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Abstract 

Background. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a high risk of transmission in 

close-contact indoor settings, which may include households. Prior studies have found a wide range of household 

secondary attack rates and may contain biases due to simplifying assumptions about transmission variability and test 

accuracy. 
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Methods. We compiled serological SARS-CoV-2 antibody test data and prior SARS-CoV-2 test reporting from 

members of 9,224 Utah households. We paired these data with a probabilistic model of household importation and 

transmission. We calculated a maximum likelihood estimate of the importation probability, mean and variability of 

household transmission probability, and sensitivity and specificity of test data. Given our household transmission 

estimates, we estimated the threshold of non-household transmission required for epidemic growth in the population.  

Results. We estimated that individuals in our study households had a 0.41% (95% CI 0.32% – 0.51%) chance of 

acquiring SARS-CoV-2 infection outside their household. Our household secondary attack rate estimate was 36% 

(27% – 48%), substantially higher than the crude estimate of 16% unadjusted for imperfect serological test 

specificity and other factors. We found evidence for high variability in individual transmissibility, with higher 

probability of no transmissions or many transmissions compared to standard models. With household transmission at 

our estimates, the average number of non-household transmissions per case must be kept below 0.41 (0.33 – 0.52) to 

avoid continued growth of the pandemic in Utah. 

Conclusions. Our findings suggest that crude estimates of household secondary attack rate based on serology data 

without accounting for false positive tests may underestimate the true average transmissibility, even when test 

specificity is high. Our finding of potential high variability (overdispersion) in transmissibility of infected 

individuals is consistent with characterizing SARS-CoV-2 transmission being largely driven by superspreading from 

a minority of infected individuals. Mitigation efforts targeting large households and other locations where many 

people congregate indoors might curb continued spread of the virus.  

 

1 Introduction 

Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible 

for COVID-19, has spread rapidly, causing severe morbidity, mortality, and disruption to daily life. As public health 

officials continue grappling with reducing community spread, it is of increased importance to understand 

transmission risk in different locations where people mix. Transmission within households may be especially 

important, given the mounting evidence that indoor environments with close, sustained contact are especially high 

risk for SARS-CoV-2 transmission [1-3]. Furthermore, with substantial observed decreases in mobility during the 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted June 30, 2021. ; https://doi.org/10.1101/2021.01.29.20248797doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.29.20248797


pandemic [4], individuals likely are spending a greater proportion of time at home, thus increasing the importance of 

understanding within-household transmission. Likewise, isolation and quarantine measures recommended to help 

control COVID-19 frequently occur within homes, increasing risk to susceptible household members [5].  

Data collected from members of households with at least one person infected with SARS-CoV-2 have revealed a 

wide range of within-household transmission estimates. One systematic review and meta-analysis [6] found 24 

studies with household data conducted from January-March 2020, mostly in China, with secondary attack rate 

estimates ranging from 5% to 90% in the individual studies; pooling these data led to an average secondary attack 

rate estimate of 27% (95% CI: 21% – 32%). Another published review and meta-analysis of more recent data found 

22 studies on the secondary attack rate in households, including estimates ranging from 4% to 32% [7]. Pooling 

these studies, the review found an average secondary attack rate of 17.1% (95% CI: 13.7% – 21.2%). Another 

review and meta-analysis found 40 household studies with individual study estimates ranging from 4% to 45% [8]. 

Their pooled analysis found that the household-based secondary attack rate for all household contacts was 19.0% 

(95% CI: 14.9 – 23.1%). Data from households in the U.S. [9-12] produced secondary attack rate estimates from 

11% to 53%.  

Most household studies generated data by first identifying index household cases via active or passive surveillance 

followed by monitoring and testing specimens from their household contacts using PCR or other methods that detect 

presence of the virus. These studies may exhibit bias if mild or asymptomatic cases were less likely to be identified 

as an index household case. By contrast, data for the presence of antibodies among household members provide 

information on the distribution of final sizes of household outbreaks no longer in progress and in which some or 

none of the cases were identified at the time. We are aware of only 3 studies that used serological antibody data to 

estimate household transmission, using data from Spain [13], Brazil [14], and Switzerland [15]. 

In addition to average transmission rates, heterogeneity and variability in SARS-CoV-2 transmission have also been 

quantified. The amount of individual-level variation in the number of secondary infections can affect final outbreak 

size [16]. Large variation (i.e., overdispersion) indicates the presence of superspreading by a minority of individuals 

who transmit to a disproportionately large number of others [17]. Better understanding of superspreading individuals 

and locations can greatly enhance efficient targeting of transmission control strategies [18]. Backward contact 

tracing can efficiently trace sources of acquisition to high-transmission individuals and circumstances when 
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superspreading is present [19], and efforts that target similar circumstances for transmission prevention can have 

disproportionate benefits [20, 21]. 

Studies have quantified the variability in the number of SARS-CoV-2 transmissions from infected individuals using 

the dispersion parameter 𝑘, governing the variance of a negative binomially distributed offspring distribution [22-

26]. Those studies estimated high overdispersion (low values of 𝑘) similar to what was observed during the first 

SARS-CoV outbreak in 2003 [17]. These estimates were derived from data on transmissions, including 

superspreading events, occurring in a variety of locations both inside and outside of households. Regarding 

household transmission specifically, Madewell et al. [8] showed preliminary evidence of overdispersion in 

household data, with more households than expected experiencing extremes of transmission (i.e., either no 

transmission or many transmissions) from an introduced case.  

In this study, we combine SARS-CoV-2 data from serological antibody tests and self-reported prior tests to estimate 

within-household transmission of COVID-19 in Utah. Previously published secondary attack rate estimates are 

largely based on crude formulae which ignore the probabilities of multiple members of a household acquiring 

infection from the community, multiple generations of transmission within the household (i.e. secondary, tertiary, 

etc. transmissions), and imperfect test sensitivity and specificity. We addressed these limitations by extending 

previous models of final household outbreak size distributions [27] to develop a novel probabilistic model of 

household importation and household transmission combined with test sensitivity and specificity. Our model also 

quantifies variability in household transmission and the potential extent of overdispersion, to shed light on 

superspreading phenomena and the implications of household transmission for population-level controllability of 

COVID-19. 

2 Methods 

2.1 Data collection from Utah households 

Details of our data collection process are described elsewhere [28]. Briefly, the Utah Health & Economic Recovery 

Outreach project involved selecting households in several counties in Utah by population sampling designed to form 

a set of households by which average community seroprevalence could be assessed. Any member of selected 

households could participate in a survey that included questions about prior SARS-CoV-2 test results (see 
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Supplementary Methods for wording of relevant survey questions). Adult household members could fill out surveys 

on behalf of children of any age in the household. Survey participants age 12 or older could additionally opt to 

provide serological samples for COVID-19 antibody testing. Serum specimens were analyzed using the Abbott 

SARS-CoV-2 IgG assay performed on an Abbott Architect i2000 instrument (Abbott Laboratories), with 

methodology and criteria for a positive antibody result defined according to the manufacturer’s instructions. Data 

included in this analysis were collected between May 4 and August 15, 2020. 

The University of Utah Institutional Review Board reviewed the surveillance project that produced the data analyzed 

in this manuscript and determined it as non-research public health surveillance, waived the requirement for 

documented consent, and determined that use of these data for analysis to understand the dynamics of SARS-CoV-2 

transmission was exempt from further review (IRB_00132598). Individuals were informed of the project procedures 

and that participation was voluntary. Participants provided their agreement to participate and were given the chance 

to opt out of having their data used for future research. The data were analyzed anonymously for this manuscript. 

The data are represented as follows. For each household in the dataset, we captured the following 7 values from the 

data:  

• 𝑛: total number of people in household 

• 𝑎: number who were antibody tested 

• 𝑠: number who responded to the survey but were not antibody tested 

• 𝑎𝑃𝑃: number who reported a prior positive test result and received a positive antibody test 

• 𝑎𝑃𝑁: number who reported a prior positive test result and received a negative antibody test 

• 𝑎𝑁𝑃: number who reported no prior positive test result and received a positive antibody test 

• 𝑠𝑃: number who were surveyed, reported a prior positive test result, and did not receive an antibody test 

Those surveyed participants who reported no prior positive test result includes both those who had never been tested 

and those who had been tested but received no positive results. We did not have sufficient information to properly 

distinguish those two groups, nor to determine the circumstances of any prior negative tests that might affect the 

inferred probability of true prior infection.  
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Each of the 𝐶 unique combinations of the above 7 values found at least once in the dataset was indexed as a vector 

𝐲𝑖: 

𝐲𝑖 = (𝑛𝑖 , 𝑎𝑖 , 𝑠𝑖 , 𝑎𝑃𝑃𝑖 , 𝑎𝑃𝑁𝑖 , 𝑎𝑁𝑃𝑖 , 𝑠𝑃𝑖) 

We tallied the number of households for which each 𝐲𝑖 occurred in the frequency elements 𝑓𝑖, and represented the 

entire dataset by the vector 𝐲 = (𝐲1, … , 𝐲𝐶 , 𝑓1, … 𝑓𝐶). 

The dataset 𝐲 and all codes, written in R version 4.0.3, used for analyses described in the following sections are 

posted and publicly available at https://github.com/damontoth/householdTransmission. 

2.2 Total household infection size model 

Here we derive the probabilities 𝑀𝑘𝑛 for the probability that 𝑘 out of 𝑛 total household members ended up infected. 

If 𝑘 members of a size-𝑛 household were infected, that means that 𝑛 − 𝑘 members escaped being infected by a non-

household member (called “community” acquisitions) and escaped being infected by any of the 𝑛 infected within the 

household. Thus, our model for 𝑀𝑘𝑛 combines both probabilities and does not depend on the order of occurrence of 

household transmissions and subsequent community acquisitions after the initial one, as in similar prior formulations 

[27]. Also following prior formulations, we assume that active infections were not present in the households at the 

time of antibody data collection (i.e., that household outbreaks had reached final size). Accounting for the timing of 

recent household importations, transmissions, and development of detectable antibodies during an ongoing 

household outbreak would significantly complicate the model equations and would likely have little effect on our 

overall results, given that the prevalence of active infections at the time of data collection was very low [28]. 

The 𝑀𝑘𝑛 values depend on 3 parameters. The parameter 𝑝𝑐 is the average per-capita probability of community 

acquisition, 𝑝ℎ is the mean transmission probability from an infected person to a fellow household member, and 𝑑ℎ 

is the dispersion parameter characterizing variability in transmissibility across infected individuals, with no assumed 

correlation among members of the same household.  

For a given household size 𝑛 ≥ 2, the formula for 𝑀𝑘𝑛 is: 
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𝑀𝑘𝑛(𝑝𝑐 , 𝑝ℎ, 𝑑ℎ) =

{
  
 

  
 

(1 − 𝑝𝑐)
𝑛, 𝑘 = 0

∑(
𝑛
𝑖
) (𝑝𝑐)

𝑖(1 − 𝑝𝑐)
𝑛−𝑖𝑇𝑖,𝑘−𝑖,𝑛−𝑖(𝑝ℎ, 𝑑ℎ)

𝑘

𝑖=1

, 𝑘 = 1,… , 𝑛 − 1

1 −∑𝑀𝑘𝑛(𝑝𝑐 , 𝑝ℎ, 𝑑ℎ)

𝑛−1

𝑘=0

, 𝑘 = 𝑛

 

For households of size 𝑛 = 1, note that the expression involving the household transmission parameters does not 

apply and we have 𝑀01 = 1 − 𝑝𝑐 and 𝑀11 = 𝑝𝑐.  

