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Abstract 

Background: Clinical prediction models (CPMs) are used to inform treatment decisions for the 

primary prevention of cardiovascular disease. We aimed to assess the performance of such CPMs 

in fully independent cohorts. 

 

Methods and Results: 63 models predicting outcomes for patients at risk of cardiovascular 

disease from the Tufts PACE CPM Registry were selected for external validation on publicly 

available data from up to 4 broadly inclusive primary prevention clinical trials. For each CPM-

trial pair, we assessed model discrimination, calibration, and net benefit. Results were stratified 

based on the relatedness of derivation and validation cohorts, and net benefit was reassessed after 

updating model intercept, slope, or complete re-estimation. The median c statistic of the CPMs 

decreased from 0.77 (IQR 0.72-0.78) in the derivation cohorts to 0.63 (IQR 0.58-0.66) when 

externally validated. The validation c-statistic was higher when derivation and validation cohorts 

were considered related than when they were distantly related (0.67 vs 0.60, p < 0.001). The 

calibration slope was also higher in related cohorts than distantly related cohorts (0.69 vs 0.58, p 

< 0.001). Net benefit analysis suggested substantial likelihood of harm when models were 

externally applied, but this likelihood decreased after model updating. 

 

Conclusions: Discrimination and calibration decrease significantly when CPMs for primary 

prevention of cardiovascular disease are tested in external populations, particularly when the 

population is only distantly related to the derivation population. Poorly calibrated predictions 

lead to poor decision making. Model updating can reduce the likelihood of harmful decision 

making, and is needed to realize the full potential of risk-based decision making in new settings.  
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Introduction 

Cardiovascular disease (CVD) is the leading cause of mortality in the United States. 

Interventions to reduce the incidence of cardiovascular disease in the primary prevention setting 

abound, including lifestyle interventions, antihypertensive therapy, lipid lowering therapy, and 

antiplatelet therapy.1–4 A key aspect of optimizing primary prevention strategies involves 

targeting interventions to high risk individuals, and some have argued that clinical trial results 

should be routinely interpreted using risk-based analyses.5,6 

 

Clinical prediction models (CPMs) are critical in estimating individual patient risk and are being 

increasingly used to guide treatment decisions for primary prevention.7 In order for CPMs to be 

beneficial however, their performance must be robust to validation on new cohorts (external 

validation). It is known that in general, the performance of CPMs degrade when models are 

externally validated, both in terms of discrimination (distinguishing high and low risk 

individuals) and calibration (accuracy of risk estimates).8 This decrement in performance can 

significantly threaten the utility of many CPMs by leading to harmful treatment decisions if used 

naïvely in routine clinical practice. An illustrative example is that of the recent controversy 

surrounding the use of the Pooled Cohort Equations (PCE) in guiding primary prevention statin 

therapy. Guidelines recommend statin therapy for individuals with a PCE-estimated 10-year risk 

of CVD ≥ 7.5%,9 but once it was shown that the PCE systematically overestimated risk in 

several populations, potentially resulting in significant overtreatment, some argued that outcomes 

might be better using “trial-based” guidelines—which emphasize applying the best treatment on 

average to populations defined by trial inclusion and exclusion criteria—instead of “risk-based” 

guidelines.10 
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Despite the increasing number of CPMs predicting incident CVD in the literature, most have not 

been validated in external cohorts, and those that have are usually validated on a single external 

cohort.11,12 Therefore, the performance of CPMs for incident CVD when externally validated is 

largely unknown. Thus, the primary aim of this study was to characterize the performance of 

CPMs for incident CVD by performing independent external validations on patient-level data 

from publicly available clinical trial databases. We also assessed the impact of various model 

updating procedures on model performance. 

 

Methods 

Source of models 

The Tufts Predictive Analytics and Comparative Effectiveness (PACE) CPM Registry is a 

registry of CPMs published between January 1990 and December 2015 that predict outcomes in 

patients at risk for or with known cardiovascular disease. Detailed methods for development of 

the registry have been reported previously.11 Briefly, for inclusion in the registry, articles must 

(1) develop a CPM as a primary aim, (2) contain at least 2 outcome predictors, and (3) present 

enough information to estimate the probability for an individual patient. For this analysis, we 

selected from the registry all CPMs predicting outcomes on healthy patients at risk for CVD. 

