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Background: Most heart failure (HF) clinical prediction models (CPMs) have not been 

externally validated.   

Methods: We performed a systematic review to identify CPMs predicting outcomes in 

HF, stratified by acute and chronic HF CPMs.  External validations were performed using 

individual patient data from 8 large HF trials (1 acute, 7 chronic).  CPM discrimination (c-

statistic, % relative change in c-statistic), calibration (calibration slope, Harrell's E, E90), 

and net benefit were evaluated for each CPM with and without recalibration. 

Results: Of 135 HF CPMs screened, 24 (18%) were compatible with the population, 

predictors and outcomes to the trials and 42 external validations were performed (14 

acute HF, 28 chronic HF).  The median derivation c-statistic of acute HF CPMs was 0.76 

(IQR, 0.75, 0.8), validation c-statistic was 0.67 (0.65, 0.68) and model-based c-statistic 

was 0.68 (0.66, 0.76), Hence, most of the apparent decrement in model performance 

was due to narrower case-mix in the validation cohort compared with the development 

cohort.  The median derivation c-statistic for chronic HF CPMs was 0.76 (0.74, 0.8), 

validation c-statistic 0.61 (0.6, 0.63) and model-based c-statistic 0.68 (0.62, 0.71), 

suggesting that the decrement in model performance was only partially due to case-mix 

heterogeneity.  Calibration was generally poor - median E (standardized by outcome 

rate) was 0.5 (0.4, 2.2) for acute HF CPMs and 0.5 (0.3, 0.7) for chronic HF CPMs.  

Updating the intercept alone led to a significant improvement in calibration in acute HF 

CPMs, but not in chronic HF CPMs.  Net benefit analysis showed potential for harm in 

using CPMs when the decision threshold was not near the overall outcome rate but this 

improved with model recalibration.  

Conclusions:  Only a small minority of published CPMs contained variables and 

outcomes that were compatible with the clinical trial datasets.  For acute HF CPMs, 
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discrimination is largely preserved after adjusting for case-mix; however, the risk of net 

harm is substantial without model recalibration for both acute and chronic HF CPMs.  
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Introduction: 

There are more than 6 million people living with heart failure (HF) in the United States.1  

Individuals with HF experience significant morbidity due to symptoms, reduced functional 

capacity, frequent hospitalizations and are at increased risk for early mortality.2-4  While 

overall median survival is only 3-5 years, there is significant variation in risk of short-term 

morbidity and mortality.5, 6  Multiple patient characteristics including age, comorbidities 

such as atrial fibrillation and diabetes, measures of symptom severity, echocardiographic 

variables and laboratory values such as serum creatinine and sodium have been 

consistently associated with increased risk for mortality in individuals with HF.    

Individualized outcome predictions may be useful to patients and providers to aid in:  1) 

discussions around prognosis, 2) decision making around numerous HF therapies such 

as transplant or left ventricular assist device, implantable cardioverter-defibrillators, HF 

disease management or palliative care or 3) research efforts including risk adjustment in 

observational studies, eligibility criteria for trials, or use to examine heterogeneous 

effects.  Clinical prediction is improved by combining multiple prognostic variables in 

clinical prediction models (CPMs), which can provide patient-specific risk estimates.  

Multiple CPMs have been created for HF outcomes, most commonly the outcomes of all-

cause mortality and/or hospitalization, and the use of CPMs for clinical decision making 

is endorsed by HF guidelines.7, 8    

In prior research using the Tufts Predictive Analytics and Comparative Effectiveness 

(PACE) CPM Registry, a systematic collection of published cardiovascular CPMs, we 

reported that there has been a steady increase in new cardiovascular CPMs; however, 

most published CPMs have not been externally validated – i.e. performance tested in a 

separate cohort of patients distinct from the cohort in which the model was developed.9   
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While several HF CPMs have been externally validated in multiple cohorts, few CPMs 

have been independently externally validated – i.e. external validation performed by 

researchers unaffiliated with the initial model development.  In addition, few studies have 

compared the performance of multiple CPMs in the same external validation cohort or 

applied a systematic approach to HF CPM external validation.  Few external validations 

consistently report measures of discrimination, calibration and net benefit or explore the 

effect of recalibration on model performance.  We aimed to review published HF CPMs 

and evaluate performance with and without CPM recalibration.   

