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In the midst of the covid-19 pandemic, social media data collected in real time has the potential
of being an early indicator of a new epidemic wave. This possibility is explored here by using a
neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for
a geographic region. It learns from multivariate time series of signals obtained from a novel set
of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to
capture the dynamics of the interlinked local signals and accurately predict the number of new
infections up to two months in advance. Moreover, it can estimate the future effects of changes in
the number of infected at a given time, which can be associated with the flow of people entering or
leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling
preliminary evidence for the predictive power of widely distributed social media surveys for public

health application

I. INTRODUCTION

During a pandemic, the ability to identify and forecast
local virus outbreaks is key in order for health officials to
take appropriate action. However, the intrinsic parame-
ters that represent the biological properties of the virus,
used by the predicting models, can only be estimated
once the pandemic has occurred. While a pandemic is
happening, parameter estimation carries a large degree
of uncertainty, meaning that the first principles models
that use them inherit this uncertainty in their predic-
tions. An epidemiologist recently pointed out in the New
York Times! : “You tell me what numbers to put in my
equations, and I'll give you the answer ... But you can’t
tell me the numbers, because nobody knows them...” | a
statement that illustrates the difficulties that currently
exist in predicting new infections during a pandemic.

A large amount of data is being generated, directly
or indirectly, related to the spread of the virus, on var-
ious spatial and temporal scales. Sources include so-
cial media, mobile phone GPS, and mobile fitness de-
vices, with other tools such as contact tracing or contact
simulations?. It is clear that it is necessary to include
this information in the first principles models or com-
binations with data-driven models®* through a learning
process or optimization.

In this work we investigate the predictive power of
data-driven models using survey data related to COVID-
19 captured through Facebook. Signals in function of
time are extracted from the data for a given geographic
region. They are obtained after processing the survey
by extracting numerical indicators (signals) from ques-
tions related to people’s symptoms, infections among
their social circle, visits to the hospital, quantity of on-

line searches about COVID-19, average time away from
home and more related questions. For instance, a person
response about how many of his friends tested COVID
positive will be somehow correlated with the new infected
cases in his region.

There is no clear first principles model for connecting
the factors of the survey with the COVID-19 statistics.
However, it is reasonable to expect that the local varia-
tion in time of the survey responses for a region is corre-
lated with new virus infections in that region. Moreover,
these signals have the potential of being early indicators?,
as they are not subject to intrinsic delays related to the
officially reported variables, local policies or testing ca-
pacities.

In order to learn this relation, a neural ordinary differ-
ential equation (neural ODE)Y was used to parameterize
the signals rate of change. This object uses a parame-
terized universal approximator in order to represent all
possible phase space dynamics with a finite set of param-
eters that can be learned on the training data. In this
work the neural ODE is trained on these potential early
indicators and is able to predict virus outbreaks even two
months in advance. Moreover, once trained, these phase
space methods allow for forecasting possible future sce-
narios.

Section [[A] details the surveys and signals as well as
arguments that support the idea that these signals could
be used as early indicators. Section [[B| gives a brief de-
scription of neural ODEs and how they are used in this
work . Section [[I] details the specific methods for incor-
porating the data into the neural ODEs and Section [[T]
demonstrates the predictive power of the neural ODEs
when used in this capacity. We end by discussing the
ramifications of using these machine learning methods
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FIG. 1.

The Neural ODE is trained with a set of signals/variables (shown above) extracted from the online surveys. The

trained neuronal net is able to capture the dynamics of the temporal variation of the signals by finding the ordinary differential
equation that best describes the data. The learnt solution, obtained by the temporal integration of the neural ODE, is shown
below against the reported data for the new infected cases in CO (correspondent to the signal Y1). The solution spans the

training interval and the prediction.

and data in the context of health care statistics.

A. COVID-19 Symptom Surveys through Facebook

Since April 2020 universities and public health offi-
cials, in collaboration with Facebook, have been con-
ducting a massive daily survey to monitor the spread
and impact of the COVID-19 pandemic in the United
States. The survey” is an ongoing operation that is ad-
vertised through Facebook’s platform and is taken by
nearly 55,000 people every day. Respondents provide
information about COVID-related symptoms, contacts,
prior medical conditions, risk factors, mental health, de-
mographics and the economic effects of the pandemic.
The information allows researchers to examine county-
level trends across the US. Around 16 million responses
have been collected so far.

