, North Carolina etc. the reported data produced monotone profile likelihoods

which yielded unreliable boundary estimates. This could be due to the change in definition

of many compartments over time, which violated our assumptions. Furthermore, for some

states such as New York, New Jersey, Michigan etc., the pandemic started quite early and

ran its course even before a proper testing protocol and other mitigation measures could
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be introduced. Thus the data from these states is contaminated with an inherent bias, the

number of people in quarantine or symptomatic states are to too low to produce reliable

estimates.

4. Discussion

We introduce a multi-compartment model for COVID-19 dynamics which can incorpo-

rate data from compartments like quarantine, hospitalisation etc. Unlike the conventional

SIR and similar models, the proposed model is based on interpretable time-varying pa-

rameters, which are more suitable for describing the disease dynamics in the presence of

mitigating procedures. It also incorporates the information about testing and subsequent

quarantining. We estimate the model parameters using profile likelihood and nonpara-

metric regression. This provides a much faster alternative to Markov Chain Monte Carlo

based Bayesian models which are commonly used in estimating SIR parameters. Using

the proposed detailed and robust model one can estimate the daily number of asymp-

tomatic but infected individuals, who are universally regarded as the key agent for the

COVID-19 spread. We define several epidemiological markers which uses the number of

asymptomatic-infected individuals and therefore reveal the true underlying dynamics of

the pandemic.

Our model only uses information on the number of confirmed infected, hospitalised,

deaths and total reported recoveries from hospitals and the quarantine. We don’t require

those numbers separately. However, such numbers are often available. In such a case, the

loss function in (21) can be simplified a bit. The details can be found in the Supplement

in Section S2.

The model parameters have been estimated assuming that no information about the

mobility within the population is available. Such information identifies the parameters
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κt and α in our model. Reliable data on the compliance to social distancing, mask

wearing etc. are difficult to get. Various aspects of the mobility data available from

Google can be one potential surrogate for κt [63, 64]. However, such data only look into

the fraction of people going to workplace or recreation and so on, and does not collect

information on the people who are the super spreaders or not wearing masks. Thus, it

does not necessarily reflect the the social mobility index κt, as incorporated in our model.

In the Supplement (see Sections S3. and S9.), we present results by using the Google

mobility data as a surrogate to κt. In particular, information on the change in the mobility

patterns, as the percentage decrease (increase) from the baseline, in different areas such

as parks, residential locations, retail locations, among others during the pandemic from

the Google mobility database were obtained. The publicly available data was sourced

from https://www.google.com/COVID19/mobility/ (accessed on December 15, 2020).

When information on κt is available, the parameter α, which is the average number

of susceptible individuals who may be infected in a day by an asymptomatic-infected

individual is identifiable and can be estimated. The details can be found in the Supplement

Section S3.

The proposed method and estimation procedure do not explicitly use the underlying

assumption of a Poisson process. In the Supplement (see Section S6.− S8.), however, we

use an ensemble of independent Poisson processes to simulate data from the proposed

model. These aggregated data sets are then used to accurately estimate various parame-

ters, which validate our estimation procedure. The aggregation has the effect of increasing

the number of observations in the compartments and thereby improving estimation accu-

racy. If the number of individuals in the symptomatic or quarantined compartments are

low, e.g. at the onset of the pandemic, inherent biases are introduced in the estimated

trajectories. A bigger sample size is required to correct such contaminants.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.02.01.21250936doi: medRxiv preprint 

https://www.google.com/COVID19/mobility/
https://doi.org/10.1101/2021.02.01.21250936
http://creativecommons.org/licenses/by-nc-nd/4.0/


Inference on COVID-19 dynamics 23
It should be noted that COVID-19 analyses based on published case and death counts,

including those conducted here, are subject to the same biases which affect the accuracy

of the data, primarily due to under-reporting [65] or mis-recording of the data, the degree

of which varies by country [66]. The reasons for such under-reporting are many, including

insufficient testing materials, political incentives, and administrative delays. Furthermore,

our model assumes a closed population. It ignores migration between cities, states or

countries which play an essential role in the propagation of the disease. We only count

the deaths solely due to Covid-19 infections and as such completely ignore any competing

causes of morbidity, as well as increase in population due to new births.

With this caveat in mind, the study of available data presented in this article never-

theless provides useful insights into the COVID-19 propagation and ways to control it. It

clearly follows that in order to break the chain of transmission and “flatten the curve”,

we need extensive testing and adhere to strict social distancing protocols.

5. Methods : Parameter and compartment Estimation

The core of our estimation strategy is to utilize (1)–(7) to formulate appropriate regres-

sion problems. Our estimation procedure is based on the availability of the compartments

Ct, Dt, Ht, Qt, Tt and Rreported
t only. We do not assume that data on the social distancing

factor κt is available. Described crudely, the proposed estimation method uses local re-

gression (linear or nonlinear) methods for estimating the time-varying parameters, while

profiling over the time-independent ones.

In the absence of data on κt, the parameter α in (1) is not identifiable. We first describe

how the product ακ2
t can be estimated. Notice that, ignoring the stochasticity, we may

rewrite (5) as

(16) ∆Ct = (θ(t) + γ)At.
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Defining η(t) = θ(t) + γ, and applying the difference operator on both sides of (16), and

finally dividing both sides by ∆Ct, we obtain

(17)
∆2Ct
∆Ct

=

(
1 +

∆η(t)

η(t)

)
∆At
At

+
∆η(t)

η(t)
.