Methods: 

Systematic Review of CPMs:  This study used the Tufts PACE CPM Registry to identify 

HF CPMs.  The registry has been previously reported and represents a systematic 

review of cardiovascular CPMs.9  We performed a PubMed search for English-language 

articles containing newly developed CPMs for cardiovascular disease from January 1990 

through 2015 (search terms available in Supplement).  This search was supplemented 

with reference lists of published articles.  For this study, we restricted the population to 

CPMs reporting clinical outcomes, such as mortality or hospitalization, in individuals with 

established HF.  CPMs were defined as models that provide a method to calculate or 

categorize an individual patients’ absolute risk for a binary outcome and includes at least 

2 predictors.  We did not restrict by outcome.  For each CPM the following was 

extracted: derivation cohort demographic and clinical information (e.g. age, 

comorbidities, laboratory and imaging values), type of cohort (registry, clinical trial), 

cohort enrollment location and years, variable selection method (if described), variables 

in final model, CPM outcome definition(s), outcome event rate, events per included 

variable and whether the full risk equation was reported versus a risk score alone.  

Blinded double extraction was done on a random 10% sample of articles as a quality 
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check.  The registry was also queried for published external validations for the matched 

CPMs.  

Validation Datasets:  Publicly available clinical trial datasets10-15 were accessed using 

through the National Heart, Lung and Blood Institute via the Biologic Specimen and Data 

Repository Information Coordinating Center (BioLINCC) and supplemented with two 

industry-sponsored clinical trials16, 17 (Table 1).  The clinical trial cohorts were restricted 

to HF with reduced left ventricular ejection fraction (LVEF) in 7 trials and HF with 

preserved LVEF in one cohort10.  One trial included individuals with acute 

decompensation of chronic HF17 while the other 7 trials enrolled outpatients with chronic 

HF.  Cohort enrollment years ranged from 1986 to 2012 (median trial enrollment year 

was 2005).     

CPM-Dataset Matching:  CPMs were matched to validation datasets if the CPM 

outcomes and variables were available in the validation dataset.  We required all CPM 

variables to be collected in the validation datasets and used a two-step approach in 

which potential matches were first screened by non-clinical staff for similarity of the index 

condition and outcomes.  This process was then repeated by clinical experts.  Finally, 

CPM-dataset matches were reviewed to identify whether variables and outcomes 

included in the CPM were available in the validation database.  Possible discrepant 

outcome or variable definitions required review by a physician member of the research 

team to adjudicate whether the match was appropriate.  CPMs were also excluded if a 

variable was collected in the validation dataset but there was more than 50% 

missingness. 

Observed outcomes in the patient-level data were defined using the CPM outcome 

definition and prediction time horizon, and observed outcome events that occurred after 
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the prediction time horizon were censored for all model validations.  For time-to-event 

models, Kaplan Meier estimator was used for right-censored follow-up times.  For binary 

outcome models, unobserved outcomes (i.e. due to loss-to-follow-up prior to the 

prediction time horizon) were considered missing and excluded from analyses.   

Relatedness Determination:  While all matches between a model and a clinical trial 

database were deemed to be clinically appropriate, derivation and validations cohorts 

can be closely or more distantly related in ways that impact model performance.  

Therefore, a relatedness rubric was developed to characterize the extent to which the 

CPM derivation cohort and the validation cohorts included similar populations 

(Supplemental Figure 1).  This rubric contained the following categories: 1) Population 

(chronic HF, acute decompensated HF and NYHA Class); 2) LVEF subtype (reduced 

LVEF and preserved LVEF); 3) Space/Time (Continent, enrollment years).  In addition, 

for the CPM-dataset matches that included acute HF populations, we included 4) 

Admission to enrollment timing (within 24 hours of admission, after 24 hours but prior to 

discharge, at the time of discharge).  A HF cardiologist (JNU) compared the 

characteristics for each derivation-validation dataset pair to determine the relatedness 

using the following definitions: Closely related was defined as CPMs and datasets with 

>90% match for all categories, Related as a >90% match for Population and LVEF 

subtype and 50%-90% match for other categories and Distantly Related as a partial 

match (>0% but <90%) on at least Population and LVEF subtype.  Derivation-validation 

dataset pairs with no match on Population and LVEF subtype were determined to be 

inappropriate validations and were excluded.  

Measuring CPM Performance: 

CPM Discrimination was evaluated using the c-statistic.  The linear predictor for each 

model was calculated using the published regression coefficients, intercept and the 
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patient-level data from the validation dataset.  If only a risk score was reported then this 

was used for discrimination assessment.  Databases with required variables with >50% 

missingness were excluded. Multiple imputation was performed to impute missing 

observations in the case of <50% missingness exploiting the correlations between 

predictor variables and outcomes, respecting the principle of congeniality.  Since the c-

statistic ranges from 0.5-1.0, the percent change in discrimination was calculated as 

[(validation c-statistic -0.5) – (Derivation c-statistic -0.5)/(Derivation c-statistic -0.5)*100] 

to more accurately represent clinically relevant changes.  We also calculated the 

validation database-derived model-based concordance (MB-c) for each validation.  The 

MB-c represents the c-statistic that would result in the validation database if the 

prediction model were perfectly valid.18   Consequently, a difference between the 

derivation c-statistic and the MB-c is fully due to a difference in case-mix between the 

derivation and the validation database. The MB-c thus provides a useful benchmark to 

understand how much the observed changes in discrimination can be attributed to 

changes in case mix heterogeneity vs model validity. 