The survey has four sections and it contains 35 ques-
tions. The first section gathers information about a set of
symptoms used to define a condition called COVID-like
illness (CLI), defined as fever of at least 100 °F , along
with shortness of breath, difficulty breathing or a cough®.
Two key quantities are estimated with this information,
for a given location and day:

1. the percentage of people with CLI,

2. the percentage of people who know someone in
their local community with CLI illness (CLI-in-
community).

The second section gathers more details on testing,
symptoms, and medical-seeking behavior. The third sec-
tion collects info on contacts and risk factors, and the
fourth section on demographics. A sample of the exact
questions asked can be found in the Supplementary Ma-
terials. Numerical indicators (signals) are extracted from
the set of questions? that results in a set of time series
(one for each indicator), for a given location. The ag-
gregated data is publicly available on the Delphi Group
websites? 10,

1. Surveys as early indicators

A person normally experiences viral symptoms before
seeking a COVID-19 test or medical care. Therefore,
data related to how many people are self-reporting CLI
symptoms in a given location could potentially give an
early indicator of COVID activity in that location. More-
over, the data is not subject to reporting delays, un-
like formal testing metrics of confirmed daily COVID-19


https://doi.org/10.1101/2021.01.27.21250642
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.01.27.21250642; this version posted January 31, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

cases, which are also affected by issues such as testing
policy and capacity.

An analysis that provides evidence that the survey-
based CLI signals can be early indicators of COVID ac-
tivity is provided in the Delphi Group™! where it is shown
that the ” CLI-in-community” signal rises alongside con-
firmed COVID-19 cases. Indeed, more people report that
others are sick in their community at times when COVID-
19 tests confirm more cases. Interestingly, the indicator
begins to rise steeply days before COVID-19 cases be-
gin their steep ascent. This analysis is an informal way
of looking at the recall of the indicator and opens up
the possibility of using these kind of noisy and indirect
signals as early indicators of new cases.

Although the survey cannot be used to draw definite
conclusions about the true prevalence of coronavirus dis-
ease in the studied region, changes in self-reported
symptoms over time could still be a meaningful re-
flection of the changes in coronavirus infections over time
and therefore could help predicting changes in the num-
ber of new infected cases that will happen some days into
the future.

B. Models: first principles and data driven

The use of these signals for the prediction of new cases
could be done by means of a model that relates the rate of
variation of the different indicators to the model’s state
variables. However, unlike the case of common epidemio-
logical models, the deduction of a quantitative expression
that relates the new cases as a function of the different
signals extracted from the surveys is far from obvious.
Even if the relations were found and the model described
for example as an ordinary differential equation system,
it would surely have unknown parameters involved and
would be subject to uncertainties. Taking advantage of
the amount of data and indicators obtained from the sur-
veys, a data driven approach would be a logical alterna-
tive to obtain a model for predicting the new infected
cases for a geographical region.

Therefore, for a specific region, we define a vector with
a suitable set of indicators / variables as components
(among them the number of new cases) and define the
model via a function that approximates the temporal evo-
lution of this vector. With such a function, the number
of new cases is expressed as function of time and thus a
prediction could be made. For example, in the case of the
classic SIR compartment model', the vector components
are the variables number of suspectible individuals (S),
the number of infected individuals (I) and the number
of recovered individuals (R) and their temporal variation
expressed with via an ordinary differential equation based
on intuition and qualitative knowledge of the dynamics
of contagions. But for the case of the vector formed with
the surveys indicators as components, since it is not clear
how to define the relationship between them from first
principles, we cannot directly define such a model.

1. Neural ordinary differential equations

Given the lack of a known function form, we turn to
the neural ODEY as a way to directly derive the dif-
ferential equation from data. A Neural ODE is a neu-
ral network parametrization of an ordinary differential
equation which allows for learning the dynamics of any
possible dynamical system due to the universal approxi-
mation theorem#4 (assuming a sufficiently large neural
network). In particular, we represent our dynamical sys-
tem via:

= NN(G1,0), (1)
where NN is a neural network given by weights 6. This
neural network has an explicit ¢ dependence since it is
parameterized based on the time-dependent input sig-
nals from the data. The goal is to learn the underlying
dynamics of change. The “forward pass” through a neu-
ral ODE is equivalent to solving an initial value problem
where y(tg) is the input features and we replace hand-
crafted equations with a neural network. A single for-
ward pass gives us an entire trajectory. In contrast to
other architectures used for time series like residual neu-
ral networks (RNNs)*?, this model is continuous in time,
allowing for incorporating non-uniform data and predic-
tions.
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FIG. 2. Neural ODE model component for the new cases in
the state of Ohio. New reported cases with dots and neural
ODE solution with solid line. The vertical dotted line de-
limits the data set used to train the neuronal network, from
the test set. The variables used for this forecast are new
cases, Hospital Admission, COVID-Like Symptoms, COVID-
Like S7ymptoms in Community and COVID-Related Doctor
Visits*“.

