
Microscopic dynamics modeling unravels the role of asymptomatic virus carriers in
SARS-CoV-2 epidemics at the interplay between biological and social factors
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The recent experience of SARS-CoV-2 epidemics spreading revealed the importance of passive
forms of infection transmissions. Apart from the virus survival outside the host, the latent infection
transmissions caused by asymptomatic and presymptomatic hosts represent major challenges for
controlling the epidemics. In this regard, social mixing and various biological factors play their
subtle, but often critical, role. For example, a life-threatening condition may result in the infection
contracted from an asymptomatic virus carrier. Here, we use a new recently developed microscopic
agent-based modelling framework to shed light on the role of asymptomatic hosts and to unravel
the interplay between the biological and social factors of these nonlinear stochastic processes.
The model accounts for each human actor’s susceptibility and the virus survival time, as well as
traceability along the infection path. These properties enable an efficient dissection of the infection
events caused by asymptomatic carriers from those which involve symptomatic hosts before they
develop symptoms and become removed to a controlled environment. Consequently, we assess how
their relative proportions in the overall infection curve vary with changing model parameters. Our
results reveal that these proportions largely depend on biological factors in the process, specifically,
the virus transmissibility and the critical threshold for developing symptoms, which can be affected
by the virus pathogenicity. Meanwhile, social participation activity is crucial for the overall
infection level, further modulated by the virus transmissibility.

Keywords: Agent-based modeling of epidemics; Asymptomatic hosts of SARS-CoV-2; Evolving bipartite
graphs;

I. INTRODUCTION

Epidemics spreading of new coronavirus in popula-
tion is a collective social phenomenon. It arises from
individual actors’ behaviour that can get infected and
spread the infectious agents via multiplexity of contacts.
In this regards, the human participation activity condi-
tioned by daily mobility patterns has been recognised as
a primary driving force for the epidemics spreading1–3.
Contrary to many social processes, the epidemic spread-
ing has a vital biological component, which is prominent
at the elementary interactions scale4,5. In this respect,
the recent developments with the SARS-CoV-2 epidemics
have revealed several new features that were not previ-
ously recognised in virus spreading, see recent update in6.
These are sizeable effects of the passive modes of the in-
fection transmission8–12, which can be related to the virus
biology and strongly individual susceptibility of the hu-
man hosts to this particular virus13–16. Specifically, these
latent infection transmissions rely on the virus long sur-
vival time outside the human host14,17, which enables an
indirect transmission to a new host. On the other hand,
a considerable amount of asymptomatic hosts can remain
unidentified18–20.

Since the very beginning of the SARS-CoV-2 epi-
demics, it has been revealed that a wide spectrum of
symptoms may occur, from very mild or none, on one
side, to severe symptoms and life-threatening pneumonia
requiring ICU treatment and possible fatal outcome14.
Apart from potential virus mutations over time, e.g.,
changed transmissibility and pathogenicity11,21,22, the
observed individual susceptibility of human actors to the
virus may range from a specific genetic origin to diverse
factors related to the individual’s health condition13,23,24.
The symptoms develop over a short period (1 to 5 days).
Meanwhile, the asymptomatic cases spontaneously re-
cover within a period of one to two weeks, changing in-
fectiousness over time25. Even though their viral load
varies differently in time25,26, both symptomatic and
asymptomatic infected hosts are the virus carries and can
spread the infection, cf. Fig. 1. Specifically, the circulat-
ing viruses produced by asymptomatic hosts can infect a
susceptible individual, who, depending on the suscepti-
bility, may or may not develop symptoms. Similarly, the
viruses produced by presymptomatic carriers can lead to
asymptomatic and symptomatic cases. Moreover, some
measurements suggest that the viral contents are propor-
tional to the severity of symptoms, and can vary over the
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infectious time26. Early estimates were that the propor-
tion of asymptomatic cases could be as large as 80% of all
infected14. A recent meta-analysis of the available data
suggests a wide variation in the estimates from 20% up
to 60% of asymptomatic carriers20.