CPM Calibration was assessed by transforming the linear predictor to an event 

probability.  Calibration slope and Harrell’s E statistic standardized to the outcome rate 

were assessed.  Harrell’s Eave computes the average absolute calibration error (the 

average absolute distance between “observed” outcome rates, based on a smoothed 

LOESS function and predicted probabilities for each individual); the E90 quantifies the 

90th percentile of this absolute error.19   

Decision curve analysis:  Decision curve analyses integrate model discrimination, 

calibration and the relative utility weights of false-positive and false-negative predictions 

to present a comprehensive evaluation of the potential clinical consequences of using 
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CPMs to inform treatment decisions across all decision thresholds.  For each model, we 

used decision curve analysis to assess net benefit at 3 decision thresholds: 1) one half 

of the outcome prevalence rate, 2) the outcome prevalence rate and 3) twice the 

outcome prevalence.20  We standardized net benefit by outcome rate to allow 

summarizing results across validations.  At each decision threshold, the percentage of 

models with a standardized net benefit above the default strategy (beneficial), equal to 

the default strategy (neutral) or below the default strategy (harmful) was determined.   

CPM Recalibration:  Each CPM-dataset validation underwent three recalibration 

methods to determine the effect of different model updating procedures.  First, the 

difference between the mean observed outcome rates in the derivation and validation 

cohorts was used to update the model intercept (calibration-in-the-large).  Second, both 

the intercept and slope were updated to correct for calibration-in-the large (intercept) and 

to correct for model overfitting through a uniform correction factor for the regression 

coefficients (slope).  Lastly, we re-estimated the regression coefficients using the 

validation database.  All performance measures were repeated on the updated models. 

Results: 

CPM-Dataset Matches:  1080 potential HF CPM-dataset matches that included 135 

individual CPMs were identified. After excluding pairs with no match on population, 

predictor variables or outcomes, 42 clinically appropriate CPM-dataset matches 

remained (Figure).  These 42 CPM-dataset matches included 24 unique CPMs—14 

CPMs derived in a population admitted to the hospital with acute decompensated HF 

and 10 CPMs derived in outpatients with chronic HF.  

Acute HF CPM Matches:  Fourteen CPMs derived in individuals hospitalized with acute 

HF were able to be matched with the one acute HF validation database, the Effects of 
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oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST 

Outcome Trial17.  The EVEREST trial included 4133 individuals with acute on chronic HF 

with LVEF of 40% or less, enrolled within 48 hours of admission, randomized to 

tolvaptan or placebo, followed for a median of 0.8 years with a total of 1080 deaths 

(26%) (Table 1).  The 14 CPMs matched to EVEREST are described in detail in the 

Supplemental Material (Supplemental Table 1), including population characteristics, 

variable selection methods, variables included in each CPM, events per variable and 

discrimination and calibration results in the EVEREST dataset.  Of note, one publication 

reported two different CPMs using the same derivation cohort but different methodology 

– classification and regression tree analysis and logistic regression21.  The derivation 

cohorts were large national multicenter registries for 7 CPMs21-26, clinical trials for 3 

CPMs27-29, single center observational studies for 3 CPMs30-32 and an individual patient 

data meta-analysis (IPDMA) of 30 cohorts for 1 CPM33.  Two of the 14 CPMs were 

developed on cohorts of acute HF with reduced LVEF 26, 27 while the other 12 CPM 

derivation cohorts included individuals regardless of LVEF.  Similarly, two of the 14 

CPMs were developed in a cohort that included both acute and chronic HF29, 33, while the 

remaining 12 on cohorts including only those with acute HF.  All CPM-dataset matches 

except for one were determined to be distantly related; in most cases, this was because 

the derivation cohort including participants regardless of LVEF, while the validation 

cohort, EVEREST, only enrolled individuals with reduced LVEF.  The outcome for all 

matched CPMs was all-cause mortality.  The CPM mortality outcome assessment was 

in-hospital in 5 CPMs21, 22, 24, 31, 60 days for 1 CPM27, 60-90 days for 1 CPM23, 12 weeks 

for 1 CPM25, 6 months for 1 CPM28, 1 year for 4 CPMs26, 30, 32, 33 and 18 months for 1 

CPM29.  In each case, we used the CPM-defined outcome timeframe for external 

validation.  The majority of CPMs used logistic regression with stepwise variable 

selection while 1 CPM used classification and regression tree analysis.  The number of 
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variables in the final models ranged from 3 to 13 with 8 out of 14 models having 5 or 

fewer variables.  Commonly included variables in the CPMs included renal function (14 

out of 14 CPMs), age (10 CPMs), systolic blood pressure (9 CPMs), serum sodium (8 

CPMs), LVEF (5 CPMs), lung disease (5 CPMs) and heart rate (4 CPMs).  Events (in the 

respective derivation cohorts) per variable in the final models ranged from 6 to 346 with 

5 models having less than 20 events per variable and 2 models having less than 10 

events per variable.  Review of published literature through 2015 identified that 8 (57%) 

of the acute HF CPMs had been externally validated at least once.   