 

Source of validation cohorts 

De-identified patient-level data from four clinical trials were obtained from the National Heart, 

Lung, and Blood Institute (NHLBI) via application to the Biologic Specimen and Data 

Repository Information Coordinating Center (BioLINCC). The trials used in this analysis were: 

ACCORD (Action to Control Cardiovascular Risk in Diabetes), ALLHAT-HTN 
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(Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack), ALLHAT-LLT 

(Lipid-Lowering Therapy), and WHI (Women’s Health Initiative). Each trial enrolled a broad 

population of adult patients without prevalent cardiovascular disease. Details of the trials have 

been reported previously and are summarized in Supplementary Table 1. 

 

CPM-database Matching Process 

In order to identify appropriate validation cohorts for a given CPM, we employed a hierarchical 

matching procedure. First, each CPM was compared with each database by non-clinical research 

staff to identify pairs that had grossly similar inclusion criteria and outcomes, which were then 

reviewed for appropriateness by clinical experts. Potential pairs passing these screening steps 

were carefully reviewed at a granular level, and only pairs where sufficient patient-level data 

existed in the trial database such that the CPM could be used to generate a predicted outcome 

probability for each patient were included in the analysis. Observed outcomes in the patient-level 

data were defined using the CPM outcome definition and prediction time horizon. 

 

Measuring CPM performance 

The performance of CPMs in external cohorts was evaluated with measures of discrimination, 

calibration, and net benefit when applied to external validation cohorts. For all model 

validations, observed outcome events that occurred after the prediction time horizon were 

censored. For time-to-event models, the Kaplan-Meier estimator was used for right-censored 

follow up times. For binary outcome models, unobserved outcomes (ie due to loss-to-follow up 

prior to the prediction time horizon) were considered missing and excluded from analyses. For 

each CPM-database pair, the linear predictor was calculated for each patient in the database 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.01.31.21250871doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.31.21250871
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

using the intercept and coefficients from the published CPM. Model discrimination was assessed 

using the c-statistic. The percent change in a CPM’s discrimination from the derivation cohort to 

the validation cohort was calculated as [(Validation c-statistic - 0.5) – (Derivation c-statistic - 

0.5)] / (Derivation c-statistic - 0.5) * 100.13 44 models were excluded from the assessment of 

decrement in c-statistic relative to derivation because the c-statistic at model development was 

not reported. Change in discrimination was also compared relative to the model-based c-statistic 

(MB-c). The MB-c is the c-statistic that would be obtained in the validation database under the 

assumption that the CPM is perfectly valid in the validation database.14 Thus, any difference 

between the derivation c-statistic and the validation MB-c reflects differences in case-mix, while 

the difference between the validation MB-c and the c-statistic in the validation cohort reflects 

model invalidity. Because calculation of the MB-c depends entirely on the validation cohort, 

MB-c could be calculated for all pairs. 

 

Model calibration was assessed by converting the linear predictor to a predicted probability 

(including a specified time point if Cox proportional hazards modeling was used). From the 

predicted probabilities, calibration slope and Harrel’s EAVG and E90 statistics were calculated. 

Harrel’s EAVG and E90 statistics measure the mean and 90th percentile, respectively, of the 

absolute difference between the predicted and observed event probabilities, where observed 

probabilities are estimated nonparametrically using locally weighted scatterplot smoothing 

(LOESS) curves. For this analysis EAVG and E90 values were standardized by dividing by the 

outcome rate in the validation cohort to improve comparability between CPM-validation pairs. If 

point estimates of outcome incidences at similar time points in the CPM derivation cohort and 
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paired validation cohort were not able to be calculated with published information, that pair was 

excluded from analysis of calibration. 

 

Finally, decision curve analysis15 was used to estimate the net benefit of each model in each 

paired validation database at three distinct decision thresholds: half the outcome incidence, the 

outcome incidence, and double the outcome incidence. Decision curve analysis presents a 

comprehensive assessment of the potential population-level clinical consequences of using 

CPMs to inform treatment decisions by examining misclassification of patients across the full 

range of thresholds, while weighting the relative utility of false-positive and false-negative 

predictions as implicitly determined by the threshold. Models were assessed for whether they 

resulted in a net benefit above or below the best default strategy (treat all or treat none) at each 

decision threshold. Models where net benefit was equivalent to the best default strategy were 

considered neutral. 