The parameters of the neural ODE are learned from
the data as diagrammed in Figure [I} The learning pro-
cess is performed by minimizing the following loss func-
tion

L(0) = Z |F(t:) — Gaara ()], (2)
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FIG. 3. Prediction for the new infected cases in the state of

ME (Maine), particular case where the dynamic is not easily

describable by a first principles model, while the neural ODE

is able to learn the dynamics and predict an increase of cases

for the following fifty days. This increase correlates nicely

with the recorded cases not used for the learning process (test
dots on the right of the vertical line).

with respect to the networks parameters 6. Here,
Jdata(t;) Tepresents the multivariate time series as a vec-
tor whose components are the values from the chosen set
of signals at time ¢; while y(¢;) is given by the numer-
ical solution to Equation Minimization is performed
by gradient-based local methods, specifically ADAMIE,
Thus in order to perform the minimization the gradient
of the loss function with respect to all parameters # must
be computed. Given the large Lipshitz constants seen
due to rapid changes during the onset of the growth, the
adjoint technique of the original neural ODE publication
is potentially unstable on the case of interest’Z12 and
thus we opted for stabilized techniques which avoid re-
verse solvin,

II. METHODS

The raw signals for each USA State were downloaded
using the Delphi Group API?I0 A smoothing was
performed via a cubic spline interpolation for all the
signauls/indicatorslzzI time series. The 7-day averaged of
reported new confirmed COVID-19 cases was used as the
main indicator of interest?d for accounting for the new
cases. We chose the following set of variables as com-
ponents in order to build the state vector y(t) for each
location:

1. New daily cases (7 day averaged),

2. Hospital Admission,

3. COVID-Like Symptoms,

4. COVID-Like Symptoms in Community,
5. COVID-Related Doctor Visits
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FIG. 4. The training data set used here (CO state) finished
before another uprising of infected cases. Nonetheless the
neural ODE is able to detect the outbreak and even accurately
pinpoint almost 60 days later the date of the outbreak peak.

The resultant multivariate time series were split into
two sets, a training set and a validation set. The train-
ing set was used to update the weights 6 in the net-
work while the validation set was used for monitor-
ing over-fitting and training generalization. Training
was performed using a mini-batched®? form of multiple
shooting®327 which involved computing the loss between
intervals of data points. Specifically, a data point was
randomly selected to be the initial condition and the neu-
ral ODE was solved from the point 7; at time ¢; to time
t;+1 with the Tsith method?8 using the DifferentialEqua-
tions.jl implementation?? to get the prediction for the
next point y(¢;11). This was then compared to the true
data point ¥g4tq. The loss was calculated as the mean
squared error (MSE) between the true point ., and
the predicted point y(t) (see eq. . Backpropogation
was performed using the adjoint implementations of the
DiffEqFlux.jl library®.

The neural networks used for parameterizing the ODE
consisted of four interconnected layers with 64 , 32 , 16
and 8 neurons each and swish activation functions>.

Once the weights of neuronal net () are found, the
network defines the rate for the temporal evolution of
the state variables (See eq. . Note that such an equa-
tion can be solved beyond the training interval to assess
its ability to accurate forecast. It is expected that this
prediction will deteriorate as it moves further in phase
space from the training data, nonetheless we will show
that there will be a highly predictive time frame.

A. Software

Python library Pandad?” was used for pre-processing
the data?2. The set of tools available in the Julia library
The following open source software tools were used for
this work: Pandas library B for part of the data pre
processing, matplotlib®? for plotting, and Inkspace for
making figures®s, DifEqFlux?3% for training the neural
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FIG. 5.  Once the dynamics is learnt by the neural ODE,

its solution can predict the projection for different number
of initial cases. Above: new cases for the state of South
Carolina (dots), and the solution given by the trained neu-
ral ODE(thick line). Below: different solutions calculated by
the neural ODE for different number of cases on the first day.
This ability to estimate the effect of signal perturbation can
be useful for estimating the error on the forecast, and also for
inferring the effect of changes in the number of cases.