Chronic HF models:  Ten CPMs derived in cohorts with chronic HF were matched to the 

validation datasets that included individuals with chronic ambulatory HF, yielding a total 

of 28 unique CPM-dataset matches.  The validation datasets are described in detail in 

Table 1 and the CPMs are described in Supplemental Table 2.  Of the 10 CPMs, 1 CPM 

was matched to 5 validation datasets, 3 CPMs were matched to 4 validation datasets, 2 

CPMs were matched to 3 validation datasets, 1 CPM was matched to 2 validation 

datasets and 3 CPMs were matched to 1 validation dataset.  Derivation cohorts for 

matched CPMs were single center observational studies for 5 CPMs,34-37 clinical trial 

cohorts for 3 CPMs,29, 38, 39 multicenter registry for 1 CPM,40 and an observational study 

from 2 centers for 1 CPM.41  Two CPMs were derived in cohorts of HF regardless of 

LVEF,29, 37 while the other 8 models included a population with reduced LVEF.  No 

matched CPMs were derived in a population with HF with preserved LVEF.  One CPM 

derivation cohort included individuals with both acute and chronic HF,29 while the other 9 

models were derived in cohorts of individuals only with chronic HF.  Seven CPMs were 

derived in populations defined by primary prevention implantable cardioverter-

defibrillator (ICD) implantation.34-36, 39-41  The CPM outcome was CV mortality for 1 

CPM,37 death without prior ICD therapy for 1 CPM,35 and all-cause mortality for 8 CPMs, 
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with the same outcome used in matched validation cohorts.  All models used regression 

equations with most utilizing stepwise selection techniques.  The number of variables in 

the final models ranged from 4 to 8 with 7 out of 10 models having 5 or fewer variables.  

Events in the derivation cohort per variable included in the CPM ranged from 6 to 963 

with only 1 CPM having less than 10 events per variable.  Commonly included variables 

in the CPMs included age (9 out of 10 CPMs), renal function (8 CPMs), LVEF (5 CPMs), 

diabetes (5 CPMs), atrial fibrillation (4 CPMs) and NYHA Class (4 CPMs).  Review of 

published literature through 2015 identified that 3 (30%) of the chronic HF CPMs had 

been externally validated at least once.   

Acute HF CPM Validation Results:   

Discrimination:  Derivation c-statistics were reported in 10 out of 14 CPMs and ranged 

from 0.69 to 0.86 (median 0.76, IQR 0.75, 0.8) (Table 2).  Observed validation c-statistic 

ranged from 0.62 to 0.73 (median 0.67, IQR 0.65, 0.68) and model-based c-statistic 

ranged from 0.61 to 0.84 (median 0.68, IQR 0.66, 0.76).  For the 10 CPMs that reported 

a derivation c-statistic, the median percent decrement between the derivation and 

validation cohort c-statistic was -40% (IQR -49%, -19%) (Table 2).  For most models, the 

decrement in discrimination was largely due to less case-mix heterogeneity in the 

EVEREST cohort (median percent change between derivation and model-based c-

statistic was -24%, IQR -33%, -5%) and to a lesser extent to model validity (the median 

percent decrement between the model-based c-statistic and the validation cohort was -

8%, IQR –31%, 5%).  CPMs developed in smaller cohorts tended to have the greatest 

decrement in discrimination between both validation and derivation as well as validation 

and model-based c-statistic, suggesting that the decrement was mostly due to model 

validity and not case-mix (Supplemental Table 1).   
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Calibration:  The median calibration slope for the 14 CPM models was 0.87 (IQR 0.57, 

1.0), the median Eavg standardized to the outcome rate was 0.5 (IQR 0.4, 2.2) and the 

median standardized E90 was 1.1 (IQR 0.5, 3.4) (Table 2).  Calibration was worse for the 

4 models predicting in-hospital mortality with Eavg ranging from 1.44-7.1 in these models 

(Supplemental Table 1).  Calibration was better for models predicting outcomes over a 

longer time frame from 3 months to 18 months with standardized E for these 9 models 

ranging from 0.06-0.6.   