Given the occurrence of a sizable amount of asymp-
tomatic virus carries, it is challenging to estimate the
right parameters and predictions of the epidemics from
the immediate data analysis27,28. Thus, it constitutes a
considerable problem for efficient combat with the virus
spreading19,29,30. The problem is increasingly more sci-
entifically interesting in the third-wave epidemics because
the virus circulates among a large fraction of the popu-
lation. Hence, a better understanding of the factors that
determine the proportion of the asymptomatic virus car-
ries in a given social environment, and their impact on
the overall infection growth is vital for managing the dis-
ease outbreak. In this work, we tackle these problems us-
ing the microscopic dynamics approach within the agent-
based modelling framework developed in1.

Complementary to the standard mean-field models
with continuous-time dynamics of interdependent equa-
tions for groups31,32, the microscopic agent-based mod-
eling of SARS-CoV-2 epidemics gains an increasing
attention1,33–37. This modelling approach provides us
with intrinsic microscopic mechanisms of the epidemic
processes, and the information on how it develops from
the elementary interactions to the global-scale out-
come. Moreover, it allows for considering individual
features of the actors, their mobility and location of
the interactions and participation in coupled stochastic
processes1,33,34,36? ,37. We have recently developed an
agent-based model1, where the human actors possess in-
dividual susceptibility to the virus. It thus allows us to
differentiate between highly susceptible individuals, who
can develop symptoms from those who are less suscepti-
ble and may become asymptomatically infected. The new
host’s susceptibility accordingly modulates the probabil-
ity of getting infected and the probability of that host
to produce a new generation of viruses. Moreover, the
model enables us to consider a finite survival time of the
virus outside the host and different exposure times of
each human actor. The process is visualised as a grow-
ing bipartite graphs, see Fig. 2, with host nodes who are
producing the virus nodes (infected spots) during their
infectious time and proportionally to the degree of in-
fectiousness. A more detailed description of the model
is given in the next section, see also1 for further details.
This graphic representation of the process enables us to
identify an infection path leading to each case. Therefore,
in this modelling approach, each infection event where an
actor encounters the virus is marked by the new host’s
features and the host that produces the active virus.

In this work, we extend the developed model to keep
the information about the preceding host’s susceptibil-
ity when the virus successfully hops to a new host.
In this way, each infection case can be distinguished
as either coming from a susceptible, i.e., potentially

symptomatic case before it gets hospitalised or from
a low-susceptibility host, which can be asymptomatic.
The threshold susceptibility hx is a varying parame-
ter in our model, possibly assessable from some empir-
ical data13,18–20. We note that these stochastic pro-
cesses involving symptomatic and asymptomatic hosts
are strongly entangled at the level of interactions, cf. Fig.
1, such that they can be suitably differentiated only at
the microscopic scale with individual-based modelling.
Precisely, by tracing every infection event, we can differ-
entiate the virus original host and, thus, determine its
contribution to the growth of the infectious curve over
time. With the extensive simulations, we demonstrate
how the asymptomatic host’s contribution to the infec-
tion growth varies with the social participation activity
and the biological factors that determine the threshold
susceptibility and transmission rate. Our simulations
confirm that the overall infection level critically depends
on social participation activity. Meanwhile, the biological
factors are primarily responsible for the respective pro-
portions of the asymptomatic and presymptomatic hosts
in the overall infection curve.

FIG. 1: Schematic view of the processes: new susceptible in-
dividuals become exposed to active viruses. An infected indi-
vidual is “asymptomatic”, if its susceptibility is low hi < hx,
or “presymptomatic” if its hi ≥ hx, which means that the in-
dividual develops symptoms over time and subsequently be-
comes “hospitalised” and removed to a controlled environ-
ment. Whereas, “asymptomatic” carriers over time become
“spontaneously recovered”. Meanwhile, the active circulat-
ing viruses consist of a group produced “by asymptomatic”
and “by-presymptomatic.” hosts and can infect any one
of the individuals, thus increasing either “asymptomatic” of
“presymptomatic” group, depending on the agent’s suscepti-
bility to the virus.

II. LATENT INFECTION TRANSMISSIONS:
MODEL DETAILS

We adopt the model for latent infection transmissions
developed in Ref.1. The process is visualised as an
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FIG. 2: The close-up bipartite network of Host (large, blue)
and Virus (small, white) nodes. Infection paths along the
directed edges between successive Hosts occur via Virus nodes
(shown in red).

evolving bipartite graph consisting of infected individ-
uals (Host nodes), who can produce viral spots (Virus
nodes) during their infectious time, cf. Fig. 2. The model
is driven by the social participation activity, which is ap-
proximated by an empirical time series st inferred from
social networks38. In analogy to the time series of the
human mobility within cities35,39, this time series rep-
resents a cumulative activity of an open social group in
an area with circulating viruses. Thus, it does not as-
sume any prior relationships among participants (see the
Discussion section).