The probability that a household of size 𝑛 had 0 infections: 𝑀0𝑛 = (1 − 𝑝𝑐)
𝑛, is the probability that none of the 

household members acquired infection from the community and does not depend on the household transmission 

variables because no household transmissions were possible without a community introduction. For the final number 

of household infections to be nonzero, there must be at least one community acquisition, which may be followed by 

within-household transmissions. The (
𝑛
𝑖
) (𝑝𝑐)

𝑖(1 − 𝑝𝑐)
𝑛−𝑖 expression is the binomial probability that 𝑖 out of the 𝑛 

household members had a community acquisition, and the function 𝑇𝑥𝑦𝑧 is the probability that 𝑥 already infected 

household members lead to a total of 𝑦 transmissions to 𝑧 susceptible household members. In other words, 𝑇𝑥𝑦𝑧 is 

the probability that the final outbreak size is 𝑥 + 𝑦, given that 𝑥 household members are already infected in a house 

with 𝑧 susceptible members. For efficiency of computation, the 𝑇𝑥𝑦𝑧 values are calculated in order of increasing 

values of 𝑦, i.e. 𝑇𝑥0𝑧 for each relevant 𝑥 and 𝑧 value are calculated first, then the 𝑇𝑥1𝑧 values, then 𝑇𝑥2𝑧. This allows 

the use of 𝑇𝑥𝑦𝑧 values for lower values of 𝑦 to be used in the formula (see Supplementary Material for details): 

𝑇𝑥𝑦𝑧(𝑝ℎ, 𝑑ℎ) = {

𝐻𝑥0𝑧(𝑝ℎ, 𝑑ℎ), 𝑦 = 0

∑𝐻𝑥,𝑦−𝑖,𝑧(𝑝ℎ, 𝑑ℎ)𝑇𝑦−𝑖,𝑖,𝑧−𝑦+𝑖(𝑝ℎ, 𝑑ℎ)

𝑦−1

𝑖=0

, 𝑦 = 1,… , 𝑛
 

Within the 𝑇𝑥𝑦𝑧 formula, the function 𝐻𝑥𝑦𝑧 is the probability that 𝑥 infected household members transmit infection 

directly to 𝑦 out of 𝑧 fellow household members who are susceptible. The 𝐻𝑥𝑦𝑧 values are calculated in order of 

increasing values of 𝑥 for efficient computation (see Supplementary Material): 

𝐻𝑥𝑦𝑧(𝑝ℎ, 𝑑ℎ) = {

𝐹𝑦𝑧(𝑝ℎ, 𝑑ℎ), 𝑥 = 1

∑𝐻𝑥−1,𝑖,𝑧(𝑝ℎ, 𝑑ℎ)𝐻1,𝑦−𝑖,𝑧−𝑖(𝑝ℎ, 𝑑ℎ)

𝑦

𝑖=0

,   𝑥 = 2,… , 𝑛 − 1
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Finally, the function 𝐹𝑦𝑧(𝑝, 𝑑) is the probability mass function of the beta-binomial distribution for 𝑦 successes out 

of 𝑧 trials, parameterized by a mean success probability 𝑝 and a dispersion parameter 𝑑. When 𝑑 is finite and 

nonzero, 𝐹𝑦𝑧 is derived from the binomial distribution with success probability that is a beta-distributed random 

variable with parameters 𝛼 = 𝑑𝑝, 𝛽 = 𝑑(1 − 𝑝), with decreasing variance as 𝑑 increases. We also make use of the 

boundary cases 𝑑 = 0 and 𝑑 → ∞. In the limit 𝑑 → ∞, holding 𝑝 constant, 𝐹𝑦𝑧 becomes the binomial distribution 

with constant success probability 𝑝 (Supplementary Material). In the maximal variance limit, 𝑑 → 0, with 𝑝 held 

constant, 𝐹𝑦𝑧 becomes an “all-or-nothing” distribution where 𝑦 = 𝑧 successes occur with probability 𝑝 and to 𝑦 = 0 

successes occur with probability 1 − 𝑝 (Supplementary Material):  

𝐹𝑦𝑧(𝑝, 𝑑) =

{
 
 
 

 
 
 {

1 − 𝑝, 𝑦 = 0
0, 0 < 𝑦 < 𝑧
𝑝, 𝑦 = 𝑧

, 𝑑 = 0

(
𝑧
𝑦)
B(𝑦 + 𝑑𝑝, 𝑧 − 𝑦 + 𝑑(1 − 𝑝))

B(𝑑𝑝, 𝑑(1 − 𝑝))
,   0 < 𝑑 < ∞

(
𝑧
𝑦) 𝑝

𝑦(1 − 𝑝)𝑧−𝑦, 𝑑 → ∞

 

The function B is the beta function. We use 𝐹𝑦𝑧 within the formula for 𝐻1𝑦𝑧 to quantify the distribution of household 

transmissions directly from a single infected household member, where 𝑦 is the number of transmissions, 𝑧 is the 

number of susceptible household members, 𝑝 = 𝑝ℎ, and 𝑑 = 𝑑ℎ. 

The above formulas are derived in the Supplementary Material. Elements of this model appear in other publications. 

Longini and Koopman [27] derived a formula for 𝑀𝑘𝑛 for the model with no variability among households or 

individuals, equivalent to our model with 𝑑ℎ → ∞. While they provided a more efficient formula that takes 

advantage of the properties of that special case, we confirmed that our calculation scheme above reproduces the 

results of their formula. Becker [29] published explicit formulas for the final size of household outbreaks after a 

single introduction to households up to size 5 using the beta-binomial chain model, equivalent to our 𝑇𝑥𝑦𝑧 for 𝑥 = 1 

and 𝑧 up to 4. We confirmed that our scheme for calculating 𝑇𝑥𝑦𝑧 produces the same results as their example 

formulas for arbitrary values of 𝑝ℎ and 𝑑ℎ. 

2.3 Likelihood model 
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We sought to use our data to simultaneously estimate the 3 parameters (𝑝𝑐 , 𝑝ℎ, 𝑑ℎ) using maximum likelihood 

estimation (MLE). However, applying the 𝑀𝑘𝑛 formula directly to our data would be problematic because the true 

number of infections 𝑘 in each household are not known with certainty. The data include two sources of COVID-19 

test information by which prior infection status of a portion of individual household members can be 

probabilistically inferred: antibody test results and surveys in which participants could report results of a priortest. 

Antibody test results are subject to imperfect sensitivity and specificity due to false negative tests and false positive 

tests, respectively. To account for these, we added two additional parameters to be estimated by the MLE: 𝜙𝐴, the 

probability that an antibody-tested person with a prior infection tested positive for antibodies, and 𝜋𝐴, the probability 

that an antibody-tested person with no prior infection tested negative for antibodies. 

Prior test results for SARS-CoV-2 reported on the survey also do not perfectly identify those with prior infections. 

To quantify this imperfection, we introduced two more parameters to be estimated by the MLE: 𝜙𝑉, the probability 

that a surveyed person with a prior infection reported receiving a positive test for the virus, and 𝜋𝑉, the probability 

that a surveyed person with no prior infection did not report receiving a positive test. 

Some household members received a survey but no antibody test and other members received neither. The 𝑀𝑘𝑛 

formula depends on the total household size 𝑛, which for many households includes individuals with missing data. 

For households with at least one but not all members infected (1 ≤ 𝑘 ≤ 𝑛 − 1) and in which less than 𝑛 member 

were full participants, the likelihood formula required the probability that different portions of the 𝑘 infected 

members were among those who were antibody tested or surveyed only. To arrive at our formula, we assumed that 

the antibody-tested and surveyed-only portion of a household were a random sample of household members with 

respect to their prior infection status. I.e., we assumed that those individuals in a participating household with and 

without prior infections were equally likely to participate in the study and equally likely to agree to antibody testing.   

In all we have 7 variables to be estimated by MLE, encapsulated in the following vector 𝛉: 

𝛉 = (𝑝𝑐 , 𝑝ℎ, 𝑑ℎ, 𝜙𝑉 , 𝜙𝐴, 𝜋𝑉 , 𝜋𝐴) 

The log likelihood of the dataset 𝐲 described in Section 2.1 with variable set 𝛉 is then 

ln ℒ(𝐲|𝛉) = 𝑓1 ln ℒ(𝐲1|𝛉) + ⋯+ 𝑓𝐶 ln ℒ(𝐲𝐶|𝛉) 
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To present the formula for ℒ(𝐲𝑖|𝛉), the likelihood of a particular 𝐲𝑖, we first define the following quantities 

calculated from the core elements of 𝐲𝑖 listed in Section 2.1: 

• 𝑎𝑁𝑁𝑖 = 𝑎𝑖 − 𝑎𝑃𝑃𝑖 − 𝑎𝑃𝑁𝑖 − 𝑎𝑁𝑃𝑖: number who reported no prior positive test result and received a negative 

antibody test 

• 𝑠𝑁𝑖 = 𝑠𝑖 − 𝑠𝑃𝑖: number who were surveyed, reported no prior positive test result, and did not receive an 

antibody test 

• 𝑞𝑖 = 𝑛𝑖 − 𝑎𝑖 − 𝑠𝑖: number untested for antibodies and not surveyed 

Then we have: 

ℒ(𝐲𝑖|𝛉) = ∑ ∑ ∑ ∑ 𝐴(𝑢, 𝑣, 𝑤, 𝑥; 𝜙𝑉 , 𝜙𝐴, 𝜋𝑉 , 𝜋𝐴)∑∑𝑆(𝑦, 𝑧; 𝜙𝑉 , 𝜋𝑉) ∑ 𝐻(𝑘, 𝑢 + 𝑣 + 𝑤 + 𝑥, 𝑦 + 𝑧)𝑀𝑘𝑛𝑖
(𝑝𝑐 , 𝑝ℎ, 𝑑ℎ)

𝑢+𝑣+𝑤+𝑥+𝑦+𝑧+𝑞𝑖

𝑘=𝑢+𝑣+𝑤+𝑥+𝑦+𝑧

𝑠𝑁𝑖

𝑧=0

𝑠𝑃𝑖

𝑦=0

𝑎𝑁𝑁𝑖

𝑥=0

𝑎𝑁𝑃𝑖

𝑤=0

 𝑎𝑃𝑁𝑖

𝑣=0

 𝑎𝑃𝑃𝑖

𝑢=0

 

In the formula, the function 𝐴 quantifies the probability of observing the given set of test result combinations among 

antibody-tested people (𝑎𝑃𝑃𝑖 , 𝑎𝑃𝑁𝑖 , 𝑎𝑁𝑃𝑖 , 𝑎𝑁𝑁𝑖), given that (𝑢, 𝑣, 𝑤, 𝑥) of them had a prior infection, respectively. 