Now, ignoring the second order factor (∆η(t)∆At)/(η(t)At), from (2), at the onset of the

epidemic (i.e. St/(St + At +Rt) ≈ 1), we have the approximate relationship:

(18)
∆2Ct
∆Ct

≈ ∆η(t)

η(t)
− η(t)− ρA + ακ2

t .

Note that (18) establishes an approximate linear relationship, between the observable

quantity ∆2Ct/∆Ct and the product ακ2
t . Below we show that, the other parameters in

(18) can be estimated, from the available data. These estimates can be plugged in to get

an estimate of ακ2
t .

5.1. Point Estimates. Broadly speaking, the estimation strategy consists of separating

the time-dependent and time-independent parameters, into vectors βt = (φ(t), ρH(t), δ(t))

and ζ = (γ, ρA) respectively. First the vector ζ is kept fixed and for each t the time

dependent parameter βt is estimated (denoted β̂ht (ζ)) by minimizing the “conditional”

local loss function L̃ht (βt|ζ) (described below) with respect to βt, subject to appropriate

constraints on the parameters (non-negativity as well as certain upper bounds). The

optimal local conditional loss is then combined across different time points to obtain the

profile loss function for ζ, which is given by

(19) Lh(ζ) =
∑
t

L̃ht (β̂
h
t (ζ)|ζ).

The estimate ζ̂h of ζ is obtained by minimizing Lh(ζ) under appropriate constraints. We

update the estimates of βt as β̂ht = (φ̂(t), ρ̂H(t), δ̂(t)) = β̂ht (ζ̂h).
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In order to define the conditional loss function, let K(·) be a nonnegative kernel inte-

grating to one. Now, for a bandwidth parameter h > 0, the local weighted conditional loss

function of βt, given ζ is defined as:

(20) L̃ht (βt|ζ) =
∑
s

1

h
K

(
t− s
h

)
ds(βt|ζ)

where

ds(βt|ζ) =

∣∣∣∣∣
√

∆Hs + ∆Ds + ∆Rreported
s −

√
(ρA + γ)Qs +

γ∆Cs
φ(t)Fs + γ

∣∣∣∣∣
2

+

∣∣∣∣√∆Rreported
s −

√
ρAQs + ρH(t)Hs

∣∣∣∣2 +
∣∣∣√∆Ds −

√
δ(t)Hs

∣∣∣2 .(21)

Note that the RHS of (21) only uses the observed data. The first addendum originates

from equations (4), (5) and (6). The second and the third term use equations (6) and

(4) respectively. The square-root transformation of the responses are used as a variance

stabilising transformation, which is driven by the assumed Poissonian characteristics of

the responses. Also by construction, the estimate of δ(t) does not depend on ζ.

Estimated values of the parameters readily yields estimates of the key compartments

of the model. In particular, from the definition of θ(t), (16) and (17) we get:

θ̂(t) = φ̂(t)
∆Tt
Ht

, Ât =
∆Ct

θ̂t + γ̂
,

(̂
∆At
At

)
=

∆2Ct

∆Ct
− ∆θ̂(t)

θ̂(t)+γ̂

1 + ∆θ̂(t)

θ̂(t)+γ̂

, ∆̂At =

(̂
∆At
At

)
Ât.

Now, by plugging in γ̂, θ̂(t), Ât and δ̂(t) in (4) we get an updated estimator of ρH(t) as

ρ̂H(t) =
∆Ht − γ̂(Ât +Qt) + δ̂(t)Ht

Ht

.
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Finally, using (17) an estimate of ακ2

t can be obtained as:

α̂κ2
t =

(̂
∆At
At

)
+ θ̂(t) + γ̂ + ρ̂A.

The rest of the compartments can be estimated by plugging in the appropriate parameter

or compartment estimates in equations (1) - (7) (see the Supplement Sections S1. and

S3.).

The tuning parameter h in (20) is obtained by minimising a standardised L1 distance

between the fitted and model based estimates of various compartments through a cross-

validation strategy. The actual minimisation is achieved by a grid-search. Details can be

found in the Supplement Sections S1. and S2.

5.2. Confidence Intervals. We employ residual bootstrap [67, 68, 69] to compute the

confidence intervals for our parameter and compartment estimates. Briefly put, the tech-

nique adds resampled residuals to the fitted values to create several “resampled” datasets.

The point estimation technique described above is applied to each of these resampled

datasets to create a new set of parameter and compartment estimates. The empirical

distribution of these estimates are then used to construct the confidence interval. The

details of the algorithm can be found in the Supplement Section S5. The theoretical

validity of the residual bootstrap method is well justified in existing literature [70, 71].

6. Data and Code Availability

All data necessary for the replication of our results is collated in https://github.

com/Satarupa3671/COVID-19-Nonparametric-Inference. The data for the number of

COVID cases, deaths, hospitalizations and recovery were originally collected from https:

//covidtracking.com/data/download while the social mobility data was sourced from

https://www.google.com/covid19/mobility.
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All code necessary for the replication of our results is collated in https://github.com/

Satarupa3671/COVID-19-Nonparametric-Inference.
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