Decision curve analysis:  At a threshold set to one half the outcome rate, 29% of CPMs 

were harmful, 14% were beneficial and 57% would yield outcomes similar to the default 

strategy (neutral) (Table 3).  Using a threshold set to the outcome rate, 29% of CPMs 

were harmful and 71% of CPMs were beneficial.  At a threshold of twice the outcome 

rate, 57% were harmful and 29% were beneficial.  CPMs predicting in-hospital mortality 

suggested negative or marginal net benefit at the observed outcome prevalence 

(indicating these models would be useless at best in the EVEREST cohort), while 

models predicting longer term outcomes (with higher event rates) showed positive net 

benefit at the observed outcome prevalence with variable benefit at lower and higher 

prevalence thresholds (Supplemental Table 1).   

Model updating: For acute HF CPMs, most of the calibration error was corrected by 

updating the model intercept (median % change in E -81%, IQR -93%, -19%), with slight 

incremental improvement in calibration with updating both the intercept and the slope 

(incremental median % change in E -22%, IQR -73%, 0%) and from re-estimating the 

model (incremental median % change in E -13%, IQR -79%, 50%) (Table 4).  The net 

benefit of using a CPM improved with updating the model intercept alone: 100% of 

CPMs were beneficial at the outcome prevalence and a smaller percentage of CPMs 

were harmful at the other thresholds (Tables 3 and 4).   
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Chronic HF CPM Validation Results:   

Discrimination:  Derivation c-statistics were reported in 8 out of 10 CPMs and ranged 

from 0.73 to 0.81 (median 0.76, IQR 0.74, 0.8) (Table 5).  Observed validation c-

statistics ranged from 0.53 to 0.70 (median 0.61, IQR 0.6, 0.63) and the model-based c-

statistics ranged from 0.53 to 0.78 (median 0.68, IQR 0.62, 0.71).  For the 8 CPMs that 

reported a derivation c-statistic, the median percent decrement between the derivation 

and validation cohort c-statistic was -55% (IQR -62%, -48%).  Unlike the Acute HF 

CPMs, for most Chronic HF CPMs the decrement in discrimination appeared to be due 

to both case-mix heterogeneity (median percent change between derivation and model-

based c-statistic was -28%, IQR -36%, -12%) and model invalidity (median percent 

decrement between the model-based c-statistic and the validation cohort was -34%, IQR 

–48%, 0%) (Table 5).    

Calibration:  The median calibration slope for the 10 CPMs was 0.46 (IQR 0.33, 0.58), 

the median Eavg standardized to the outcome rate was 0.5 (0.3, 0.7) and the median 

standardized E90 was 0.7 (0.5, 1.0) (Table 5).  Five out of 28 CPM-dataset matches 

were related and the rest were distantly related.  In the CPMs with related and distantly 

related matches, there was no signal for better model performance in related CPM-

dataset matches.  In CPMs with multiple database matches, there was a range of 

discrimination and calibration results and no CPMs had consistently good discrimination 

and calibration across validation samples (Supplemental table 3).   

Decision curve analysis:  At a threshold set to one half the outcome rate, 64% of chronic 

HF CPMs were harmful, 7% were beneficial and 29% would yield outcomes similar to 

the default strategy (neutral) (Table 6).  Using a threshold set to the outcome rate, 4% of 
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CPMs were harmful and 86% of CPMs were beneficial.  At a threshold of twice the 

outcome rate, 43% were harmful, 14% were beneficial and 43% were neutral.   

Model updating:  Unlike with the acute HF CPMs, updating the model intercept only 

slightly improved calibration (median % change in Eavg -23%, IQR -54%, 0%); however, 

updating both the intercept and the slope led to incremental improvement in calibration 

(incremental median % change in Eavg -94%, IQR -99%, -80%) (Table 7).  There was 

marginal improvement in calibration from re-estimating the model (incremental median 

% change in Eavg 0% (IQR -50%, 0%).  The net benefit of using a CPM improved with 

model updating but updating of both the intercept and the slope was required to prevent 

net harm at one half the outcome prevalence and twice the outcome prevalence (Tables 

6 and 7).   

Discussion: 

We report the first systematic approach to HF CPM validation, including a 

systematic review to identify published HF CPMs, matching of model variables and 

outcomes with available clinical trial datasets and performance of CPM external 

validation of all CPMs with a matched dataset.  We report discrimination, calibration, net 

benefit and the effect of model updating on predictive performance.  Our principal 

findings are as follows: 1) using “off the shelf” CPMs may cause net harm unless the 

CPM is well calibrated in a given clinical population; 2) a minority of published CPMs 

were compatible with available datasets and even when compatible were often derived 

on datasets that were “distantly related” to the validation data; 3) less case mix 

heterogeneity, estimated using the model-based c-statistic, explained most of the 

decrement in discrimination in the matched acute HF CPMs but not the chronic HF 

CPMs. 
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The acute HF CPMs that were able to be matched to the EVEREST clinical trial 

database had largely preserved discrimination when accounting for case-mix and our 

analysis suggests that many of these models could be appropriate for clinical care.  