E.g., 𝑢 is the number of the 𝑎𝑃𝑃𝑖 household member who had an infection (true positives), 𝑣 is the number of the 

𝑎𝑃𝑁𝑖 household members who had an infection (true positive by prior test and false negative by antibody test), 𝑤 is 

the number of the 𝑎𝑁𝑃𝑖 household members who had an infection (true positive by antibody test and did not report a 

prior positive test), and 𝑥 is the number of the 𝑎𝑁𝑁𝑖 household members who had an infection (false negative by 

antibody test and did not report a prior positive test). The formula for 𝐴 is 

𝐴(𝑢, 𝑣, 𝑤, 𝑥; 𝜙𝑉 , 𝜙𝐴, 𝜋𝑉 , 𝜋𝐴) = 𝑓𝑚(𝑢, 𝑣, 𝑤, 𝑥; 𝐩I(𝜙𝑉 , 𝜙𝐴))𝑓𝑚(𝑎𝑃𝑃𝑖 − 𝑢, 𝑎𝑃𝑁𝑖 − 𝑣, 𝑎𝑁𝑃𝑖 − 𝑤, 𝑎𝑁𝑁𝑖 − 𝑥; 𝐩U(𝜋𝑉 , 𝜋𝐴)) 

The function 𝑓𝑚(𝐫; 𝐩) is the probability mass function for the multinomial distribution, where the number of trials is 

the sum of the elements of 𝐫, which are the number of infected or uninfected antibody-tested people who received 

each of the four possible test result combinations. The vector 𝐩 contains the probability of each of the four test result 

combinations given that the person was infected (for 𝐩 = 𝐩I) or uninfected (for 𝐩 = 𝐩U): 

𝐩I(𝜙𝑉 , 𝜙𝐴) = (𝜙𝑉𝜙𝐴, 𝜙𝑉(1 − 𝜙𝐴), (1 − 𝜙𝑉)𝜙𝐴, (1 − 𝜙𝑉)(1 − 𝜙𝐴)) 

𝐩U(𝜋𝑉 , 𝜋𝐴) = ((1 − 𝜋𝑉)(1 − 𝜋𝐴), (1 − 𝜋𝑉)𝜋𝐴, 𝜋𝑉(1 − 𝜋𝐴), 𝜋𝑉𝜋𝐴) 
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The first element of 𝐩I, 𝜙𝑉𝜙𝐴, is the probability that an antibody-tested person with a prior infection reported a prior 

positive test (with probability 𝜙𝑉) and also had a positive antibody test result (with probability 𝜙𝐴). Note that 𝜙𝐴 

represents the sensitivity of the antibody test, but 𝜙𝑉 includes both the sensitivity of the prior test and the probability 

that an infected person actually sought and received a SARS-CoV-2 test during the period of infection in which 

detectable virus was present and reported that positive test on our survey. Elements 2–4 of 𝐩I are the probabilities 

that an antibody-tested, prior infected person reported a prior positive test but tested negative for antibodies, did not 

report a prior positive test and tested positive for antibodies, and did not report a prior positive test and tested 

negative for antibodies, respectively. The elements of 𝐩U are the corresponding probabilities for individuals with no 

prior infection. 

The function 𝑆 quantifies the probability of the survey-only data (𝑠𝑃𝑖 , 𝑠𝑁𝑖) given that 𝑦 of the 𝑠𝑃𝑖 individuals had a 

prior infection and 𝑧 of the 𝑠𝑁𝑖 individuals had a prior infection: 

𝑆(𝑦, 𝑧; 𝜙𝑉 , 𝜋𝑉) = 𝑓𝑏(𝑦; 𝑦 + 𝑧, 𝜙𝑉)𝑓𝑏(𝑠𝑁𝑖 − 𝑧; 𝑠𝑁𝑖 − 𝑧 + 𝑠𝑃𝑖 − 𝑦, 𝜋𝑉) 

The function 𝑓𝑏(𝑞; 𝑟, 𝑝) is the probability mass function for the binomial distribution, for 𝑞 successes given that 

there were 𝑟 independent trials with probability 𝑝 for success of each trial. 

The function 𝐻(𝑘, 𝑘𝑎, 𝑘𝑠) in the likelihood equation is the probability that, when 𝑘 of 𝑛𝑖 individuals in the 

household were infected, 𝑘𝑎 infected individuals were among the 𝑎𝑖 individuals antibody tested and 𝑘𝑠 infected 

individuals were among the 𝑠𝑖 individuals surveyed but not antibody tested:    

𝐻(𝑘, 𝑘𝑎, 𝑘𝑠) = 𝑓ℎ(𝑘𝑎; 𝑘, 𝑛𝑖 − 𝑘, 𝑎𝑖)𝑓ℎ(𝑘𝑠; 𝑘 − 𝑘𝑎, 𝑛𝑖 − 𝑘 − (𝑎𝑖 − 𝑘𝑎), 𝑠𝑖) 

The function 𝑓ℎ(𝑏; 𝑐, 𝑑, 𝑒) is the probability mass function of the hypergeometric distribution for the number 𝑏 of 

infected people selecting to be antibody-tested or surveyed-only, given that there were 𝑐 infected people and 𝑑 

uninfected people available for selection in the household, and 𝑒 people were tested or surveyed-only. These terms 

account for individuals in households who received neither an antibody test nor a survey, who may have included 

infected individuals. Our use of the hypergeometric distribution led from our assumption that, if some members of 

the household had a prior infection and others didn’t, the antibody-tested / surveyed individuals were a random 

sample from the household with respect to their prior infection status. 
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2.4 Likelihood optimization and uncertainty 

We maximized the log likelihood over the 7 unknown parameters (𝑝𝑐 , 𝑝ℎ, 𝑑ℎ, 𝜙𝑉 , 𝜙𝐴, 𝜋𝑉 , 𝜋𝐴) using the observations  

(𝑛, 𝑎, 𝑠, 𝑎𝑃𝑃 , 𝑎𝑃𝑁, 𝑎𝑁𝑃 , 𝑠𝑃) for each household, to produce the MLE: 𝜃̂ = (𝑝̂𝑐 , 𝑝̂ℎ, 𝑑̂ℎ, 𝜙̂𝑉 , 𝜙̂𝐴, 𝜋̂𝑉 , 𝜋̂𝐴). The log 

likelihood maximization was performed using the “optim” function in R. We derived approximate confidence 

interval boundaries for an individual parameter 𝜃𝑖 using the likelihood ratio test, using the statistic 

2 log(ℒ(𝜃̂) ℒ(𝜃)⁄ ), where 𝜃 consists of 𝜃𝑖 freely varying and the other 6 elements of 𝜃 held at their optimal value. 

We defined a 95% confidence interval boundary where 𝜃𝑖 produces a value for this statistic equal to the 95th 

percentile of the chi-squared distribution with 1 degree of freedom. We also plotted 2-dimensional confidence 

region boundaries for each of the 21 possible (𝜃𝑖 , 𝜃𝑗) parameter pairs by allowing each pair to vary freely together 

while holding the other 5 at their optimal values. We calculated the boundary in the (𝜃𝑖 , 𝜃𝑗) parameter plane where 

the likelihood ratio statistic equals the 95th percentile of the chi-squared distribution with 2 degrees of freedom. To 

calculate P-values at which certain fixed parameter values could be rejected in favor of the MLE, we used the chi-

squared distribution with degrees of freedom equal to the number of fixed parameters.  

Additionally, we developed a simulation model to produce synthetic data sets on which to test our likelihood model. 

We ran the simulation for the same number of households with the same sizes and participation rates for survey and 

antibody testing as in the actual data (fixed values of 𝑛, 𝑎, and 𝑠 for each household). We randomized importations 

to households and simulated transmissions using the MLE values of the three epidemiological parameters 𝑝𝑐, 𝑝ℎ, 

and 𝑑ℎ, randomized survey and antibody test results using the MLE sensitivity and specificity values, and 

maximized the likelihood against the simulated data. We repeated this process for 500 simulated data sets and 

recorded the median estimated value of each variable, for comparison against the MLE value that generated the data. 

We also used the 500 sets of simulation-based estimates as a parametric bootstrap to generate 95% confidence 

estimates for each variable, for comparison against the intervals generated from the likelihood ratio test. 

Finally, we tested an alternate model that allows the community acquisition probability to vary by household, such 

that some households may have a higher per-capita acquisition rate than others applied to each household member. 

To quantify this probability in the alternate model, we employed the beta-binomial distribution for the number of 

community acquisitions in a household of a given size (see Supplementary Methods). 
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2.5 Household transmission variability 

We quantified the implications of our household transmission variability estimates by calculating the probability of 

transmission extremes, compared to those produced by the classic binomial transmission model (𝑑ℎ = ∞). 

Specifically, we calculated the probability that an initially infected individual transmits to no one or everyone in 

households of sizes from 2 to 10. For households of size 𝑛, the probability of no transmissions from the index 

infection is 𝐹0,𝑛−1(𝑝ℎ, 𝑑ℎ) and the probability the index person transmits directly to the entire household is 

𝐹𝑛−1,𝑛−1(𝑝ℎ, 𝑑ℎ). We used our overall MLE values for 𝑝̂ℎ and 𝑑̂ℎ to calculate these values for each 𝑛, with 

confidence intervals using our parametric bootstrap results. For comparison to the binomial model we applied 𝑑ℎ =

∞, paired with the alternate MLE of 𝑝ℎ under that constraint.  

We also calculated an example of a dynamic transmission model that produces a distribution of household 

transmission probabilities close to that produced by our MLE beta distribution, using the method of moments. 

Specifically, if an infected person’s duration of infectiousness is assumed to be fixed and transmissibility to a 

housemate is modeled as a gamma distribution with shape parameter 𝑘, then we solve for the value 𝑘 that produces 

the same mean and variance for the transmission probability as that of the beta distribution with mean 𝑝ℎ and 

dispersion 𝑑ℎ (Supplementary Methods). We solved for 𝑘 using our MLE 𝑝̂ℎ and 𝑑̂ℎ values, and we derived a 

confidence interval for 𝑘 using the pairs of (𝑝ℎ, 𝑑ℎ) estimates from our parametric bootstrap analysis. 

2.6 Within-household reproduction number 

We calculated the within-household reproduction number 𝑅ℎ, defined as the expected number of household 

transmissions directly from a community acquirer with all fellow household members susceptible: 

𝑅ℎ = 𝑝ℎ(𝜇 + 𝜎
2 𝜇⁄ − 1), 

where 𝜇 and 𝜎2 are the mean and variance of the household size distribution, and 𝑝ℎ is the secondary attack rate as 

determined by our MLE. This equation for 𝑅ℎ is derived as in Ball et al. [30] and detailed in the Supplementary 

Material.  

Additionally, we derived an alternate household reproduction number 𝑅ℎ
∗  defined as the expected total number of 

transmissions in the household of an infected person who acquired infection in the community and has no initially 
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non-susceptible housemates. This differs from 𝑅ℎ in that it counts all potential downstream transmissions in the 

household stemming from the index community acquirer. The formula for 𝑅ℎ
∗ , derived in the Supplementary 

Material, is 

𝑅ℎ
∗ = ∑

(𝑖 + 1)ℎ𝑖+1
𝜇

∑𝑗𝑇1𝑗𝑖(𝑝ℎ, 𝑑ℎ)

𝑖

𝑗=1

𝑁−1

𝑖=1

, 

where ℎ𝑖 is the fraction of all households that are size 𝑖. 

To investigate the implications of household transmission for population-wide transmission control, we use a 

threshold condition delineating subcritical and supercritical transmission in the population. Supercritical 

transmission occurs when 𝑅𝑐(𝑅ℎ
∗ + 1) > 1, where 𝑅𝑐 is the average number of community (non-household) 

transmissions from an infected person. We derive this formula in the Supplementary Material, following Ball et al. 

[30]. We estimated 𝑅ℎ, 𝑅ℎ
∗ , and the threshold value for 𝑅𝑐 by applying our MLE estimates of 𝑝ℎ and 𝑑ℎ to the above 

formulas and their confidence intervals by applying the (𝑝ℎ, 𝑑ℎ) pairs from each parametric bootstrap estimate. 