Features that influence the dynamics are individual
characteristics of the human actors and viruses. Specif-
ically, apart from a unique ID, i, each human actor has
its individual susceptibility to the virus, hi ∈ [0, 1] as
well as a characteristic exposition to the viruses spec-
ified by its exposure time T i

h ∈ [1, Th]. As mentioned
in the Introduction, when a highly susceptible individ-
ual hi ≥ hx is infected it can develop symptoms over a
certain number of days, rih ∈ [2, 7]; consequently, it gets
hospitalised and moved to a controlled environment, and
stops contributing to the latent infection transmission1.
Meanwhile, individuals with the susceptibility below a
threshold hi < hx would not develop symptoms by con-
tracting the viruses; they will stay asymptomatically in-
fected and eventually will spontaneously recover after rs
days. During the infectious time, both the asymptomatic
and presymptomatic hosts produce viruses, presumably
in different amounts6,7. In the model, the amount of
viruses is proportional to the host’s susceptibility1. On
the other hand, each virus node is characterised by a
unique ID, survival time Tv, and the information about
the host that produced it. In1, by keeping track of the
number of hops of the virus (virus generation) since the
original infection case, its potential mutations can even-
tually moderate the transmission rate. For the present
work, we keep the mutation factor fixed, g = 1. Other
values can also be analysed with the developed frame-

work, once reliable data on mutation patterns become
available22. Each Virus node has a new property, Oh,
which is given by the susceptibility of the host that pro-
duced that virus.

As in the original model, in each event the basic trans-
mission rate λ0 is modulated by the individual suscepti-
bility of the agent i encountering the virus at the moment
t, see Eq. (1). In addition, the probability λit also varies
in time due to the fluctuations in the global viral load
V (t). Specifically,

λit = λ0(Φt + 1)hig , (1)

where the global feedback factor Φt ≡ dV (t)/dHa(t) fol-
lows the temporal fluctuations of the viral load with re-
spect to the current number of active carriersHa(t). Note
that the upper limit of the virus production rate at time t
corresponds to a hypothetical situation where each active
carrier has the maximum susceptibility hi = 1 produc-
ing a new virus at every time step. Hence, the temporal
feedback in the fluctuating transmission rate of Eq. (1)
accounts for the actual heterogeneity of the virus carriers.

III. MICROSCOPIC DYNAMICS AND
SAMPLED QUANTITIES

As shown in Fig. 1, the social activity dynamics at an
hourly resolution brings st new susceptible agents, which
become exposed to active viruses. Note that the viruses
can survive outside the hosts, such that the currently
active viruses are those produced by all active carriers
(asymptomatic as well as presymptomatic) within the
past Tv = 4 hours. Each agent remains exposed for a pe-
riod corresponding to its exposure time T i

h, during which
it can get infected with the probability given by Eq. (1).
If infected, the agent is removed from the exposed agent’s
list and appears in one of the infected agent’s groups, i.e.,
asymptomatic (if its susceptibility is below the threshold
hx), or presymptomatic, if hi ≥ hx. During their re-
spective infectious times, the agents in both groups pro-
duce new viruses with a pace that is modulated by the
agent’s susceptibility. After developing symptoms within
an individual time interval of rih ∈ [2, 7] days, each symp-
tomatic agent is hospitalised and removed from the pro-
cess. Whereas, each asymptomatic agent stays in the
process until its spontaneous recovery after rs days (a
parameter, equal to all agents). A detailed program flow
is given as Supplementary information file in Ref.1.

As explained above, in the model, we keep informa-
tion about the origin of each virus. Hence, in each new
infection event, the number of infected nta increases by
one if the virus originates from an asymptomatic host,
and, in the case of a presymptomatic host, nts is in-
creased. In each case the total number of infected agents
per time step, nt = nta + nts increases, however, the
relative proportions of nta and nts can vary, depending
on several parameters, as we show in the following. As
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it is schematically indicated in Fig. 1, these two pro-
cesses are strongly interlinked at the microscopic scale.
Particularly, the infection by presymptomatic hosts can
end up as an asymptomatic as well as a presymptomatic
case, depending on the susceptibility of the new arrival
agent. Similarly, an infection by asymptomatic hosts can
result in either an asymptomatic or symptomatic case;
but each symptomatic case may eventually end up in the
intensive care unit with an uncertain outcome, depending
on its susceptibility13,40. Given the difficulty in detect-
ing asymptomatic virus carriers in real life, understand-
ing the intrinsic mechanisms along this potential line of
events is of great importance.