Calibration was suboptimal in the acute HF CPM validations but this was likely due to 

the differences in derivation and validation cohorts and calibration measures and net 

benefit were improved with updating of the model intercept (calibration-in-the-large).  

The chronic HF CPMs that were matched to clinical trial databases were largely derived 

from ICD cohorts and had a significant decrement in discrimination that was only 

partially explained by case-mix.  Calibration was also suboptimal for chronic HF CPMs 

and required updating of both the intercept and slope to improve calibration and net 

benefit. 

  The MB-c statistic allows us to determine how much of a change in 

discrimination is due to differences in case mix between the development and validation 

cohort rather than CPM validity.  This is an important distinction when interpreting 

changes in discrimination in validation settings and the MB-c allows for a more nuanced 

understanding of discrimination in external validation studies.  The validation datasets 

represented clinical trial cohorts while many of the CPMs were derived in registry 

cohorts, thus it is not surprising that the MB-c, and consequently the observed c-statistic 

was lower than the derivation c-statistic in this setting.  Applying the MB-c in external 

validation studies should be routinely performed.   

Our findings demonstrate the potential for harm by using CPMs with poor 

discrimination or that are poorly calibrated in the population in which they are applied.  

Decision curve analyses integrate model performance (including both discrimination and 

calibration) and the relative utility weights of false-positive and false-negative predictions 

across all decision thresholds to present a comprehensive evaluation of the potential 
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clinical consequences of using CPMs to inform treatment decisions.  Our results suggest 

that using a CPM for decision making when the threshold is far from the average (e.g. 

less than half or greater than twice the average outcome incidence) is not recommended 

unless one knows that the CPM is well calibrated in your clinical population.  For the 

acute HF models, updating the model intercept (i.e. calibration in the large) improved the 

net benefit substantially, suggesting that simple model updating can substantially 

improve CPM performance and clinical decision making.  

There are limitations to our analysis that should be considered.  The validation 

databases comprised clinical trials and thus represent a more selected clinical 

population than the registries or real-world populations from which many HF CPMs were 

derived.  However, our inclusion of the MBc allows us to assess the contribution of case-

mix to decrements in discrimination between derivation and validation cohorts.  Some of 

the validation and CPM cohorts enrolled participants in older treatment eras; however, 

these external validations still demonstrate the approach that can be used to evaluate 

CPM performance and recalibrate CPMs.  We were only able to match a minority of the 

CPMs with one of the 8 databases and thus were not able to evaluate the performance 

of many published CPMs.  

In conclusion, using “off the shelf” CPMs may cause net harm unless the CPM is 

well calibrated in a given clinical population or the CPM is recalibrated in a population 

similar to the one in which the model will be applied in practice.  We were only able to 

externally validate a minority of CPMs due to mismatch in predictor variables, outcomes 

or population between the CPMs and the validation dataset, suggesting that CPMs often 

use variables not routinely collected.  When CPMs were able to be matched, there was 

often a decrement in discrimination and poor calibration.  Our findings demonstrate the 

importance of applying underutilized techniques, including both the model-based c-



 18 

statistic and decision curve analysis.  These approaches showed that a large proportion 

of the decrement in discrimination was due to changes in the case mix between the 

derivation and validation populations, and that the high risk of net harm of using off the 

shelf models can be substantially mitigated by simple model recalibrations. How to 

achieve recalibration in actual clinical practice is important if CPMs are to realize their 

potential for improving decision making and health outcomes in routine care.  
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Table 1:  Clinical Trial Databases Used for External Validation 

Trial 

Sample 
Size, 
Enrollmen
t Years 

Population Baseline Characteristics: 
Age,  % Male, LVEF, NYHA 
Class I/II 

Baseline 
Medications 

Follow 
up 
Duration 

Outcome events (rate 
no/100 person years) 

TOPCAT10 N=3445, 
2006-2012 

Chronic 
HFpEF (LVEF 
≥ 45%) 

• 69 (IQR 61-76) yrs 
• 48% male 
• LVEF 56% (IQR 51-61%) 
• 67% NYHA I/II 

• BB: 78% 
• ACEi/ARB: 84% 
• MRA: 50% 
• Diuretics: 82% 

Mean 3.3 
years 

• Mortality: 15% (4.4) 
• CV Death: 10% 

(3.0) 
• HF hosp: 13% (4.2) 

HEAAL16 N=3846, 
2001-2005 

Chronic HFrEF 
(LVEF≤40%) 

• 66 (IQR 56-73) yrs 
• 70% male 
• LVEF 33% (IQR 28-37%) 
• 70% NYHA Class II 

(NYHA I excluded) 

• BB: 72% 
• ACEi/ARB: 100% 
• MRA:  38% 
• Diuretics: 77% 

Median 
4.7 years 

• Mortality: 34% (7.9) 
• HF hosp: 25% (6.5) 