3. Results 

3.1 Data summary 

We compiled data from 9,383 households (Figure 1). Of these, we retained 9,224 (98.3%) for use in the MLE. The 

159 excluded households were removed because the household size was unknown (51) or the reported household 

size was less than the number of people tested or surveyed in the house (108). In the 9,224 retained households, 

there were 28,321 (3.07 per household) reported household members, 13,998 (1.52 per household) people who were 

both surveyed and antibody tested, and another 5,249 (0.57 per household) who were surveyed but not antibody 

tested. The households in the data were located in 7 of the 29 counties in Utah; the 22 excluded counties account for 

<14% of Utah’s total population Supplementary Table S1. 

Of the 13,998 antibody tests in the retained households, 178 (1.27%) were positive. Of those 178 people with a 

positive antibody test, 58 (32.6%) reported receiving a prior positive test. Of the 19,247 people who were antibody 

tested or surveyed only, 119 (0.62%) reported receiving a prior positive test. This broke down to 0.53% (75 / 

13,998) for those who were antibody tested and 0.84% (44 / 5,249) for those who were surveyed but not antibody 

tested. The rate of testing positive for antibodies among those reporting a prior positive test was 77.3% (58 / 75). 
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The interval between the reported prior positive test date and the antibody test date did not exhibit a strong 

correlation to the fraction of testing antibody positive, other than perhaps the 3 individuals reporting a very recent 

(less than 1 week) positive test all testing negative for antibodies (Supplementary Table S2). The rate of survey 

participants agreeing to antibody testing was lower for those who reported a prior positivetest compared to those 

who did not: 63.0% (75 of 119) vs. 72.8% (13,923 of 19,128), a small but statistically significant (P < 0.01) 

difference in proportion. 

Of the retained households, 193 (2.1%) had at least one household member who either tested positive for antibodies 

or reported a prior positive test. There were 159 households with exactly 1 positive member (by either antibody test 

or reported prior test or both), 26 households with 2 positives, 6 with 3 positives, 1 with 4 positives, and 1 with 6 

positives. In all, there were 𝐶 = 273 unique 𝐲𝑖 vectors representing household data described in section 2.1. 

The crude secondary attack rate measure derived from antibody testing only (fraction of antibody-tested housemates 

of antibody-positive household members who were also antibody positive) was 14.9% (29 / 194). The crude 

secondary attack rate estimate from reported prior test data only (fraction of surveyed housemates of people 

reporting a prior positive test who also reported a prior positive test) was 23.0% (31 / 135). When combining both 

types of data, the crude secondary attack rate estimate (fraction of surveyed / tested housemates of any antibody-

positive or reported-prior-positive person who were positive by either or both measures) was 15.6% (46 / 295). 

We tallied demographic statistics of the set of surveyed individuals (Supplementary Table S3). The distribution of 

reported ages skewed older than Utah’s overall population age distribution, and females were slightly 

overrepresented (52.0%). The distribution of surveyed individuals’ race, Hispanic origin, and education level also 

differed from the overall Utah and U.S. distributions.  

3.2 Maximum likelihood estimates 

Our MLE procedure produced simultaneous estimates for all 7 parameters (Table 1). The MLE for 𝑝𝑐, the per-

person community acquisition probability from outside the household, was 0.41% (0.32% – 0.51%). For within 

household transmission probability, the MLE produced an average secondary attack rate estimate 𝑝ℎ = 36% (27% – 

48%). The MLE for the dispersion parameter 𝑑ℎ, quantifying variability in transmissibility by person, was 0.43 
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(0.02 – 2.0). The boundary case 𝑑ℎ = ∞, representing the classic binomial household transmission model with no 

variability in individual infectiousness [27], could be rejected with P = 0.001 (Table 2). 

Our MLE result for 𝜙𝑉, the probability that a surveyed person with a prior infection reported a prior positive test, 

was 72% (62% – 82%). The 𝜙𝑉 value can be interpreted as the case ascertainment fraction, i.e. fraction of 

individuals with SARS-CoV infections who were identified with a positive test during their infection. Our result 

may be high compared to other areas of the U.S.: one study estimated that less than 60% of symptomatic cases in the 

U.S. were identified during February-June 2020 [31]. Our finding may reflect unusually successful case 

ascertainment efforts in Utah during the Spring and early Summer of 2020, perhaps partly owing to slower 

emergence compared to other regions. 

For 𝜋𝑉, the probability that a surveyed person with no prior infection reported no prior positive test, the MLE was 

99.94% (99.88% – 99.98%). This result is consistent with the low probability of false positives among viral tests, 

which to our knowledge were exclusively PCR-based in Utah prior to our data collection. It is possible that some 

false positives in our survey data occurred by erroneous reporting, i.e. survey respondents reporting a prior positive 

test that did not occur, rather than via errors in testing procedure. Even though our MLE for this parameter was in 

excess of 99.9%, we found that an alternate model assuming 𝜋𝑉 = 100% produced notably different estimates of 

some of the other parameters (Table 2), which suggests that studies producing epidemiological estimates relying on 

a 100% viral test specificity assumption should test robustness of conclusions to small deviations from that 

assumption.  For 𝜙𝐴, the probability that a prior-infected person’s antibody test was positive, the MLE was 86% 

(75% – 93%), a result that is similar to the test manufacturer’s finding that 109 of 122 (89%) PCR-positive subjects 

were positive for antibodies [32]. However, the manufacturer’s results included only symptomatic subjects and were 

highly dependent on the number of days post-symptom onset at which the serological sample was taken. Because 

the symptom histories of the antibody-tested people in our data are largely uncertain, it is difficult to determine how 

consistent our result is with the manufacturer’s data. 

For 𝜋𝐴, the probability that an antibody-tested person with no prior infection tested negative for antibodies was 

99.3% (99.2% – 99.5%), which is within the uncertainty range of the test manufacturer’s estimate of 99.6% (99.0% 

– 99.9%) based on 4 positive tests from 997 samples collected prior to September 2019 [32]. When instead 

assuming the manufacturer’s point specificity estimate of 99.6% directly, our estimates of the other parameters 
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changed modestly (Table 2). When we ran our MLE under the assumption of perfect specificity (no false positives) 

for the antibody test (𝜋𝐴 = 100%), the result for secondary attack rate reduced from 36% to 18%, which is closer to 

the crude estimate described in Section 3.1, and the results for community acquisition probability increased from 

0.4% to 1.2% (Table 2). Thus, our model suggests that allowing for false positives can shift the attribution of 

infections toward household transmissions and away from acquisitions outside the household. We also found that 

assuming perfect specificity of the antibody test dramatically reduced the estimate of 𝜙𝑉 from 72% to 37% (Table 

2), which suggests that ignoring false positives in serology data could cause an underestimate of the case 

ascertainment rate if the serology data are used for that purpose. 

When optimizing the likelihood equation against 500 synthetic data sets simulated using the MLE variable 

assumptions, the median estimates of each parameter were very close to the MLE values (Table 1). The confidence 

intervals derived from these bootstrap estimates were similar to those derived from the likelihood ratio test, though 

the bootstrap intervals were somewhat wider for the three parameters governing importation and transmission. 

Likewise, the likelihood ratio-based intervals reported in Table 1 expanded modestly when we calculated 2-

dimensional confidence regions based on each pair of estimated parameters, with most regions exhibiting close to 

symmetric shapes around the MLE (Supplemental Figures). Notably, the 95% confidence regions involving the 

transmission dispersion parameter 𝑑ℎ can extend to the high-variability boundary 𝑑ℎ = 0, a result that is also 

reflected by the fact that the MLE for the model with fixed 𝑑ℎ = 0 cannot be rejected with high confidence (P = 

0.16) (Table 2).  

Our alternate model that employed a beta-binomial distribution for the number of household acquisitions, using a 

new dispersion parameter 𝑑𝑐 estimated as an additional variable in the MLE, found 𝑑𝑐 = 2.1 (0.89 – 7.5), with 

somewhat altered estimates of the other parameters (Table S4) compared to those in Table 1. However, the log 

likelihood of the model in Table 1, which is equivalent to the alternate model with 𝑑𝑐 = ∞, is sufficiently close to 

that of the alternate model that 𝑑𝑐 = ∞ cannot be rejected by the likelihood ratio test and is favored by the Bayesian 

information criterion. However, if overdispersion in household community acquisitions does occur, the uncertainty 

ranges of the transmission variables 𝑝ℎ and 𝑑ℎ become large (see Supplementary Results). 

3.3 Household transmission variability 
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We quantified the implications of our key finding of high transmission variability within households of persons 

infected with COVID-19 by calculating the probability of transmission extremes. Compared to our overall MLE, the 

classic binomial transmission model (𝑑ℎ = ∞) produced a similar average secondary attack rate estimate of 𝑝ℎ = 

32% (24% – 41%). However, the binomial model produces substantially lower probabilities that an infected 

individual transmits to no one or everyone in larger households (Table 3).  

For example, our MLE model estimates that an infected member of an 8-member household would have a 46% 

(22% – 70%) chance of transmitting to no one, but a 20% (3% – 50%) chance of transmitting infection directly to all 

7 housemates. By contrast, the no-variability binomial model estimate would be substantially lower for each 

extreme: 7% (3% – 14%) chance of transmitting to no one and 0.03% (0.005% – 0.2%) chance of transmitting to 

everyone (Table 3). 

We calculated an example of a dynamic transmission model that would produce the same mean and variance of a 

person’s transmission probability to a household member that is produced by our MLE beta distribution. If an 

infected person’s duration of infectiousness is assumed to be fixed and transmissibility to a housemate is modeled as 

a gamma distribution with shape 𝑘, then 𝑘 = 0.18 (95% CI 0 – 0.7) when the mean and variance are matched, 

regardless of the infectious duration (Supplementary Methods). This estimate of 𝑘 is comparable to the dispersion 

parameter 𝑘 of the negative binomial distribution commonly used to characterize overall variability in the number of 

transmissions from individuals, which can be derived from the Poisson distribution with a mean that is gamma-

distributed with shape parameter 𝑘 [17]. Our estimate of 𝑘 is similar to point estimates for SARS-CoV-2 of 𝑘 = 0.1 

[22], 𝑘 = 0.25 [23], and 𝑘 = 0.33 [24]. 

3.4 Within-household reproduction numbers 

Our estimate of the household reproduction number 𝑅ℎ, the expected number of household transmissions from a 

community acquirer with no other infected fellow household members, depends on our estimate of 𝑝ℎ and the mean 

𝜇 and variance 𝜎2 of the household size distribution. From our data we found 𝜇 = 3.07 and 𝜎2 = 3.12, so our 

estimate is 𝑅ℎ = 1.12 (0.78 – 1.56). Our estimate of the alternate household reproduction number 𝑅ℎ
∗ , the expected 

total number of transmissions in the household of a community acquirer, is 𝑅ℎ
∗ = 1.45 (0.94 – 2.05). 
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The supercritical threshold for 𝑅𝑐, the average number of non-household transmissions by an infected individual, is 

approximated by 1 (𝑅ℎ
∗ + 1)⁄  (see Methods section 2.6 and Supplementary Material). Using our estimate for 𝑅ℎ

∗  in 

Utah, this formula suggests that 𝑅𝑐 must be kept below approximately 0.41 (0.33 – 0.52) to avoid increasing growth 

of COVID-19 infections in the population. 

4. Discussion 

The key findings of our analyses stem from our simultaneous estimation of the average and variability of SARS-

CoV-2 household transmission, household importation, and test data accuracy. Our novel combination of those 

interacting features within our model revealed two important epidemiological insights. First, we found that 

accounting for test error, especially the specificity of the serological antibody test, produced a substantially higher 

estimate for the household secondary attack rate. Second, we found evidence of substantial variability of 

transmissibility within households, which has important implications for understanding broad transmission patterns 

and mitigation strategies.  