This microscopic modelling framework allows us to
keep full control of the process, which results in different
time-varying quantities, as shown in Fig. 3. Specifically,
for the time period spanning eight weeks and resolution
of one hour, at each time step i = 1, 2 · · · st new agents
are imported, and their individual properties hi and T i

h
are fixed. Then at each time step, we determine the
number of currently exposed agents et, the number of
agents infected from viruses by asymptomatic hosts, nta,
and by-presymptomatic hosts, nts. By respecting the
individual hospitalisation time for each presymptomatic
host and spontaneous recovery time for all asymptomatic
ones, as well as the virus survival time, we compute the
number of active carriers Ha(t) and active viruses V (t).
Having these quantities at hand, we determine the actual
transmission rate at each infection event, see Fig. 3.

IV. PROPORTION OF CASES INFECTED BY
ASYMPTOMATIC CARRIERS FOR VARIED

PARAMETERS

As shown above, the cases infected by asymptomatic
hosts can be differentiated at the microscopic dynamics
scale from the cases infected by presymptomatic hosts.
Consequently, their relative contributions to the growth
of the infectious curve can be systematically estimated.
In the following, we focus on how these proportions vary
in time (always starting from one symptomatic infected
case), and how they depend on relevant parameters. Par-
ticularly, for a given social activity time series and fixed
maximum exposure times of agents, we consider differ-
ent values of the threshold susceptibility hx, the recovery
time of asymptomatic hosts rs, and the basic transmis-
sion rate λ0. Specifically, for the same driving time series
st as in Fig. 3, we show in Fig. 4 that the relative pro-
portions of the cases infected by asymptomatic and by
presymptomatic hosts strongly depend on the recognised
threshold susceptibility. Meanwhile, the total number of
infected remains statistically similar, being chiefly condi-
tioned by the social participation activity. For example,
for the threshold hx = 0.8, corresponding to 80% asymp-
tomatic cases, the fraction of infected by asymptomatic
carriers levels up at 94% of all cases, whereas the re-
maining 6% cases are infected by presymptomatic virus
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FIG. 3: Temporal fluctuations of the social activity st, the ex-
posed agents et, and the agents infected by asymptomatic nta

and by presymptomatic nts hosts (bottom panel), and active
carriers Ha(t) and viruses V (t) (middle panel). The corre-
sponding total number of infected It (infectious curve), and
the proportions of infected by asymptomatic and by presymp-
tomatic hosts, as well as the total number of hospitalised
and spontaneously recovered over time, are shown in the top
panel. In the simulations, we fixed Tv = 4 hours, maximum
exposure time Th = 24 hours, the spontaneous recovery time
rs = 7 days, and the maximum duration before developing
symptoms rh =7 days, the threshold value hx = 0.8 and
λ0 = 0.23. Bottom figure: The actual values of the trans-
mission rate λi

t occurring in the sequence of infection events
within the corresponding time frame, for two values of the
basic rate λ0 indicated in the legend.

carriers. The corresponding temporal evolution of these
fractions is shown in the top-right panel of Fig. 5, starting
from a single symptomatic case. On the other hand, by
assuming that asymptomatic infections comprise of 40%
of all cases, i.e., the threshold susceptibility hx = 0.4,
the total number of infected by presymptomatic carriers
is initially higher, but the events attributed to infections
by asymptomatic carriers win at later times. Eventually,
for even lower values of the threshold, the number of in-
fected by asymptomatic hosts remain below the number
of infected by presymptomatic. The exact proportions
evolve over time, as shown in Fig. 5, depending not only
on the threshold value but also on the infectious time of
the participants. The final outcomes (after eight weeks of
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evolution) are shown in the bottom panel of Fig. 4 for the
whole range of threshold values and two infectious peri-
ods of the asymptomatic carriers, rs = 7 and 14 days,
respectively.
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14 and 7 days, respectively.