 

Stratification by Relatedness 

To explore sources of variability in model performance in external validation, we categorized 

each CPM-database pair based on the “relatedness” of the underlying study populations. Study 

populations were reviewed in detail by clinical experts on the basis of key clinical 

characteristics, such as inclusion/exclusion criteria, patient demographics, outcome, enrollment 

period, and follow-up duration. Pairs were categorized as “related” when there were no clinically 

relevant differences in inclusion criteria, exclusion criteria, recruitment setting, and baseline 

clinical characteristics. Any matches with clinically relevant differences in any criterion were 

categorized as “distantly related” (Supplementary Tables 2 and 3). Clinical experts scoring 
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relatedness were blinded to the derivation c-statistic of the CPM and outcome rates in the 

derivation and validation cohorts. 

 

Model updating 

We assessed the impact of model updating on discrimination, calibration, and net benefit. 

Models were updated using data from each paired validation database in a sequential fashion: 1) 

by updating the model intercept using the observed outcome rate in the validation cohort 

(recalibration-in-the-large); 2) by updating the intercept and rescaling all the model coefficients 

by the calibration slope; and 3) by re-estimating all regression coefficients using data from the 

validation database (but maintaining the predictors from the original model).16 

 

Statistical Analysis 

Continuous variables were summarized as median [interquartile range] and proportions were 

summarized as N (%). Differences in various model performance measures were assessed using 

the Wilcoxon rank-sum test. All analyses were performed in R version 3.5.3 (R foundation for 

statistical computing, Vienna, Austria). 

 

Results 

CPM-validation cohort matching 

From a set of 195 potential CPMs, 157 (80.5%) were screened as potential matches and 

underwent granular review to assess for sufficient patient level variable and outcome data within 

the 4 publicly available clinical trial databases. We matched 63 (32%) CPMs to at least one 

database, yielding 88 CPMs-database pairs (Figure 1). Details about the CPMs used in this 
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analysis are summarized in Supplementary Table 4. The WHI and ACCORD databases were 

matched with the most CPMs (35 and 32, respectively) while ALLHAT-LLT and ALLHAT-

HTN could be matched with fewer CPMs (15 and 6 CPMs, respectively). 

 

CPM Discrimination in Independent External Validations 

Of the 88 total CPM-database pairs, there were 54 pairs in which the CPM reported a c-statistic 

at model development. Among these, the median c-statistic in the derivation cohorts was 0.77 

(IQR 0.72–0.78) and the median c-statistic at model validation was 0.63 (IQR 0.58–0.66, p 

<0.001 vs derivation, Table 1). Discriminative ability decreased by a median of 60% (IQR 42–

73%, Figure 2). Approximately half the loss in discriminatory power was attributable to a 

decrease in case-mix heterogeneity, while half was attributable to model invalidity. When 

stratified by relatedness, 37 (42%) pairs were graded as “related” and 51 (58%) were graded as 

“distantly related.” CPM-trial pairs that were related had significantly higher MB-c and 

validation c-statistics than pairs that were distantly related (Table 1). Median percentage 

decrement in discrimination among related pairs was 42% (IQR 23–46%), of which 

approximately two-thirds was due to a decrease in case-mix heterogeneity and one-third due to 

model invalidity (Figure 2). In contrast, CPM-trial pairs that were distantly related had a median 

percentage decrement in discrimination of 67% (IQR 60–80%, p < 0.001 vs related pairs), 

approximately half of which was due to case-mix heterogeneity and half due to model invalidity 

(Figure 2). 

 

CPM Calibration in Independent External Validations 
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The median calibration slope in the external validations was 0.62 (IQR 0.50–0.77). Median 

calibration slope among related pairs was 0.69 (IQR 0.59–0.84), while median calibration slope 

among distantly related pairs was 0.58 (IQR 0.43–0.63, p < 0.001 vs related pairs). Median EAVG 

and median E90 standardized to the outcome incidence among all pairs was 0.60 (IQR 0.40–0.70) 

and 1.0 (IQR 0.7–1.2), respectively, and did not differ significantly between related and distantly 

related pairs (Table 2). 

 

Net Benefit 

At a decision threshold of half the outcome incidence, 41 of 62 (66%) evaluable CPM-database 

pairs resulted in net benefit below the default strategy of treating all patients when applied to 

external validation cohorts (that is, the population-level impact of using the CPM to target 

treatment according to predicted risk was less favorable than that of simply treating all patients), 

while only 20 (32%) were beneficial relative to the default strategy (Table 3). At a threshold of 

twice the prevalence, 31 (50%) resulted in net benefit below the default strategy of treating no 

patients, and only 12 (19%) were beneficial relative to the default strategy. At a threshold equal 

to the outcome incidence, 5 of 62 (8%) of CPMs resulted in decreased net benefit compared with 

the default strategy and 51 (82%) resulted in increased net benefit. 