HF-
ACTION11 

N=2331, 
2003-2007 

Chronic HFrEF 
(LVEF≤35%) 

• 59 (IQR 51-68) yrs 
• 82% male 
• LVEF 25% (IQR 20-30%) 
• 63% NYHA II (NYHA I 

excluded) 

• BB: 95% 
• ACEi/ARB: 94% 
• MRA: 45% 
• Diuretic: 45% 

Median 
2.5 years 

• Mortality: 17% 
• HF hosp: 20% 

EVEREST17 N=4133, 
2003-2006 

Acute HFrEF 
(LVEF≤40%), 
enrolled within 
48 hrs of 
admission 

• 65±12 yrs 
• 74% male 
• LVEF 28% ±8% 
• 60% NYHA III (all III/IV) 

• BB: 70% 
• ACEi/ARB: 84% 
• MRA: 54% 
• Diuretic: 97% 

Median 
0.8 years 

• Mortality: 26% 
• CV Death: 20% 
• HF hosp 

(readmission): 21% 

SCD-
HeFT12 

N=2521, 
1997-2001 

Chronic HFrEF 
(LVEF≤35%), 
NYHA II-III 

• 60 (IQR 52-68) yrs 
• 76% male 
• LVEF 25% (IQR 20-30%) 

• BB: 69% 
• ACEi/ARB: 100% 
• MRA: 20% 

Median 
3.8 years • Mortality: 28% 



 24 

• 70% NYHA Class II 
(NYHA I excluded) 

• Diuretic: 82% 

BEST13 N=2708, 
1995-1998 

Chronic HFrEF 
(LVEF≤35%), 
NYHA III-IV 

• 60±12 yrs 
• 78% male 
• LVEF 23 ±7% 
• 92% NYHA Class III (all 

III/IV) 

• BB: 50% 
• ACEi/ARB: 97% 
• MRA: 4% 
• Diuretic: 94% 

Mean 2.0 
years 

• Mortality: 31% 
• CV Death: 27% 
• HF hosp: 38% 

DIG14 N=6800, 
1991-1993 

Chronic HFrEF 
(LVEF≤45%), 
NYHA I-IV 

• 63±11 yrs 
• 78% male 
• LVEF 28 ±9% 
• 67% NYHA Class I/II 

• BB: 0% 
• ACEi: 95% 
• MRA: NR 
• Diuretics: 81% 

Mean 3.1 
years 

• Mortality: 35% 
• CV Death: 30% 
• HF hosp: 30% 

SOLVD15 N=2569, 
1986-1989 

Chronic HFrEF 
(LVEF≤35%), 
NYHA I-IV 

• 61 ±10 yrs 
• 80% male 
• LVEF 25 ±7% 
• 68% NYHA Class I/II 

• BB: 8% 
• ACEi: 50% 
• MRA: NR 
• Diuretics: 86% 

Mean 3.5 
years 

• Mortality: 38% 
• CV Death: 32% 

 

Table 2. Validation Performance Acute CHF All Matches 

(n = 14) Mean (SD) Median (IQR) Range 

 Discrimination 

  Development c-statistic 0.77 (0.05) 0.76 (0.75, 0.8) 0.69, 0.86 

  Validation c-statistic 0.67 (0.03) 0.67 (0.65, 0.68) 0.62, 0.73 

  Validation model-based c-statistic (MBc) 0.71 (0.07) 0.68 (0.66, 0.76) 0.61, 0.84 

 % Change in discrimination due to… 

  Total (val.c vs. dev.c) -37 (15) -40 (-49, -19) -55, -11 

  Case mix heterogeneity (MBc vs. dev.c) -20 (19) -24 (-33, -5) -57, 8 
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  Model validity (val.c vs. MBc) -12 (24) -8 (-31, 5) -53, 27 

 Calibration  

  Slope 0.8 (0.26) 0.87 (0.57, 1) 0.34, 1.15 

  standardized E 1.5 (2) 0.5 (0.4, 2.2) 0.1, 7.1 

  standardized E90 2.8 (3.6) 1.1 (0.5, 3.4) 0.2, 12.9 
 
Table 3. Net Benefit Compared to Default Strategy Acute CHF All Matches 

Validation Threshold 
Compared to default strategy 

% Above  % Neutral* % Below 

Original model 

Prev./2 14.3 57.1 28.6 

Prevalence 71.4 0.0 28.6 

Prev.*2 28.6 14.3 57.1 

Updated intercept 

Prev./2 42.9 42.9 14.3 

Prevalence 100.0 0.0 0.0 

Prev.*2 64.3 14.3 21.4 

Updated intercept and slope 

Prev./2 42.9 50.0 7.1 

Prevalence 100.0 0.0 0.0 

Prev.*2 64.3 21.4 14.3 

Re-estimated 

Prev./2 35.7 42.9 21.4 

Prevalence 100.0 0.0 0.0 

Prev.*2 78.6 7.1 14.3 
* Neutral is defined as NB equal to the default strategy 
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Table 4. Effects of Updating Acute CHF All Matches 