An important implication of the first finding is that assuming perfect test accuracy may be a source of 

underestimation for the household secondary attack rate in other studies. Our maximum likelihood estimate was 

35% (27% – 48%), which is higher than recent pooled estimates of 17–19% from the most recent meta-analyses of 

worldwide household studies [7, 8]. These and other published studies have generally estimated the secondary attack 

rate by a simple calculation of the fraction of tests that were positive among household contacts of known cases. 

When we applied that calculation to our combined data, we found a crude secondary attack rate estimate of 15.6%. 

We traced the major source of this substantial underestimate to the assumption of perfect test specificity inherent in 

the crude formula.  

[32]Our second major finding of overdispersion of household transmission stemmed from our use of the beta-

binomial distribution to quantify the number of household transmissions from infected individuals. We quantified 

individual-level variability in transmissibility using a dispersion parameter 𝑑ℎ, and the optimal value occurred at low 

dispersion (high variability; 𝑑ℎ = 0.43). The more commonly used binomial model, a special case of our model at 

minimal variability (𝑑ℎ → ∞), was rejected, suggesting that transmission patterns are not well captured by that 

simplifying assumption.  
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Our dispersion parameter estimate is not directly comparable to another commonly used dispersion parameter, often 

named 𝑘, that characterizes variability in the total number of transmissions (whether household or not) from each 

infected person as a parameter of the negative binomial distribution [17]. We  converted 𝑑ℎ to 𝑘 in the context of 

simple model in which the only source of variability is a person’s transmissibility per unit time in contact with 

others, finding 𝑘 = 0.18, similar to other published results for SARS-CoV-2. This similarity perhaps suggests that 

variability in infectivity per time is a major driver of overall transmission variability for SARS-CoV-2. This could 

be consistent with findings that viral shedding is highly variable by individuals with SARS-CoV-2 infections, both 

during asymptomatic and symptomatic phases of disease, suggesting that heterogeneous transmissibility may be 

largely explained by overdispersion in levels of viral shedding by individuals [33]. However, other studies suggest 

that SARS-CoV-2 transmission overdispersion in the wider population beyond households may be less driven by 

biological heterogeneity and more by heterogeneous social contact behavior [34]. 

The level of within-household transmission variability captured by the parameter 𝑑ℎ affects the contribution of 

household transmission toward threshold levels of overall transmission. Threshold conditions are often expressed 

using a reproduction number (𝑅), the average number of transmissions from each infected person. The average 

number of household transmissions directly from an initially infected household member (𝑅ℎ) is independent of 𝑑ℎ, 

but 𝑑ℎ does affect the average number of household transmissions in the next generation, i.e. by someone who 

acquired infection from a housemate. When transmission variability is higher, the household transmission potential 

of a household acquirer is lower, reducing to zero in the “all-or-nothing” limit 𝑑ℎ = 0. To capture this effect, we 

introduced an alternate reproduction number 𝑅ℎ
∗ , which is the average number of total household transmissions after 

the initial introduction, when final household outbreak size has been reached. 

Neither 𝑅ℎ > 1 nor 𝑅ℎ
∗ > 1 are sufficient threshold conditions for sustained transmission in a community, which 

requires some level of between-household transmission to be maintained. Given our estimate of 𝑅ℎ
∗ = 1.45 (0.94 – 

2.05), we can estimate the critical value of 𝑅𝑐, the average number of non-household community transmission that 

would push transmission for the population above the supercritical threshold for a growing epidemic, with the 

threshold condition 𝑅𝑐 > 1 (𝑅ℎ
∗ + 1)⁄ . Thus, we estimate that 𝑅𝑐 must be kept below approximately 0.41 (0.33 – 

0.52) to avoid continued case growth in Utah if household transmission continues to be well characterized by our 

model. As this result depended on the average household size in our data, it is notable that Utah has the highest 
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state-average household size in the United States. The average household size in Utah is 3.1, about 20% higher than 

the national average household size. Thus, our 𝑅ℎ estimate may be high compared to other locations. A lower value 

of 𝑅ℎ would lead to a higher threshold value for 𝑅𝑐.The potential contribution of interventions to reduce household 

transmission may also be important. Using the terms defined above, if 𝑅𝑐 < 1 but 𝑅𝑐(𝑅ℎ
∗ + 1) > 1, then overall 

transmission is above-threshold but could be pushed below-threshold by reducing household transmission alone, 

such that 𝑅ℎ
∗ < 1 𝑅𝑐⁄ − 1. Methods to reduce household transmission might include increased used of at-home 

testing to earlier detect potential asymptomatic or pre-symptomatic transmitters, paired with increased use of masks, 

disinfectants, and/or distancing within homes of an infectious person [35].  [32][31] 

This study has several limitations. Our estimate of high household transmission variability may not be robust to 

alternate assumptions for the way community acquisition risk varies by household. For example, some households 

could have been comprised of families with both parents working essential jobs during Spring/Summer 2020, with 

children attending in-person day care or camps, thus placing the entire household at much higher risk of community 

acquisition compared to households working / caring for children at home. Also, households could have high 

collective community acquisition probability via attending multi-household gatherings of extended family or other 

social groups. In these ways, households conceivably could vary considerably in their infection numbers for reasons 

that don’t involve within-household transmission.  

We tested the implications of this alternate possibility for household variability in our model by allowing variability 

in community acquisition by household using an additional dispersion parameter to the MLE model (Supplementary 

Results). Interestingly, the MLE for the transmission dispersion parameter 𝑑ℎ still occurred at high variability in 

household transmission (𝑑̂ℎ = 0.21) under this alternate model. Furthermore, the improvement in likelihood was not 

substantial, such that the more complicated model would not be favored by the likelihood ratio test nor the Bayesian 

information criterion. However, larger uncertainty ranges under the alternate model suggest that we may not be able 

to definitively rule out the possibility that variability in community acquisition risk by household plays a substantial 

role in explaining overall variability in household infection numbers. 

It is also possible that household transmission variability could be driven by properties of households such as contact 

behavior, underlying health composition of household members, physical properties of the domicile such as size and 

ventilation, or other properties that could increase transmission risk of all household members together. Possible 
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variability in person-to-person transmission probability by household, rather than by individual, is not accounted for 

in our model. Using a beta distribution for this probability across different households to arrive at an alternate final 

size distribution would require integrating the beta distribution over the full final size distribution equations 

produced by the binomial-chain model, which would be complicated for larger households. Alternatively, one could 

model a functional relationship between observed properties of a household in the dataset and its average 

transmission probability, while retaining dispersion occurring at the individual level. We have not attempted this 

with our data; we suspect that the sample size of outbreaks in households with a given feature would not be large 

enough to draw meaningful conclusions, but this could be an important direction of future work enhanced by a 

larger dataset.  

Another limitation lies in our potentially inaccurate assumptions used to quantify the probability of prior infections 

among those with missing data within participating households. Most non-participating individuals within 

participating households were children under 12, who were not offered antibody tests. Older participants could fill 

out surveys on behalf of children of any age, including reporting of prior positive tests, but participation in that 

option was low. Thus, our assumption that non-participants had equal community acquisition rates, susceptibility to 

acquisition from another household member, and transmissibility to other household members compared to study 

participants would be violated if children were substantially different from adults in one or more of those quantities. 

Our assumption is consistent with studies finding similar transmission rates to and from children compared to adults. 

In a study of COVID-19 clusters linked to day care centers within our study area in Utah [36], 42% of the cases 

occurred in children, who represented 60% of the people with epidemiological contacts to the facilities. The infected 

children (median age 7) transmitted infection to at least 26% of their non-facility contacts, close to our household 

estimate. Another study found that children under 10 in China were as likely to be infected as adults [37]. However, 

other studies suggest that children may be less likely to acquire infection than adults [38], and one study found very 

low household secondary attack from infected children in South Korea [39]. A study similar to ours found lower 

rates of importation and household acquisition among children aged 5-9 compared to older groups, although 

confidence intervals overlapped [15]. If substantial differences existed between children under 12 and our study 

participants, one or more of our estimates could be biased. 
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In addition, many eligible participants older than 12 chose not to participate, either declining the serological 

antibody test only (but still filling out a survey) or declining to participate at all. Comparing full participants to 

survey-only participants, we found that participants reporting a prior positive SARS-CoV-2 test were less likely to 

agree to antibody testing, though the difference was not large (63.0% vs. 72.8%). It is unknown whether a prior 

confirmed or suspected infection affected eligible household members’ decision to agree or decline to fill out a 

survey. The full set of surveyed participants had different distributions of reported age, sex, race, Hispanic origin, 

and education level compared to the wider population, and future work could assess the implications of those 

differences for extrapolating COVID-19 risk to other households.  

We also have not adjusted for potential biases related to non-participation rates of entire households that were 

selected and approached for inclusion in the study. Our data collection included a complicated sampling design 

across several different strata, and weights were introduced partly to account for different rates of nonresponse 

across the different strata. For simplicity we ignored these details and sampling weights for the analysis presented 

here. Also, while the 7 included Utah counties represent >86% of the state population, there may be important 

differences in households from the 22 excluded counties. Thus, households with higher COVID-19 risk may be 

overrepresented or underrepresented in our data relative to their frequency in the broader population of households 

in Utah.  

Although these potential limitations, which also exist for other analyses of household transmission from serological 

data [13-15], remain in our analysis, we believe our model has addressed other limitations of existing models that 

may be more substantial. Our improvements to household secondary attack rate estimates, including factoring out 

non-household community acquisitions and tertiary transmissions, inclusion of overdispersion estimates, and careful 

consideration of the impact of imperfect test sensitivity and specificity, have produced improved insights into this 

important measure. While the likelihood equations resulting from our model are somewhat complicated, we have 

provided full mathematical specification and computational code for reproducibility. The ability to explicitly 

calculate the likelihood for our model is an advantage for optimization speed and further mathematical analysis, and 

extensions to the epidemiological household model can readily be simulated to explore potential improvements.    

In conclusion, we found evidence of a relatively high secondary attack rate and high overdispersion in transmission 

of SARS-COV-2 in Utah households during a time when overall community prevalence was low. Other published 
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household secondary attack rates may be underestimated without accounting for imperfect test sensitivity and 

specificity. Controllability of the virus may depend on mitigating transmission from a minority of highly infectious 

individuals in large households and other household-like locations where several people congregate indoors for 

extended periods. 
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Figure 1. Data summary flowchart. 

 

Flow diagram for data from participating households and household members 
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Table 1. Maximum likelihood estimates 

Value MLE (95% CI) Parametric bootstrap: 

median (95% range) 

Mean community acquisition probability (𝑝𝑐) 0.41% (0.32% – 0.51%)  0.41% (0.30% – 0.55%)  

Mean per-capita household transmission probability (𝑝ℎ) 36% (27% – 48%) 36% (25% – 51%) 

Per-capita household transmission dispersion (𝑑ℎ) 0.43 (0.02 – 2.0) 0.38 (0 – 2.2) 

Probability infected person reported a prior positive test (𝜙𝑉) 72% (62% – 82%) 72% (63% – 82%) 

Probability infected person tested positive for antibodies (𝜙𝐴) 86% (75% – 93%) 86% (77% – 95%) 

Probability uninfected person did not report a prior positive test (𝜋𝑉) 99.94% (99.88% – 99.98%) 99.94% (99.87% – 99.99%) 

Probability uninfected person tested negative for antibodies (𝜋𝐴) 99.3% (99.2% – 99.5%) 99.3% (99.2% – 99.5%) 

Confidence intervals for MLE derived from the likelihood ratio test, varying each individual parameter while fixing other parameters at their 

MLE values. Parametric bootstrap was based on MLE fits to 500 different synthetic data sets generated from stochastic simulations using the 

MLE parameter values.  