 

Effects of Updating 

EAVG improved by a median of 57% (IQR 43–78%) across all the CPM-trial pairs with updating 

of the intercept and by a median of 97% (IQR 88–100%) after updating the intercept and slope. 

Similar results were seen for E90. No further improvement in calibration error was seen with re-

estimation. While updating the intercept alone eliminated the likelihood of harm relative to the 
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default strategy at a decision threshold equivalent to the outcome incidence, this did little to 

reduce the likelihood of harm at more extreme decision thresholds (Table 3). At decision 

thresholds of half or twice the outcome incidence, likelihood of harm remained above 20% even 

after complete re-estimation of the model coefficients using patient-level data from the clinical 

trial populations. 

 

Discussion 

Validation of CPMs is important to understanding how well they perform in new populations. In 

this study, we found that the vast majority of CPMs was impossible to validate on publicly 

available patient-level trial databases. Among the CPMs that we were able to validate, we found 

that discrimination and calibration deteriorated substantially when compared with the derivation 

cohorts. The decrease in discrimination was due to both narrower case mix in the validation 

cohorts as well as model invalidity, and larger decrements were observed when validation 

datasets were judged to be distantly related to the derivation dataset. Finally, we found that the 

use of CPMs on these validation cohorts without efforts at model updating may result in harmful 

decision making in a significant number of cases. 

 

Of 195 potential CPMs, we were only able to evaluate 32% using patient-level data from at least 

one of 4 large cardiovascular RCTs. We observed two main reasons for this difficulty. First, 

many CPMs included predictors that were not available in the RCT databases. Secondly, some 

CPMs were unable to be validated because the reported methods were insufficient to recapitulate 

the model-building strategy in the external validation database. Researchers seeking to develop 

CPMs should be cognizant of both these potential issues. Models meant for broad use should 
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prioritize the inclusion of routinely available clinical data to enable robust external validation. 

Additionally, transparently reporting the CPM development process can help increase trust in a 

model and potentially increase its uptake. To this end, the Transparent Reporting of a 

Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement 

outlines best practices for CPM reporting.17 

 

We observed reduction in the c-statistic of the CPMs from 0.77 to 0.63 upon external validation. 

Similar reductions in discrimination have been reported previously for other diseases.18–20 Poor 

discriminative ability may be attributable to model invalidity (biased estimates of regression 

coefficients) or to a less heterogeneous patient case-mix (identifying high and low risk 

individuals is more difficult if the population is more homogenous). The MB-c is a useful tool to 

distinguish these sources because it estimates the discriminative ability of the model in a new 

cohort based solely on the case-mix in that cohort. The MB-c answers the question: what would 

the c statistic be if only the risk distribution of the validation cohort is different than in the 

derivation cohort, assuming the model coefficients are correct. Consequently, the difference 

between the c-statistic and the MB-c in external validation represents the impact of model 

invalidity. We found that for CPMs predicting cardiovascular events in a primary-prevention 

population, approximately half the decrement in discriminative ability was due to a narrower 

case-mix, and half was due to model invalidity. The significant amount of model invalidity we 

observed implies that the value of using these CPMs to guide clinical decisions in new, 

unselected populations may be lower than would be expected from the originally reported model 

performance. 
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Our data showed a larger decrement in discrimination when externally validating a CPM on a 

distantly related cohort than if the cohort were more closely related. Furthermore, the proportion 

of decrement in model discrimination attributable to model invalidity was higher when the 

cohorts were distantly related. Relatedness determinations often hinged on subtle but clinically 

relevant differences between cohorts, such as years of enrollment or the distribution of baseline 

comorbidities, that required expert clinician review to identify. However, given the especially 

poor discriminative ability we observed in distantly related cohorts, clinicians should carefully 

consider the relatedness of their population to the derivation population (with respect to 

important clinical characteristics such as inclusion/exclusion criteria, population demographics 

and comorbidities, components of a composite outcome, and follow-up time) when seeking to 

use an existing CPM. 