(n = 14) Intercept Intercept + Slope Re-estimation 

  Compared to 
Original 

Compared to 
Original 

Incremental 
Change 

Compared to 
Original 

Incremental 
Change 

% Change in Discrimination 

  c-statistic N/A N/A N/A 9 (5, 13) N/A 

  MB c-statistic N/A N/A N/A 1 (-25, 15) N/A 

% Change in Calibration Error 

  E -81 (-93, -19) -91 (-93, -80) -22 (-73, 0) -95 (-97, -85) -13 (-79, 50) 

  E90 -84 (-94, -47) -88 (-94, -77) -22 (-56, 17) -94 (-98, -87) -17 (-43, 0) 

% Change in Standardized Net Benefit 

  sNB prev. / 2 7 (-1, 119) 97 (2, 119) 0 (0, 49) 76 (13, 97) 11 (-49, 46) 

  sNB prev. 13 (0, 229) 13 (0, 229) 0 (0, 0) 31 (11, 277) 14 (11, 33) 

  sNB prev. * 2 109 (39, 163) 109 (95, 163) 0 (0, 4) 169 (113, 289) 36 (4, 82) 
*All values are reported as median (IQR). 
 
 
Table 5. Validation Performance Chronic CHF All Matches 

(n = 28) Mean (SD) Median (IQR) Range 

 Discrimination 

  Development c-statistic 0.77 (0.03) 0.76 (0.74, 0.8) 0.73, 0.81 

  Validation c-statistic 0.61 (0.04) 0.61 (0.6, 0.63) 0.53, 0.7 

  Validation model-based c-statistic (MBc) 0.67 (0.07) 0.68 (0.62, 0.71) 0.53, 0.78 
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 % Change in discrimination due to… 

  Total (val.c vs. dev.c) -54 (16) -55 (-62, -48) -86, -22 

  Case mix heterogeneity (MBc vs. dev.c) -24 (13) -28 (-36, -12) -44, -7 

  Model validity (val.c vs. MBc) -13 (65) -34 (-48, 0) -78, 234 

 Calibration 

  Slope 0.52 (0.31) 0.46 (0.33, 0.58) 0.17, 1.56 

  standardized E 0.6 (0.5) 0.5 (0.3, 0.7) 0.2, 2.9 

  standardized E90 1.1 (1.5) 0.7 (0.5, 1) 0.2, 6.8 
 
Table 6. Net Benefit Compared to Default Strategy Chronic CHF All Matches 

Validation Threshold 
Compared to default strategy 

% Above  % Neutral* % Below 

Original model 

Prev./2 7.1 28.6 64.3 

Prevalence 85.7 10.7 3.6 

Prev.*2 14.3 42.9 42.9 

Updated intercept 

Prev./2 10.7 25.0 64.3 

Prevalence 100.0 0.0 0.0 

Prev.*2 25.0 25.0 50.0 

Updated intercept and slope Prev./2 21.4 78.6 0.0 
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Prevalence 100.0 0.0 0.0 

Prev.*2 17.9 67.9 14.3 

Re-estimated 

Prev./2 39.3 42.9 17.9 

Prevalence 100.0 0.0 0.0 

Prev.*2 71.4 3.6 25.0 

*Neutral is defined as NB equal to the default strategy 
 
 
Table 7. Effects of Updating Chronic CHF All Matches 

(n = 28) Intercept Intercept + Slope Re-estimation 

  Compared to 
Original 

Compared to 
Original 

Incremental 
Change 

Compared to 
Original 

Incremental 
Change 

% Change in Discrimination 

  c-statistic N/A N/A N/A 15 (6, 30) N/A 

  MB c-statistic N/A N/A N/A -29 (-42, 1) N/A 

% Change in Calibration Error 

  E -23 (-54, 0) -96 (-100, -84) -94 (-99, -80) -98 (-100, -92) 0 (-50, 0) 

  E90 -26 (-64, 17) -98 (-100, -89) -95 (-100, -76) -98 (-99, -90) 0 (-27, 20) 

% Change in Standardized Net Benefit 

  sNB prev. / 2 0 (0, 61) 100 (100, 100) 100 (100, 100) 100 (100, 138) 84 (-7, 169) 

  sNB prev. 0 (0, 36) 0 (0, 71) 0 (0, 0) 41 (19, 97) 21 (9, 49) 

  sNB prev. * 2 38 (0, 100) 100 (0, 100) 100 (0, 100) 108 (35, 149) 55 (-16, 318) 
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*All values are reported as median (IQR). 
 

 