 

Table 2. Comparison of MLE for alternate models 

Fixed values 𝑝̂𝑐 𝑝̂ℎ 𝑑̂ℎ 𝜙̂𝑉 𝜙̂𝐴 𝜋̂𝑉 𝜋̂𝐴 Log 

likelihood 

Rejection 

P value 

None 0.408% 36.3% 0.434 72.4% 85.6% 99.94% 99.3% −1173.84 - 

𝑑ℎ = 0  0.443% 41.3% 0* 68.4% 80.3% 99.95% 99.3% −1174.85 0.16 

𝑑ℎ = ∞  0.340% 31.9% ∞* 75.6% 89.0% 99.91% 99.3% −1179.30 0.00096 

𝜋𝑣 = 100% 0.508% 33.7% 0.161 69.9% 76.9% 100%* 99.3% −1176.01 0.037 

𝜋𝑎 = 99.6%  0.569% 30.7% 0.208 59.9% 82.7% 99.96% 99.6%* −1181.08 0.00014 

𝜋𝑎 = 100%  1.24% 17.6% 0.0217 36.6% 78.4% 100% 100%* −1201.26 <0.0001 

*Values that were fixed for the model in that row; other values were optimized by MLE. P values were derived from the likelihood ratio test, 

compared to the likelihood of the overall MLE in the top row (twice the difference in log likelihood compared to the chi-squared distribution with 

one degree of freedom).  
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Table 3. Effect of transmission overdispersion on probability that first infected person transmits to no one or 

everyone in the household 

Household 

size 

Transmit to none: overall 

model MLE (95% CI) 

Transmit to none: binomial 

model MLE (95% CI) 

Transmit to all: overall 

model MLE (95% CI) 

Transmit to all: binomial 

model MLE (95% CI) 

2 64% (49% – 75%) 68% (59% – 76%) 36% (25% – 51%) 32% (24% – 41%) 

3 57% (42% – 71%) 46% (35% – 57%) 29% (14% – 49%) 10% (6% – 17%) 

4 53% (34% – 69%) 32% (21% – 43%) 26% (9% – 49%) 3% (1% – 7%) 

5 51% (30% – 69%) 22% (12% – 33%) 24% (6% – 50%) 1% (0.3% – 3%) 

6 49% (26% – 69%) 15% (7% – 25%) 22% (5% – 50%) 0.3% (0.08% – 1%) 

7 47% (24% – 69%) 10% (4% – 19%) 21% (3% – 50%) 0.1% (0.02% – 0.5%) 

8 46% (22% – 70%) 7% (3% – 14%) 20% (3% – 50%) 0.03% (0.005% – 0.2%) 

9 45% (20% – 70%) 5% (2% – 11%) 20% (2% – 50%) 0.01% (0.001% – 0.08%) 

10 44% (19% – 70%) 3% (0.9% – 8%) 19% (2% – 51%) 0.003% (0.0003% – 0.03%) 

Probabilities in this table are for a single infected household member transmitting directly to no one or everyone else in the household. The 

“transmit to all” values do not include the probability of multiple-generation transmission chains that eventually infect all household members. 

Confidence intervals for the overall MLE-based estimates were derived from applying (𝑝ℎ, 𝑑ℎ) pairs from our parametric bootstrap analysis to the 

beta-binomial transmission equations. 
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Supplementary material for “High variability in transmission of SARS-CoV-2 within households and 

implications for control,” authored by Damon J.A. Toth et al. 

Supplemental Methods 

Survey data 

Answers to the following questions for individual household members were used in our analysis: 

1) “Have you ever been tested for coronavirus (also called SARS-CoV-2 or COVID-19)?” (Yes or No) 

If the answer to 1) was Yes, the following two questions were asked: 

2) What was the result? (Positive; Negative; Have not received test result; or Don’t know) 

3) When were you tested? (MM/DD/YYYY) 

All individuals who answered “Yes” to question 1 and “Positive” to question 2 were classified as “reported a prior 

positive test,” and all other surveyed individuals were classified as “did not report a prior positive test,” as described 

in the main text. For individuals who reported a prior positive test and also received an antibody test, we used the 

answer to question 3, compared to the collection date of serology, to construct Table S2. 

Alternate model with variability in household importation 

For the alternate model, the formula for 𝑀𝑘𝑛 for a given household size 𝑛 ≥ 2 becomes 

𝑀𝑘𝑛(𝑝𝑐 , 𝑑𝑐 , 𝑝ℎ, 𝑑ℎ) =

{
  
 

  
 

𝐹0𝑛(𝑝𝑐 , 𝑑𝑐), 𝑘 = 0

∑𝐹𝑖𝑛(𝑝𝑐 , 𝑑𝑐)𝑇𝑖,𝑘−𝑖,𝑛−𝑖(𝑝ℎ, 𝑑ℎ)

𝑘

𝑖=1

, 𝑘 = 1,… , 𝑛 − 1

1 −∑𝑀𝑘𝑛(𝑝𝑐 , 𝑑𝑐 , 𝑝ℎ, 𝑑ℎ)

𝑛−1

𝑘=0

, 𝑘 = 𝑛

 

For households of size 𝑛 = 1, 𝑀01(𝑝𝑐 , 𝑑𝑐) = 𝐹01(𝑝𝑐 , 𝑑𝑐) and 𝑀11(𝑝𝑐 , 𝑑𝑐 , ) = 1 − 𝐹01(𝑝𝑐 , 𝑑𝑐). The function 

𝐹𝑦𝑧(𝑝, 𝑑) is defined in the main text (probability mass function of the beta-binomial distribution with boundary case 

definitions at 𝑑 = 0 and 𝑑 → ∞), where in this case 𝑦 is the number of community acquisitions and 𝑧 is the total 

number of household members. The main-text model is a special case of this alternate model, with 𝑑𝑐 → ∞. 
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The likelihood equation is the same as in the main text, but with the additional element 𝑑𝑐 in the vector 𝛉 of 

variables to be optimized: 

𝛉 = (𝑝𝑐 , 𝑑𝑐 , 𝑝ℎ, 𝑑ℎ, 𝜙𝑉 , 𝜙𝐴, 𝜋𝑉 , 𝜋𝐴) 

 and 𝑀𝑘𝑛(𝑝𝑐 , 𝑝ℎ, 𝑑ℎ) in the likelihood equation is replaced with 𝑀𝑘𝑛(𝑝𝑐 , 𝑑𝑐 , 𝑝ℎ, 𝑑ℎ) as defined above. 

We found the MLE and single-parameter confidence intervals using the same procedure described in the main text, 

and further assessed uncertainty of 𝑑ℎ by solving for the MLE of the other 7 variables when fixing it at its boundary 

values 0 and ∞. We also compared the likelihood at the MLE of the alternate model to that of the main text model 

using the likelihood ratio test, to determine whether the main text model result could be rejected in favor of the 

alternate model by this criterion. As an additional comparison, we used the Bayesian information criterion to score 

the alternate model against the main text model, using 9224 as the number of data points (number of households) 

and 7 and 8 as the number of parameters for the main-text model and alternate model, respectively. 

Beta-binomial distribution at limits of dispersion parameter: 𝒅 → ∞ and 𝒅 → 𝟎 

Our likelihood equations make use of the beta-binomial probability distribution, parameterized with an average 

probability 𝑝 and a dispersion parameter 𝑑. The probability mass function 𝐹 for positive, finite values of 𝑑 is 

𝐹𝑦𝑧(𝑝, 𝑑) = (
𝑧
𝑦)
B(𝑦 + 𝑑𝑝, 𝑧 − 𝑦 + 𝑑(1 − 𝑝))

B(𝑑𝑝, 𝑑(1 − 𝑝))
, 𝑦 = 0,1, … , 𝑧  

We use 𝐹𝑦𝑧(𝑝, 𝑑) to quantify the distribution of household transmissions directly from a single infected household 

member, where 𝑦 is the number of transmissions, 𝑧 is the number of susceptible household members, 𝑝 = 𝑝ℎ, and 

𝑑 = 𝑑ℎ. In our alternate model we also use 𝐹𝑦𝑧(𝑝, 𝑑) to quantify the distribution of community acquisitions among 

members of a household from non-household members, where 𝑦 is the number of community acquisitions, 𝑧 is the 

total number of household members, 𝑝 = 𝑝𝑐, and 𝑑 = 𝑑𝑐. 

Here, we derive the formula for 𝐹𝑦𝑧(𝑝, 𝑑) at the boundaries of the range of possible values for 𝑑: 𝑑 → ∞ and 𝑑 → 0. 

To do this, we rewrite 𝐹𝑦𝑧(𝑝, 𝑑) in an alternate form. First, using the property B(𝑥, 𝑦) = Γ(𝑥)Γ(𝑦) Γ(𝑥 + 𝑦)⁄ : 

𝐹𝑦𝑧(𝑝, 𝑑) = (
𝑧
𝑦)

Γ(𝑑)

Γ(𝑧 + 𝑑)

Γ(𝑦 + 𝑑𝑝)

Γ(𝑑𝑝)

Γ(𝑧 − 𝑦 + 𝑑(1 − 𝑝))

Γ(𝑑(1 − 𝑝))
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Then using the property, for positive integer 𝑛, Γ(𝑧 + 𝑛) = 𝑧(𝑧 + 1)⋯(𝑧 + 𝑛 − 1)Γ(𝑧): 

𝐹𝑦𝑧(𝑝, 𝑑) =

{
  
 

  
 

(
𝑧
𝑦)

𝑑(1 − 𝑝)(𝑑(1 − 𝑝) + 1)⋯ (𝑑(1 − 𝑝) + 𝑧 − 1)

𝑑(𝑑 + 1)⋯(𝑑 + 𝑧 − 1)
𝑦 = 0

[𝑑𝑝(𝑑𝑝 + 1)⋯ (𝑑𝑝 + 𝑦 − 1)][𝑑(1 − 𝑝)(𝑑(1 − 𝑝) + 1)⋯ (𝑑(1 − 𝑝) + 𝑧 − 𝑦 − 1)]

𝑑(𝑑 + 1)⋯(𝑑 + 𝑧 − 1)
0 < 𝑦 < 𝑧

𝑑𝑝(𝑑𝑝 + 1)⋯(𝑑𝑝 + 𝑧 − 1)

𝑑(𝑑 + 1)⋯(𝑑 + 𝑧 − 1)
𝑦 = 𝑧

 

In the following we rewrite the numerators and denominators in powers of 𝑑. Only the lowest and highest powers of 

𝑑 will matter for taking the limits that follow, so the other terms within “⋯” are not shown. 