 

Similar to the loss of discrimination, we observed a significant amount of miscalibration at 

external validation. The impact of both discrimination and calibration on the utility of a model 

can be summarized by using decision curve analysis to quantify the net benefit of using a model 

to guide clinical decision making at various decision thresholds. Our analysis showed that across 

all CPM-validation pairs, there was a high likelihood that use of the CPM in that validation 

population would result in harm at the population level relative to a default strategy of treating 

all or treating no patients, particularly when the decision threshold was distant from the overall 

outcome incidence. At these thresholds, harm relative to the best default strategy was seen in 

more than half of model-cohort pairs. We found that sequential model updating procedures could 

reduce the likelihood of harm. Updating the intercept alone (recalibration-in-the-large) 

eliminated the potential for harm at a decision threshold equal to the outcome incidence, but did 
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little to reduce the likelihood of harm at the extreme decision thresholds we evaluated. More 

intensive model updating procedures did reduce the likelihood of harm at extreme decision 

thresholds, but this likelihood remained > 20% even with complete re-estimation of model 

coefficients. These findings highlight that applying a published CPM to a new population 

without updating requires great caution because there is a high likelihood that the model could 

worsen, rather than improve decision making, due to systematic misestimation of risk. Selecting 

the most appropriate updating procedure will likely depend on the clinical scenario, the size of 

the validation dataset, and the difference between the overall outcome incidence and the decision 

threshold of interest.16 

 

Concerns about harm from the use of poorly calibrated models garnered substantial attention 

when the 2013 American College of Cardiology/American Heart Association (ACC/AHA) 

Cholesterol Treatment Guidelines, which recommended primary prevention statin therapy for 

nondiabetic individuals with an estimated 10-year CVD risk of ≥ 7.5%, were released.9 CVD risk 

is estimated from the PCE, which were derived from multiple population cohorts studied in the 

1990s and showed good discrimination (c-statistics 0.7–0.8) across multiple ethnic groups.21 

However, when the PCE were applied to contemporary cohorts, CVD risk was overestimated by 

75–150%, indicative of significant miscalibration.10 This suggests that among the 30 million 

Americans who might qualify for statin initiation based on the 2013 guidelines, the true 10-year 

CVD risk in the lowest risk individuals may actually fall well below the 7.5% threshold, 

resulting in potentially harmful over-treatment. This has led some to argue for “trial-based” 

guidelines, where treatment recommendations are applied uniformly to populations defined by 

RCT inclusion criteria, rather than “risk-based” guidelines.10 While our work and that of others 
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has pointed to the potential advantages of risk-based decision making,6,22 the results of the 

present analysis underscore the dangers associated with poor calibration and suggest that the 

advantages of risk-based decision making might only be fully realized when models are 

frequently updated on the populations to which they are applied.23 

 

Limitations 

There are several limitations to this analysis. We validated CPMs in cohorts from clinical trials, 

rather than real-world cohorts, which are expected to be more homogenous than real-world 

cohorts. However, our use of the MB-c enabled us to disentangle the decrement in discrimination 

attributable to the narrower case mix in the clinical trial cohort from that attributable to invalid 

model coefficients. The high proportion of decrement in discrimination attributable to model 

invalidity seen in this analysis implies significant decrements in model performance would be 

expected even in more heterogenous validation cohorts. The available databases used for 

external validation represent patients across different time periods, and differences in primary 

prevention treatment may have changed the relationships between predictors and outcomes 

between the development and validation cohorts evaluated here. Contemporaneous validation 

cohorts may have shown smaller decrements in discrimination or validation, though such a 

finding would underscore our conclusion about the importance of considering the degree of 

similarity to the derivation cohort when applying a CPM. Each CPM was only able to be 

externally validated a small number of times. A given CPM may perform differently when 

validated against different cohorts, and more research is required to understand the sources of 

this variation before validation performance can be used to grade the quality of a model. Our 

relatedness categorization was one such attempt, but requires content area expertise, is inherently 
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subjective, and is difficult to generalize to CPMs for other clinical domains. Finally, our net 

benefit analyses focused on three arbitrary decision thresholds and were not informed by the 

relative cost of over-treatment versus under-treatment in the specific clinical context.  