ODEs, and the DifferentialEquations.jl solvers?? for solv-
ing the differential equations.

III. RESULTS AND DISCUSSION

Figure [2| shows the results of the trained neural ODE
and its projection for the state of Ohio. One hundred
days of data were used for training. The prediction of
the neural ODE follows the thread of the new reported
cases fifty days in the future (see interval after the ver-
tical dotted line). Meanwhile, Figure [3| shows the case
of the state of Maine where the neural ODE learns to
qualitatively extrapolate the new infected cases for 40-50
days also using data from the previous 100 days. The dy-
namic of the outbreak until day 100 (last training day),
looking at the new cases alone, shows a diminish of con-
tagious nonetheless the neural ODE is able to predict
an increase on the new cases for the following fifty days.
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FIG. 6. Once trained with the local signals (Colorado state),
the neural ODE can extrapolate different possible scenarios
due to changes in the number of local active case. This change
could happen due to the flow of people traveling in or out of
the location or by a local vaccination campaign. The neural
ODE solution is shown with a thick line, while the reported
data 7 day average of new cases with dots. The test data
starts after the vertical dotted line where different changes
on the number of infected are defined whit the neural ode
forecast shown for each case (thin line).

Figure [d] demonstrates that in the state of the neural ode
is trained with only 50 days of data but is able to ex-
trapolate the outbreak dynamics for the next sixty days,
predicting the uprising in the number of cases during the
next 15 days after the last training day. Moreover, is
able to forecast the day of the next peak of cases and the
following decrease of cases.

The model (the neural ODE), once it learnt the dy-
namics from the local signals, is capable of obtaining a
prediction of new contagions, but also allows studying
possible future scenarios in the event of signal distur-
bances. For example, if there is an abrupt change in
the number of new cases in a given time, the model can
predict the effect on the forecast without having to be
re-trained. This translates into changing the initial con-
dition in the integration and can be used to estimate
forecasting errors due to uncertainty in the signal related
to the current number of cases. Figure [5| demonstrates
a projection which includes such uncertainty in current
epidemic statistics.

Moreover, a change in the number of infected can be
for instance due to the flow of people traveling in or out
of the location, which would result in an overall pertur-
bation in the number of infected. Figure[6]showcases the
differing levels of the predicted peak with respect to dif-
ferent choices for the amount of migration. The change
and its consequences can be estimated by looking at the
perturbed solution. This opens the possibility, for loca-
tions with strict closed borders to be able to predict the
effect of the flow of people on the curve of infected. More-
over, the effects of vaccination in the region could also be
estimated in this way .
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IV. CONCLUSIONS AND FUTURE WORK.

Using multivariate time series associated with a geo-
graphic region, obtained by quantifying indicators from
massive online surveys on COVID symptoms offered
through the Facebook platform, we show how a neural
ODE is able to learn the dynamics that connect these
variables and detect virus outbreaks in the region. An-
alyzing data from different US states, we show that the
neural ODE is capable of predicting up to sixty days into
the future in different kinds of virus spreading environ-
ments.

We show that once it learnt the dynamics of the lo-
cal signals/variables, the neural ODE is capable of not
only forecasting new contagious in the region but also
analyzing possible future scenarios in the case of abrupt
changes in the number of infected in a given day, for ex-
ample due to transit of people to or from the analyzed
region or to a vaccination campaign. This opens the pos-
sibility for locations with strict closed borders, to be able
to predict the effect of the flow of people on the curve of
infected and thus design policies accordingly in a con-
trolled way=?. Likewise, it could be useful for the design
of the strategies of vaccination campaigns.

The neural ODE was trained with data from a single
location (state), however it would be expected that the
dynamics that connects the local signals in one region will
have similar attributes in another. Thus it would be in-
teresting to explore different training schemes, where the
model also learns from other regions. Including graphical
models into the neural ODE, possibly via graph neural
networks, is a compelling avenue for future research.

It is possible to combine this class of data-driven mod-
els with first principles models such as compartment
models with a scientific machine learning approach?!. If
one region is describable with an analytical model and
another is not, but signals can be extracted from it, a
hybrid model for the combined region can be designed,
with first principles for the first region and with a trained

neural ODE for the second.

This work represents a first step, a proof of concept. It
is necessary to explore different signals and combinations,
and compare its generalization capabilities. Accurate us-
age of the uncertainty quantification also needs much
more research before being deployed in public health sce-
narios. Still, these results showcase promising results for
future real-time forecasting from predictive social media
data.
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