𝐹𝑦𝑧(𝑝, 𝑑) =

{
  
 

  
 

(
𝑧
𝑦)

(1 − 𝑝)(𝑧 − 1)! 𝑑 + ⋯+ (1 − 𝑝)𝑧𝑑𝑧

(𝑧 − 1)! 𝑑 + ⋯+ 𝑑𝑧
𝑦 = 0

𝑝(1 − 𝑝)(𝑦 − 1)! (𝑧 − 𝑦 − 1)! 𝑑2 +⋯+ 𝑝𝑦(1 − 𝑝)𝑧−𝑦𝑑𝑧

(𝑧 − 1)! 𝑑 + ⋯+ 𝑑𝑧
0 < 𝑦 < 𝑧

𝑝(𝑧 − 1)! 𝑑 + ⋯+ 𝑝𝑧𝑑𝑧

(𝑧 − 1)! 𝑑 + ⋯+ 𝑑𝑧
𝑦 = 𝑧

 

When taking the limit 𝑑 → ∞, we note that each fraction has highest order 𝑑𝑧 in both numerator and denominator, 

so the limit will be the ratio of the coefficients of that term: 

lim
𝑑→∞

(
𝑧

𝑦)
B(𝑦 + 𝑑𝑝, 𝑧 − 𝑦 + 𝑑(1 − 𝑝))

B(𝑑𝑝, 𝑑(1 − 𝑝))
= (

𝑧

𝑦) 𝑝
𝑦(1 − 𝑝)𝑧−𝑦 

When taking the limit 𝑑 → 0, we note that the fraction for cases 𝑦 = 0 and 𝑦 = 𝑧 have lowest order term 𝑑 in both 

the numerator and denominator, so the limit will be the ratio of the coefficients on those terms. The fraction for the 

0 < 𝑦 < 𝑧 case has only powers of 𝑑2 and higher in the numerator, and a nonzero 𝑑 term in the denominator, so the 

limit is 0: 

lim
𝑑→0

(
𝑧
𝑦)
B(𝑦 + 𝑑𝑝, 𝑧 − 𝑦 + 𝑑(1 − 𝑝))

B(𝑑𝑝, 𝑑(1 − 𝑝))
= {
1 − 𝑝, 𝑦 = 0
0, 0 < 𝑦 < 𝑧
𝑝, 𝑦 = 𝑧

 

Direct transmission probabilities 𝑯𝒙𝒚𝒛 

Here we derive the formulae for 𝐻𝑥𝑦𝑧: the probability of 𝑦 transmissions to 𝑧 susceptible household members 

directly from 𝑥 infected members 
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As described in the main text, we first define the probabilities for transmissions directly from 𝑥 = 1 infected 

household member: 

𝐻1𝑦𝑧 = 𝐹𝑦𝑧(𝑝ℎ, 𝑑ℎ) =

{
 
 
 

 
 
 {

1 − 𝑝ℎ, 𝑦 = 0
0, 0 < 𝑦 < 𝑧
𝑝ℎ, 𝑦 = 𝑧

, 𝑑ℎ = 0

(
𝑧
𝑦)
B(𝑦 + 𝑑ℎ𝑝ℎ, 𝑧 − 𝑦 + 𝑑ℎ(1 − 𝑝ℎ))

B(𝑑ℎ𝑝ℎ, 𝑑ℎ(1 − 𝑝ℎ))
, 0 < 𝑑ℎ < ∞

(
𝑧
𝑦) 𝑝ℎ

𝑦(1 − 𝑝ℎ)
𝑧−𝑦, 𝑑ℎ = ∞

 

Next consider 𝑥 = 2 infected household members. The probability that 𝑦 = 0 transmissions occur is the probability 

that both infected members transmit to 0 others: 𝐻20𝑧 = 𝐻10𝑧𝐻10𝑧. To calculate the probability that 𝑦 > 0 

transmissions occur from the two infected members, it is convenient to consider the two infected individuals having 

transmission opportunities in sequence, say A followed by B. If A transmits to any household members, this reduces 

the number of susceptible members remaining for B to infect. For example, the probability that 𝑦 = 1 is the 

probability that A transmits to 0 of 𝑧 and B transmits to 1 of 𝑧, plus the probability that A transmits to 1 of 𝑧 and B 

transmits to 0 of 𝑧 − 1 remaining susceptible members: 𝐻21𝑧 = 𝐻10𝑧𝐻11𝑧 + 𝐻11𝑧𝐻1,0,𝑧−1. The calculation follows a 

similar pattern for 𝑦 = 2: 𝐻22𝑧 = 𝐻10𝑧𝐻12𝑧 +𝐻11𝑧𝐻1,1,𝑧−1 +𝐻12𝑧𝐻1,0,𝑧−2. It follows that: 

𝐻2𝑦𝑧 =∑𝐻1𝑖𝑧𝐻1,𝑦−𝑖,𝑧−𝑖

𝑦

𝑖=0

 

Now for 𝑥 = 3 infected household members, we can use the fact that we have already calculated 𝐻2𝑦𝑧, which covers 

the transmission probabilities from two of the three infected members, and then we include the probability that third 

member transmits to any remaining susceptible members that the first two did not infect: 

𝐻3𝑦𝑧 =∑𝐻2𝑖𝑧𝐻1,𝑦−𝑖,𝑧−𝑖

𝑦

𝑖=0

 

Following this pattern, we continue calculating 𝐻𝑥𝑦𝑧 for each 𝑥 in increasing sequence: 

𝐻𝑥𝑦𝑧 =∑𝐻𝑥−1,𝑖,𝑧𝐻1,𝑦−𝑖,𝑧−𝑖

𝑦

𝑖=0

 

Total transmission probabilities 𝑻𝒙𝒚𝒛 
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Here we derive the formulae for 𝑇𝑥𝑦𝑧: the probability of 𝑦 total transmissions to 𝑧 initially susceptible members 

from 𝑥 initially infected members. In other words, 𝑇𝑥𝑦𝑧 is the probability that the final household outbreak size is 

𝑥 + 𝑦, given that 𝑥 household members were initially infected and 𝑧 household members were initially susceptible. 

First, we note that 𝑇𝑥0𝑧 = 𝐻𝑥0𝑧 for all possible (𝑥, 𝑧) pairs, because if the initial 𝑥 infected members do not transmit 

to anyone (𝑦 = 0), the household outbreak is over and the final size has been reached. Next we consider the 

probability of 𝑦 = 1 total transmissions, which occurs when the initial 𝑥 infected members transmit directly to 1 

other (with probability 𝐻𝑥1𝑧), who then does not subsequently transmit to any of the remaining 𝑧 − 1 susceptible 

members (with probability 𝐻1,0,𝑧−1 = 𝑇1,0,𝑧−1). Hence, 

𝑇𝑥1𝑧 = 𝐻𝑥1𝑧𝑇1,0,𝑧−1 

For 𝑦 = 2 total transmissions, we must include the probability that the initial 𝑥 infected members transmit directly to 

2 others who then transmit to none and the probability that the initial 𝑥 infected members transmit directly to 1 other 

who then produces an outbreak among the remaining susceptible members with 1 total transmission: 

𝑇𝑥2𝑧 = 𝐻𝑥2𝑧𝑇2,0,𝑧−2 +𝐻𝑥1𝑧𝑇1,1,𝑧−1 

Following similar logic for 𝑦 = 3, and making use of the 𝑇𝑥0𝑧, 𝑇𝑥1𝑧, and 𝑇𝑥2𝑧 values already calculated, we arrive at: 

𝑇𝑥3𝑧 = 𝐻𝑥3𝑧𝑇3,0,𝑧−3 +𝐻𝑥2𝑧𝑇2,1,𝑧−2 + 𝐻𝑥1𝑧𝑇1,2,𝑧−1 

The general formula calculated for increasing values of 𝑦 is: 

𝑇𝑥𝑦𝑧 =∑𝐻𝑥,𝑦−𝑖,𝑧𝑇𝑦−𝑖,𝑖,𝑧−𝑦+𝑖

𝑦−1

𝑖=0

 

Within-household reproduction numbers and threshold condition 

We define the within-household reproduction number 𝑅ℎ as the expected number of household transmissions 

directly from an infected person who acquired infection in the community and has no non-susceptible housemates.  

Let ℎ𝑖 be the fraction of households with size 𝑖, up to a maximum size 𝑁. Then the mean 𝜇 and variance 𝜎2 of the 

household size distribution are 
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𝜇 =∑(𝑖ℎ𝑖)

𝑁

𝑖=1

, 𝜎2 =∑(𝑖2ℎ𝑖)

𝑁

𝑖=1

− 𝜇2 

Let 𝑐𝑖 be the probability that a randomly chosen person has 𝑖 housemates. The probability that a randomly chosen 

person lives in a house of total size 𝑖 (including themselves) is 𝑖ℎ𝑖 𝜇⁄ , so 

𝑐𝑖 = (𝑖 + 1)ℎ𝑖+1 𝜇⁄  

Then 𝑅ℎ is 𝑝ℎ times the mean number of housemates of a randomly chosen person: 

𝑅ℎ = 𝑝ℎ∑(𝑖𝑐𝑖)

𝑁−1

𝑖=1

= 𝑝ℎ (∑(𝑖2ℎ𝑖)

𝑁

𝑖=1

−∑(𝑖ℎ𝑖)

𝑁

𝑖=1

) 𝜇⁄ = 𝑝ℎ(𝜇 + 𝜎
2 𝜇⁄ − 1) 

We also define an alternate within-household reproduction number 𝑅ℎ
∗  as the expected total number of transmissions 

in the household of an infected person who acquired infection in the community and has no initially non-susceptible 

housemates. Given that a person acquiring infection in the community has 𝑖 susceptible housemates, the probability 

that 𝑗 of their housemates become infected before the household outbreak terminates is 𝑇1𝑗𝑖(𝑝ℎ, 𝑑ℎ), as defined in 

Section 2.2 of the main text. The expected total number of transmissions in their household will be then be 

∑ 𝑗𝑇1𝑗𝑖(𝑝ℎ, 𝑑ℎ)
𝑖
𝑗=1 . So, the household reproduction number formula is: 

𝑅ℎ
∗ = ∑ 𝑐𝑖∑𝑗𝑇1𝑗𝑖(𝑝ℎ, 𝑑ℎ)

𝑖

𝑗=1

𝑁−1

𝑖=1

= ∑
(𝑖 + 1)ℎ𝑖+1

𝜇
∑𝑗𝑇1𝑗𝑖(𝑝ℎ, 𝑑ℎ)

𝑖

𝑗=1

𝑁−1

𝑖=1

 

For the high-variability boundary case at 𝑑ℎ = 0, we have that  

∑𝑗𝑇1𝑗𝑖(𝑝ℎ, 0)

𝑖

𝑗=1

= 𝑖𝑝ℎ 

because 𝑇1𝑗𝑖(𝑝ℎ, 0) = 𝑝ℎ when 𝑗 = 𝑖 and 0 for other nonzero values of 𝑗 (reflecting all-or-nothing transmission). It 

follows that 𝑅ℎ = 𝑅ℎ
∗  when 𝑑ℎ = 0. This makes intuitive sense because in the all-or-nothing scenario, when the 

index person transmits, all in the household are infected directly, and there is no one left to infect in subsequent 

generations, so the final household outbreak size is entirely reflected in 𝑅ℎ. 
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We next investigate the implications of our 𝑅ℎ
∗  estimate for population-wide transmission control. The threshold 

condition delineating subcritical and supercritical transmission in the population occurs when the maximal 

eigenvalue of the matrix 

[
𝑅𝑐 𝑅ℎ

∗

𝑅𝑐 0
] 

exceeds one [30]. Here, 𝑅𝑐 is defined as the average number of community transmissions per infected individual 

(i.e., average number of transmissions to people not in the infected individual’s household). The occurrence of 𝑅𝑐 in 

both rows of the matrix reflects an assumption that its value applies to the transmissibility of people who acquire 

their own infection in the community and in their household. The zero element in the lower-right corner of the 

matrix reflects the fact that the 𝑅ℎ
∗  people on average who acquire infection in their household do not transmit 

further in their household, by definition, because 𝑅ℎ
∗  was derived from the final household outbreak size equations 

encompassed in 𝑇𝑥𝑦𝑧. 