In the following, we examine how these proportions
depend on the social participation level and the basic
transmission rate. For this purpose, we extend the dura-
tion of the process. We use the same driving signal for
the first eight weeks and then the signal with the reduced
intensity but the same fractal structure for the following
eight weeks, as shown in the top panel of Fig. 6. The
simulation results for the infectious curves are shown in
two bottom panels in Fig. 6. As this figure shows, the re-
duced social participation activity leads to the gradually
slower growth of the total infection curve, in agreement
with the findings in1 supporting the idea of social lock-
down measures. Here, we are interested in how these
variations in the social activity level combined with the
transmission rate can affect the relative proportions of
the infected by asymptomatic and by presymptomatic
carriers. Specifically, we consider two cases of the thresh-
old susceptibility, hx = 0.8 and hx = 0.2, and two basic
transition rates, i.e., λ0 = 0.23 and, 70% increased trans-
mission rate, λ0 = 0.39; the results are displayed in Fig.
6. These results reveal that, for a low basic transmission
rate, even though the social activity level strongly influ-
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ences the total number of cases, the relative proportions
of these cases infected by asymptomatic and by presymp-
tomatic carriers remain virtually unaffected. However,
the increased basic transmission rate increases both the
total number of infected and alters the proportions of
the infected by asymptomatic and by presymptomatic
carriers. Moreover, these proportions are dramatically
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different when the susceptibility threshold is high, e.g.,
0.8, compared to the case when it is as low as 0.2. Par-
ticularly, in the first case, a practically entire increase
of the infection curve for the increased transmission rate
can be attributed to the infections by asymptomatic car-
riers. On the other hand, the situation is not symmetrical
when the number of asymptomatic comprises 20% of all
infected. In this case, we find that the proportions of
infected by presymptomatic carriers exceed the propor-
tion of infected by asymptomatic by an amount, which
increases with the increased basic transmission rate.

V. DISCUSSION AND CONCLUSIONS

We have studied the microscopic dynamics modelling
of SARS-CoV-2 epidemics by building on the modelling
framework developed in1. By keeping information about
the host that produces a virus implicated in an infec-
tion event, we have been able to disentangle the cases at-
tributed to asymptomatic from those caused by presymp-
tomatic virus carriers. With the extensive simulations
that comprise up to 16 weeks of the evolution time with
the hourly resolution, we have demonstrated how the cor-
responding proportions of the infection curve vary in time
and depend on the implicated bio-social factors. Dealing
with a highly nonlinear stochastic process, we note that
changing a parameter that affects the events at the mi-
croscopic scale may lead to an altered course of events
and a different final outcome. At the same time, our re-
sults revealed certain regularities regarding the groups of
social and biological factors. Specifically:

• The overall infection level critically depends on so-
cial participation activity. Hence, the increase of
the infection curve can be forcefully controlled, e.g.,
by temporally reducing the social activity level,
having the other factors fixed;

• For a given total infection, the relative ratio of
the cases infected by asymptomatic carriers to the
cases infected by presymptomatic carriers crucially
depends on several biological factors. These are,
the threshold susceptibility (depending on the virus
pathogenicity and human genetic and other health

factors of the implicated actors), and the virus
transmissivity;

• The interplay between social and biological factors
can be altered, increasing the proportion of cases
attributed to the asymptomatic carriers, when the
virus transmissivity considerably increases. For ex-
ample, the considered situation where the basic
transmission rate is increased by 70% is motivated
by recently debated potential mutations of SARS-
CoV-2, see21,22.

In conclusion, our microscopic dynamics modelling of
the SARS-CoV-2 epidemics reveals the interplay between
different biological and social factors of this nonlinear
process, which shapes the increase of the infectious curve
and the proportions attributed to asymptomatic and
presymptomatic virus carriers. Given social participa-
tion activity under control, our results shed light on the
intrinsic action mechanisms of the key biological factors.
In particular, these are the critical threshold suscepti-
bility to the virus and the increased virus transmissiv-
ity, which lead to the increased proportions of the in-
fections by asymptomatic carriers. Thus, assuming that
pertinent empirical data on the virus transmissivity and
pathogenicity can be available for a particular popula-
tion, these findings should assist in better estimates of
the impact of the hidden asymptomatic carriers, and con-
sequently in the design of the appropriately improved
measures.
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