 

Conclusions 

This analysis highlights several important aspects regarding the landscape of CPMs for primary 

prevention of cardiovascular disease. Many models are difficult to externally validate because 

they are not reported transparently or because they include specialized measurements not readily 

available during routine care. Among those that we were able to validate, significant decrements 

in discrimination and severe miscalibration were noted, resulting in potentially harmful decision 

making if used on new cohorts. While some loss of discrimination was due to the narrower case-

mix of the validation populations, half of the decrement was attributable to model invalidity. 

More effort to externally validate existing CPMs is warranted to better understand CPM 

performance in new populations. Appling existing CPMs to new populations without model 

updating should be done with caution, as the likelihood of miscalibration is high, and systematic 

over- or under-estimation of risk can lead to harmful decision making manifested by 

systematically over- or under-treating patients. 
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Figure Legends 

Figure 1: Flowchart of clinical prediction model-database matching process. 

Figure 2: Median percent change in c-statistic in external validation cohorts. Data are 
presented as medians and are stratified by relatedness. MB-c, model-based c-statistic.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 3, 2021. ; https://doi.org/10.1101/2021.01.31.21250871doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.31.21250871
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Figure 1
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Figure 2 
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Table 1. Discriminative ability of clinical prediction models in development and validation 
cohorts stratified by cohort relatedness. Values are presented as median (IQR). MB-c, model-
based c-statistic. 

  Cohort relatedness 
 All pairs 

N=88 
Related 
N=37 

Distantly related 
N=51 

p-value 

Development c-
statistic* 

0.77 (0.72–0.78) 0.77 (0.72–0.79) 0.77 (0.72–0.78) 0.93 

Validation MB-c 0.67 (0.65–0.70)† 0.69 (0.67–0.75)† 0.67 (0.65–0.68)† <0.001 
Validation c-
statistic 

0.63 (0.58–0.66)†‡ 0.67 (0.64–0.70)†‡ 0.60 (0.56–0.62)†‡ <0.001 

* 34 models did not report c-statistic. Sample size for development c-statistic is 54 (18 related, 
36 distantly related). 

†p < 0.05 vs development 

‡p < 0.05 vs MB-c 
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Table 2. Calibration performance of clinical prediction models on external validation 
stratified by cohort relatedness. Calibration error was measured using Harrel’s EAVG and E90 
statistics, standardized to the outcome incidence. For example, if the outcome incidence in a 
validation population was 5% and EAVG was 0.05, standardized EAVG=1.0. Values are presented 
as median (IQR). 

  Cohort relatedness 
 All pairs 

N=62 
Related 
N=37 

Distantly related 
N=25 

p-value 

Calibration slope 0.62 (0.50–0.77) 0.69 (0.59–0.84) 0.58 (0.43–0.63) <0.001 
Standardized 
EAVG 

0.60 (0.40–0.70) 0.60 (0.50–0.70) 0.50 (0.40–0.80) 0.68 

Standardized E90 1.0 (0.7–1.2) 0.8 (0.70–1.2) 1.1 (1.0–1.3) 0.14 
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Table 3. Effect of model updating on net clinical benefit in validation populations. Net 

benefit associated with model use before and after sequential updating procedures was assessed 

at 3 thresholds: incidence, half the incidence, and twice the incidence. Net benefit was 

considered neutral if it was within 5% of the default strategy. 26 pairs were not able to be 

assessed because the model predicted outcomes at a different time point than that which was 

used to ascertain outcomes in the clinical trial database. Values are presented as N (%). 

Updating 

strategy 

Threshold Net benefit compared to default strategy 

(N=62) 

Beneficial Neutral Harmful 

Original 

model 

Incidence/2 20 (32.3) 1(1.6) 41 (66.1) 

Incidence 51 (82.3) 6 (9.7) 5 (8.1) 

Incidence*2 12 (19.4) 19 (30.6) 31 (50.0) 

Updated 

intercept 

Incidence/2 24 (38.7) 1 (1.6) 37 (59.7) 

Incidence 62 (100) 0 (0) 0 (0) 

Incidence*2 30 (48.4) 2 (3.2) 30 (48.4) 

Updated 

intercept and 

slope 

Incidence/2 37 (59.7) 4 (6.5) 21 (33.9) 

Incidence 62 (100) 0 (0) 0 (0) 

Incidence*2 40 (64.5) 6 (9.7) 16 (25.8) 

Refitted Incidence/2 49 (79.0) 0 (0) 13 (21.0) 

Incidence 62 (100) 0 (0) 0 (0) 

Incidence*2 41 (66.1) 1 (1.6) 20 (32.3) 
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