The maximal eigenvalue exceeding one produces the following threshold condition: 

𝑅𝑐
2
(1 + √1 + 4𝑅ℎ

∗ 𝑅𝑐⁄ ) > 1 

This is equivalent to 

𝑅𝑐(𝑅ℎ
∗ + 1) > 1 

If the threshold condition is met and 𝑅ℎ
∗  is fixed, then the system can be pushed below threshold by reducing 𝑅𝑐 such 

that  

𝑅𝑐 <
1

𝑅ℎ
∗ + 1

 

If 𝑅𝑐 is fixed and less than one, then the system can be pushed below threshold by reducing 𝑅ℎ
∗  such that 

𝑅ℎ
∗ <

1

𝑅𝑐
− 1 

Relationship between beta distributed probability and dynamic transmission parameters 
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If an infected person’s duration of infectiousness is 𝜏 and the transmission rate to a contact is 𝛽, the probability that 

transmission to the contact occurs is 𝑝 = 1 − 𝑒−𝛽𝜏. We assume 𝜏 is fixed and 𝛽 is a gamma distributed random 

variable with shape 𝑘 and rate 𝑟. Then, the first and second moments of the random variable 𝑝 are:  

E[𝑝] = ∫
𝑟𝑘

Γ(𝑘)
𝑥𝑘−1𝑒−𝑟𝑥(1 − 𝑒−𝜏𝑥)𝑑𝑥

∞

0

= 1 − (
𝑟

𝑟 + 𝜏
)
𝑘

 

E[𝑝2] = ∫
𝑟𝑘

Γ(𝑘)
𝑥𝑘−1𝑒−𝑟𝑥(1 − 𝑒−𝜏𝑥)2𝑑𝑥

∞

0

= 1 − 2(
𝑟

𝑟 + 𝜏
)
𝑘

+ (
𝑟

𝑟 + 2𝜏
)
𝑘

 

The variance is then 

Var[𝑝] = E[𝑝2] − (E[𝑝])2 = (
𝑟

𝑟 + 2𝜏
)
𝑘

− (
𝑟

𝑟 + 𝜏
)
2𝑘

 

We then equate the mean and variance to those of the beta distribution with mean 𝑝ℎ and dispersion 𝑑ℎ, which we 

used in our MLE model in the main text.  

𝑝ℎ = 1 − (
𝑟

𝑟 + 𝜏
)
𝑘

 

𝑝ℎ(1 − 𝑝ℎ)

𝑑ℎ + 1
= (

𝑟

𝑟 + 2𝜏
)
𝑘

− (
𝑟

𝑟 + 𝜏
)
2𝑘

 

Combining those two equations yields 

((1 − 𝑝ℎ)𝑑ℎ + 1)
1 𝑘⁄
(2 − (1 − 𝑝ℎ)

1 𝑘⁄ ) − (𝑑ℎ + 1)
1 𝑘⁄ = 0 

𝑟 =
𝜏(1 − 𝑝ℎ)

1 𝑘⁄

1 − (1 − 𝑝ℎ)
1 𝑘⁄

 

We solved the first equation for 𝑘, which is independent of the assumption for 𝜏, using our MLE estimates of 𝑝ℎ and 

𝑑ℎ. We applied each of the (𝑝ℎ, 𝑑ℎ) pairs from our parametric bootstrap analysis to this equation to derive the 

confidence interval for 𝑘. 

Supplemental Results 

The alternate model produced an estimate for the new dispersion parameter 𝑑𝑐 = 2.1 (0.89 – 7.5) and altered 

estimates for the other 7 parameters compared to their values for the main text model (Table S4). The log likelihood 
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at this MLE was about 1 greater than the log likelihood produced by the main text result (Table S5), suggesting that 

the main text model (equivalent to the alternate model with 𝑑𝑐 = ∞) cannot be rejected with high confidence in 

favor of the alternate model by the likelihood ratio test (P = 0.14). The Bayesian information criterion (BIC) for the 

alternate model is 2418.5 compared to 2411.6 for the main text (𝑑𝑐 = ∞) model, which favors the main text model 

with a BIC difference of 6.9. 

The conclusion of high household transmission variability from the main-text model is consistent under this 

alternate model, with the MLE occurring at low value of the dispersion parameter 𝑑ℎ = 0.30, and the low-variability 

binomial model 𝑑ℎ = ∞ can be rejected with P = 0.02. However, uncertainty ranges become wider at higher levels 

of overdispersion in household risk of community acquisition. This is illustrated by the fact that a model assuming 

no household transmission (𝑝ℎ = 0), i.e. all household cases explained by acquisitions outside the households with 

high overdispersion (𝑑𝑐 = 0.5), cannot be rejected with very high confidence (P = 0.068). Thus, the alternate 

explanation for the distribution of household cases may not be definitively ruled out by our data.    

 

Table S1. Fraction of household data from each county in the state of Utah 

 
Data Utah population 

Cache County 11.1% 4.0% 

Davis County 11.4% 11.2% 

Salt Lake County 41.5% 36.6% 

Summit County 3.1% 1.3% 

Utah County 12.5% 19.6% 

Washington County 11.4% 5.4% 

Weber County 8.9% 8.1% 

Other 22 Counties 0.0% 13.9% 

Data refers to the fraction of households that contributed serology data for antibody testing; Utah population refers to the fraction of the overall 

state population that resides in each county (US Census data). 
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Table S2. Intervals between reported prior positive test and antibody test results 

Interval range Number Number antibody positive 

1 – 7 days 3 0 

8 – 14 days 11 9 

15 – 21 days 10 9 

22 – 28 days 10 9 

29 – 35 days 8 6 

36 – 42 days 10 6 

43 – 56 days 10 9 

57 – 70 days 7 6 

71 – 129 days 6 4 

Number in middle column is the count of individuals whose reported date of a prior positive test occurred within the given range of days before 

the date of antibody testing, and the third column gives the number of those who tested positive for antibodies.  
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Table S3. Demographic distributions of surveyed individuals 

 Data Utah U.S. 

Age and Sex    

  Age 0 to 4 years 1.6% 7.7% 6.1% 

  Age 5 to 14 years 6.6% 16.4% 12.6% 

  Age 15 to 24 years 13.2% 16.2% 13.0% 

  Age 25 to 34 years 15.8% 14.7% 14.0% 

  Age 35 to 44 years 16.6% 13.8% 12.6% 

  Age 45 to 54 years 12.5% 10.2% 12.6% 

  Age 55 to 64 years 13.8% 9.5% 12.8% 

  Age 65 to 74 years 13.0% 6.8% 9.8% 

  Age 75 to 84 years 5.7% 3.4% 4.8% 

  Age 85 years and over 1.2% 1.2% 1.8% 

  Female persons 52.0% 49.6% 50.8% 

Race and Hispanic Origin    

  White alone 93.8% 90.6% 76.3% 

  Black or African American alone 0.7% 1.5% 13.4% 

  American Indian and Alaska Native alone 0.6% 1.6% 1.3% 

  Asian alone 2.3% 2.7% 5.9% 

  Native Hawaiian and Other Pacific Islander alone 0.5% 1.1% 0.2% 

  Two or More Races 2.0% 2.6% 2.8% 

  Hispanic or Latino 8.5% 14.4% 18.5% 

  White alone, not Hispanic or Latino 87.9% 77.8% 60.1% 

Education    

  High school graduate or higher, persons age 25+ 98.2% 92.3% 88.0% 

  Bachelor’s degree or higher, persons age 25+ 57.1% 34.0% 32.1% 

Data refers to the fraction of surveyed individuals who reported each characteristic in our survey results. Utah and U.S. columns contain data 

from the US Census (Vintage 2019 Population Estimates Program). 
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Table S4. Alternate model results: allowing variability in importation probability by household 

Value MLE estimate (95% interval) 

Mean community acquisition probability (𝑝𝑐) 0.56% (0.44% – 0.70%)  

Household community acquisition dispersion (𝑑𝑐) 2.1 (0.89 – 7.5) 

Mean per-capita household transmission probability (𝑝ℎ) 27% (16% – 41%) 

Per-capita household transmission dispersion (𝑑ℎ) 0.21 (0 – 3.4) 

Probability that surveyed, infected person reported a prior positive test (𝜙𝑉) 72% (62% – 82%) 

Probability that antibody test of person with prior infection was positive (𝜙𝐴) 87% (77% – 94%) 

Probability that surveyed, uninfected person did not report a prior positive test (𝜋𝑉) 99.92% (99.86% – 99.97%)  

Probability that antibody test of person with no prior infection was negative (𝜋𝐴) 99.3% (99.2% – 99.5%) 

Confidence intervals for MLE derived from the likelihood ratio test, varying each individual parameter while fixing other parameters at their 

MLE values. 

 

Table S5. Comparison of alternate model MLE to main-text and other models 

Fixed 

values 

𝑝̂𝑐 𝑑̂𝑐 𝑝̂ℎ 𝑑̂ℎ 𝜙̂𝑉 𝜙̂𝐴 𝜋̂𝑉 𝜋̂𝐴 Log 

likelihood 

# of optimized 

parameters 

Rejection 

P value 

None 0.56% 2.1 27% 0.21 72% 87% 99.92% 99.3% −1172.75 8 - 

𝑑𝑐 = ∞ 0.41% ∞* 36% 0.43 72% 86% 99.94% 99.3% −1173.84 7 0.14 

𝑑ℎ = 0  0.60% 1.7 24% 0* 72% 87% 99.93% 99.3% −1172.86 7 0.64 

𝑑ℎ = ∞  0.77% 0.5 0% ∞* 72% 88% 99.92% 99.3% −1175.29 7 0.024 

𝑝ℎ = 0% 0.77% 0.5 0%* N/A 72% 88% 99.92% 99.3% −1175.29 6 0.079 

*Values that were fixed for the model in that row; other relevant values were optimized by MLE. P values were derived from the likelihood ratio 

test, compared to the likelihood of the overall MLE in the top row: twice the difference in log likelihood compared to the chi-squared distribution 

with degrees of freedom equal to the difference in the number of optimized parameters. The model with household transmission probability 𝑝ℎ 

fixed at 0% optimized only 6 parameters because the transmission dispersion parameter 𝑑ℎ is irrelevant with no transmission, hence we used 2 

degrees of freedom for the reference chi-squared distribution when comparing the likelihood to the full 8-parameter model. For the model with 𝑑ℎ 

fixed at ∞ (binomial transmission model), the optimum occurred at the boundary 𝑝ℎ = 0, producing the same likelihood as the adjacent model but 

different P-value as the reference chi-squared distribution has 1 degree of freedom.  
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Figure S1. Two-dimension confidence regions for 𝑝𝑐 paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S2. Two-dimension confidence regions for 𝑝ℎ paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S3. Two-dimension confidence regions for 𝑑ℎ paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S4. Two-dimension confidence regions for 𝜙𝑉 paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S5. Two-dimension confidence regions for 𝜙𝐴 paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S6. Two-dimension confidence regions for 𝜋𝑉 paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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Figure S7. Two-dimension confidence regions for 𝜋𝐴 paired with each other parameter 

 

Solid curves are the 2-dimensional confidence regions derived from the likelihood ratio test, comparing the likelihood ratio statistic to the 95th 

percentile of the chi-squared distribution with 2 degrees of freedom. Large solid circle is the MLE estimate and dashed lines are the confidence 

intervals for each individual parameter derived from the likelihood ratio test (Table 1 main text). Small dots are the MLE estimates from each of 

500 simulated data sets generated using parameter values set at the MLE from the actual data (parametric bootstrap). 
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